1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 12: Superconductivity"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.1, Page 373"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"\n",
"#Variable declaration\n",
"Tc=7.26;#critical tempreture in kelvin\n",
"H0=8*1e5/(4*pi);#magnetic field at 0K\n",
"T=5;#tempreture in kelvin\n",
"\n",
"#Calculation\n",
"Hc=H0*(1-(T/Tc)**2);#megnrtic field at 5K\n",
"\n",
"#Result\n",
"print 'magnrtic field at 5K tempreture =%.2f*10^4 A/m'%(Hc/1e4)\n",
"#Incorrect answer in the textbook\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"magnrtic field at 5K tempreture =3.35*10^4 A/m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.2, Page 373"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log\n",
"\n",
"#Variable declaration\n",
"Tc=0.3;#given tempareture in kelvin\n",
"thetad=300;\n",
"\n",
"#Calculations&Results\n",
"#part a\n",
"N0g=-1./(log(Tc/thetad));\n",
"print 'the value of N0g is %.2f'%N0g\n",
"#part b\n",
"kB=1.38*1e-23;#boltzmann constant\n",
"Eg=3.5*kB*Tc;#energy\n",
"print 'energy is= %.2f*10^-23 J'%(Eg/1e-23)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the value of N0g is 0.14\n",
"energy is= 1.45*10^-23 J\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.3, Page 374"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"H0=0.0306;#given constant characteristic of lead material\n",
"Tc=3.7;#given tempareture in kelvin\n",
"T=2;#given tempareture in kelvin\n",
"\n",
"#Calculations\n",
"x=(T/Tc)*(T/Tc);\n",
"Hc=H0*(1-x);#value of magnetic field at 2K temp\n",
"\n",
"#Result\n",
"print 'value of magnetic field at 2K temp = %.4f T'%Hc\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"value of magnetic field at 2K temp = 0.0217 T\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.4, Page 374"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt,pi\n",
"\n",
"#Variable declaration\n",
"HcT=2*1e5/(4*pi);#magnetic field intensity at T K\n",
"Hc0=3*1e5/(4*pi);#magnetic field intensity at T=0K\n",
"Tc=3.69;#given temperature in K\n",
"\n",
"#Calculation\n",
"T=sqrt(1-(HcT/Hc0))*Tc;#tempreture in K\n",
"\n",
"#Result\n",
"print 'temperature of superconducture is= %.2f K'%T\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"temperature of superconducture is= 2.13 K\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.5, Page 374"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"\n",
"#Variable declaration\n",
"H0=6.5*1e4;#given constant characteristic of lead material\n",
"Tc=7.18;#given temprature in kelvin\n",
"T=4.2;#given temprature in kelvin\n",
"\n",
"#Calculations&Results\n",
"#part a\n",
"x=(T/Tc)*(T/Tc);\n",
"Hc=H0*(1-x);#value of magnetic field at 4.2K temp\n",
"print 'value of magnetic field at 4.2K temp= %.2f*10^4 A/M'%(Hc/1e4)\n",
"#part b\n",
"r=1e-3;#given radius\n",
"Ic=2*pi*r*Hc;#critical current\n",
"print 'critical current is = %.1f A'%Ic #Incorrect answer in the textbook\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"value of magnetic field at 4.2K temp= 4.28*10^4 A/M\n",
"critical current is = 268.7 A\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.6, Page 375"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"\n",
"#Variable declaration\n",
"lemdaT=750;#given penetration depth at T=3.5K\n",
"Tc=4.22;#given critical tempreture\n",
"T=3.5;##given temperature\n",
"\n",
"#Calculations&Results\n",
"#part a\n",
"x=(T/Tc)**4;#temporary variable\n",
"lemda0=lemdaT/sqrt(1-x);#penetration depth at T=0K\n",
"print 'penetration depth at T=0K is %.fA'%lemda0\n",
"#part b\n",
"N=6.02*1e26;#given\n",
"alpha=13.55*1e3;#given\n",
"M=200.6;#given\n",
"n0=N*alpha/M;\n",
"print 'molecular density = %.3f*10^28 /m^3'%(n0/1e28)\n",
"ns=n0*(1-(T/Tc)**4);#superconducting electron density\n",
"print 'superconducting electron density = %.3f*10^28 /m^3'%(ns/1e28)#Answer differs due to rounding-off values\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"penetration depth at T=0K is 1033A\n",
"molecular density = 4.066*10^28 /m^3\n",
"superconducting electron density = 2.142*10^28 /m^3\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|