summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G._Vijayakumari/Chapter13.ipynb
blob: afb202a581e1e114f6ad9618ee2be27b63479591 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#13: Dielectrics"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 13.1, Page number 356"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The electron polarisation is 3.945 *10**-7 C/m^2\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=3.61*10**-10;    #lattice constant of copper which is Fcc crystal(m)\n",
    "x=1*10**-18;     #average displacement of the electrons relative to the nucleus(m)\n",
    "z=29;     #atomic number of copper\n",
    "n=4;      #number of atoms per unit cell in FCC crystal\n",
    "e=1.6*10**-19;    #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "ne=((n*z)/(a*a*a));     #number of electrons(electrons/m^3) \n",
    "P=ne*e*x;    #The electron polarisation(C/m^2)\n",
    "\n",
    "#Result\n",
    "print \"The electron polarisation is\",round(P*10**7,3),\"*10**-7 C/m^2\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 13.2, Page number 356"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The dipole moment of each atom in a field is 1.9646 *10**-35 C m**-3\n",
      "The effective distance at this field strength between the centre and the nucleus is 8.77 *10**-18 m\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "rp=11.7;   #relative permittivity of silicon\n",
    "N=4.82*10**28;   #number of atoms per unit volume(atoms/m^3)\n",
    "ro=8.85*10**-12;   #permittivity of free space\n",
    "E=10**4;    #E(Vm^-1)\n",
    "e=1.6*10**-19;   #charge of electron(c)\n",
    "Z=14;     #atomic number of silicon \n",
    "\n",
    "#Calculation\n",
    "z=(ro*(rp-1))/N     #electronic polarisability(Fm^2)\n",
    "mew=z*E;       #The dipole moment of each atom(Cm^-3)\n",
    "x=y/(Z*e);   #The effective distance at this field strength between the centre and the nucleus(m)\n",
    "\n",
    "#Result\n",
    "print \"The dipole moment of each atom in a field is\",round(y*10**35,4),\"*10**-35 C m**-3\"\n",
    "print \"The effective distance at this field strength between the centre and the nucleus is\",round(x*10**18,2),\"*10**-18 m\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 13.3, Page number 357"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The electronic polarisability is 1.39 *10**-41 Fm**2\n",
      "The relative permittivity in hydrogen gas is 1.0015\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "d=9.8*10**26;    #density of hydrogen gas(atoms/m^3)\n",
    "r=0.50*10**-10;   #radius of the hydrogen atom(m)\n",
    "ro=8.85*10**-12;   #permittivity of free space\n",
    "\n",
    "#Calculation\n",
    "z=(4*math.pi*ro*r**3)/10**-41;    #electronic polarisability(Fm^2)\n",
    "rp=(((d*z*10**-41)/ro)+1);        #The relative permittivity in hydrogen gas\n",
    "\n",
    "#Result\n",
    "print \"The electronic polarisability is\",round(z,2),\"*10**-41 Fm**2\"\n",
    "print \"The relative permittivity in hydrogen gas is\",round(rp,4)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 13.4, Page number 357"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The static dielectric constant of solid argon is 1.53679\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "z=1.75*10**-40;    #electronic polarisability(Fm^2)\n",
    "d=1.8*10**3;   #density of argon atom(Kg/m^3)\n",
    "Z=39.95;    #atomic weight of argon\n",
    "NA=6.025*10**26;    #Avagadro number(mole^-1)\n",
    "ro=8.85*10**-12;    #permittivity of free space\n",
    "\n",
    "#Calculation\n",
    "N=((NA*d)/Z);     #The number of atoms/unit volume(atoms/m^3) \n",
    "rp=(((N*z)/ro)+1);    #The static dielectric constant of solid argon\n",
    "\n",
    "#Result\n",
    "print \"The static dielectric constant of solid argon is\",round(rp,5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 13.5, Page number 366"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Ratio between electronic and ionic polarisability of this material is 1.7376\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "er=4.94;   #static dielecric constant of a material\n",
    "n=2.69;    #index of friction\n",
    "\n",
    "#Calculation\n",
    "x=((er-1)*(n+2))/((er+2)*(n-1))-1;     #Ratio between ionic and electronic polarisability of this material\n",
    "y=1/x;      #Ratio between electronic and ionic polarisability of this material\n",
    "\n",
    "#Result\n",
    "print \"Ratio between electronic and ionic polarisability of this material is\",round(y,4)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}