1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11: Semiconductors"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1, Page 343"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"Pi=0.47;#given resistivity of intrinsic germanium\n",
"sigmai=1/Pi;#conductance\n",
"e=1.6*1e-19;#charge of electron\n",
"ue=0.38;#electron mobility\n",
"up=0.18;#hole mobility\n",
"\n",
"#Calculation\n",
"ni=sigmai/(e*(ue+up));#intrinsic carrier density at 300K \n",
"\n",
"#Result\n",
"print 'intrinsic carrier density at 300K temp= %.2f*10^19 m^-3'%(ni/1e+19)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"intrinsic carrier density at 300K temp= 2.37*10^19 m^-3\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2, Page 343"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"e=1.6*1e-19;#charge of electron\n",
"ue=0.39;#electron mobility\n",
"up=0.19;#hole mobility\n",
"ni=2.4*1e19;#intrinsic carrier density \n",
"\n",
"#calculation\n",
"sigma=ni*e*(up+ue);\n",
"\n",
"#Result\n",
"print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"conductivity of intrinsic semiconductor= 2.23 ohm^-1*m^-1\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3, Page 343"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi,exp\n",
"\n",
"#Variable Declaration\n",
"m0=9.1*1e-31;\n",
"me=0.12*m0;\n",
"mp=0.28*m0;\n",
"Eg=0.67*1.6*1e-19\n",
"k=1.38*1e-23;#boltzman constant\n",
"h=6.62*1e-34;#plank's constant\n",
"T=300;\n",
"\n",
"#Calculations\n",
"ni=2*((2*pi*k*T/h**2)**(3./2))*((me*mp)**(3./4))*exp(-Eg/(2*k*T));#intrinsic carrier concentration\n",
"\n",
"#Result\n",
"print 'intrinsic carrier concentration is= %.1f *10^18 m^-3'%(ni/1e18)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"intrinsic carrier concentration is= 4.7 *10^18 m^-3\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4, Page 343"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import exp\n",
"\n",
"#Variable Declaration\n",
"Eg1=0.36*1.6*1e-19;\n",
"Eg2=0.72*1.6*1e-19\n",
"k=1.38*1e-23;#boltzman constant\n",
"T=300;#tempreture in kelvin\n",
"\n",
"#Calculation\n",
"#in this formula ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T))ratio of nip/niq is given by:\n",
"x=exp((Eg2-Eg1)/(2*k*T));#ratio of nip/niq\n",
"\n",
"#Result\n",
"print 'ratio of nip/niq is= %.f '%x\n",
"#Incorrect answer in the textbook\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"ratio of nip/niq is= 1050 \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5, Page 344"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"e=1.6*1e-19;#charge of electron\n",
"ue=0.39;#electron mobility\n",
"up=0.19;#hole mobility\n",
"ni=2.5*1e19;#intrinsic carrier density \n",
"l=1e-2;#length of Ge rode\n",
"a=1e-4;#area of Ge rode\n",
"\n",
"#Calculations&Results\n",
"sigma=ni*e*(up+ue);#conductivity of intrinsic semiconductor\n",
"print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma\n",
"P=1/sigma;\n",
"R=P*l/a;#resistance of Ge rode\n",
"print 'resistance of Ge rode =%.1f ohm'%R\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"conductivity of intrinsic semiconductor= 2.32 ohm^-1*m^-1\n",
"resistance of Ge rode =43.1 ohm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.6, Page 347"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"ue=3850;#mobility of electron\n",
"sigma=5;#conductivity of ntype semiconductor\n",
"e=1.6*1e-19;#charge of electron\n",
"\n",
"#Calculation\n",
"Nd=sigma/(e*ue);#density of donor atoms\n",
"\n",
"#Result\n",
"print 'density of donor atoms is= %.2f*10^16 cm^-3'%(Nd/1e16)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"density of donor atoms is= 0.81*10^16 cm^-3\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.7, Page 351"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log\n",
"\n",
"#Variable Declaration\n",
"#let Ef-Ev=0.4eV=x and Ef1-Ev=y\n",
"x=0.4;#Ef-Ev in eV\n",
"k=1.38*1e-23;#boltzmann constant\n",
"T=300;#tempreture in kelvin\n",
"\n",
"#Calculations\n",
"#now p=Nv*exp(-x/(k*T))=Na and p'=Nv*exp(-y/(k*T))=2Na so ratio of this 2 is 2=exp(x-y/(k*T))\n",
"y=x-((k*T*log(2))/1.6e-19);#Ef1-Ev in eV\n",
"\n",
"#Result\n",
"print 'Ef1-Ev in eV is= %.4feV'%y\n",
"#Answer varies due to rounding-off errors"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ef1-Ev in eV is= 0.3821eV\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.8, Page 352"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"#let Ec1-Ef=0.3eV=x and Ec2-Ef=y\n",
"x=0.3;#Ec-Ef in eV\n",
"T1=300.;#tempreture in kelvin\n",
"T2=330.;#tempreture in kelvin\n",
"\n",
"#Calculation\n",
"#Ec-Ef=k*T*log(Nc/Nd) so..\n",
"y=T2*x/T1;#Ec2-Ef in eV\n",
"\n",
"#Result\n",
"print 'Ec2-Ef in eV is= %.2f eV'%y\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ec2-Ef in eV is= 0.33 eV\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.9, Page 356"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"B=0.5;#given flux density\n",
"d=3*1e-3;#given thickness\n",
"J=500.;#given current density\n",
"n=1e21;#given donor density\n",
"e=1.6*1e-19;#charge of electron\n",
"\n",
"#Calculation\n",
"Vh=(B*J*d)/(n*e);#hall voltage\n",
"\n",
"#Result\n",
"print 'hall voltage is= %.1f mV'%(Vh/1e-3)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"hall voltage is= 4.7 mV\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.10, Page 357"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"\n",
"#Variable Declaration\n",
"P=8.9*1e-3;#resistivity of doped sillicon\n",
"Rh=3.6*1e-4;#hall coefficient\n",
"e=1.6*1e-19;#charge of electron\n",
"\n",
"#Calculations&Results\n",
"ne=(3*pi)/(8*Rh*e);#carrier density of electron\n",
"print 'carrier density of electrons = %.3f*10^22 m^-3'%(ne/1e22)\n",
"ue=1./(P*ne*e);#mobility of electon\n",
"print 'mobility of charges = %.4f m^2*V^-1*s^-1'%ue\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"carrier density of electrons = 2.045*10^22 m^-3\n",
"mobility of charges = 0.0343 m^2*V^-1*s^-1\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|