summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G._Vijayakumari/Chapter11.ipynb
blob: a7245a2214d996b54b516b5b9650d026a5cfe34b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#11: Extrinsic Semiconductors"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.1, Page number 307"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Before adding boron atoms,the semiconductor is an intrinsic semiconductor\n",
      "conductivity before adding boron atoms is 2.016 ohm^-1 m^-1\n",
      "After adding boron atoms,the semiconductor becomes a P-type semiconductor\n",
      "conductivity after adding boron atoms is 1.44 *10**4 ohm^-1 m^-1\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "ni=2.1*10**19;   #intrinsic charge carriers(m^-3)\n",
    "me=0.4;   #electron mobility(m^2 V^-1 s^-1)\n",
    "mh=0.2;   #hole mobility(m^2 V^-1 s^-1)\n",
    "d=4.5*10**23;   #density of boron(m^-3)\n",
    "e=1.6*10**-19;   #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "C=ni*e*(me+mh);   #conductivity before adding boron atoms(ohm^-1 m^-1)\n",
    "c=d*e*mh;   #conductivity after adding boron atoms(ohm^-1 m^-1)\n",
    "\n",
    "#Result\n",
    "print \"Before adding boron atoms,the semiconductor is an intrinsic semiconductor\"\n",
    "print \"conductivity before adding boron atoms is\",C,\"ohm^-1 m^-1\"\n",
    "print \"After adding boron atoms,the semiconductor becomes a P-type semiconductor\"\n",
    "print \"conductivity after adding boron atoms is\",c/10**4,\"*10**4 ohm^-1 m^-1\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.2, Page number 307"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "DensiTy of electrons in n-type silicon is 1.4423 *10**24 electrons/m^3\n",
      "DensiTy of holes in n-type silicon is 1.56 *10**8 holes/m^3\n",
      "DensiTy of holes in p-type silicon is 3.75e+24 holes/m^3\n",
      "DensiTy of electrons in p-type silicon is 6.0 *10**7 electrons/m^3\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "ni=1.5*10**16;   #intrinsic charge carriers(m^-3)\n",
    "me=1300*10**-4;   #electron mobility(m^2 V^-1 s^-1)\n",
    "mh=500*10**-4;    #hole mobility(m^2 V^-1 s^-1)\n",
    "c=3*10**4;     #conductivity of n-tpye silicon(ohm^-1 m^-1)\n",
    "e=1.6*10**-19;   #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "ne=c/(e*me);    #DensiTy of electrons in n-type silicon(electrons/m^3)\n",
    "nh=ni**2/ne;   #Density of holes in n-type silicon(holes/m^3)\n",
    "Ne=c/(e*mh);    #Density of holes in p-type silicon(holes/m^3)\n",
    "Nh=ni**2/Ne;   #Density of electrons in p-type silicon(holes/m^3)\n",
    "\n",
    "#Result\n",
    "print \"DensiTy of electrons in n-type silicon is\",round(ne/10**24,4),\"*10**24 electrons/m^3\"\n",
    "print \"DensiTy of holes in n-type silicon is\",nh/10**8,\"*10**8 holes/m^3\"\n",
    "print \"DensiTy of holes in p-type silicon is\",Ne,\"holes/m^3\"\n",
    "print \"DensiTy of electrons in p-type silicon is\",Nh/10**7,\"*10**7 electrons/m^3\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.3, Page number 308"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The electron concentration is 2.0 *10**9 electrons/m^3\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "ni=2*10**16;    #intrinsic charge carriers(m^-3)\n",
    "Na=5*10**23;    #density of acceptor concentration of silicon with arsenic(atoms)\n",
    "Nd=3*10**23;    #density of donor concentration of silicon with arsenic(atoms)\n",
    "\n",
    "#Calculation\n",
    "nh=Na-Nd;   #density of hole(m^-3)\n",
    "ne=ni**2/nh;   #The electron concentration(electrons/m^3)\n",
    "\n",
    "#Result\n",
    "print \"The electron concentration is\",ne/10**9,\"*10**9 electrons/m^3\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.4, Page number 309"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The position of fermi level is 4.893 *10**-20 J or 0.3058 eV\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "d=5*10**28;    #density of silicon atom(atoms/m^3)\n",
    "nd=2.5*10**7;   #donor concentration in 1 atom per si atom\n",
    "T=300;    #Temperature(K)\n",
    "Eg=1.1*1.6*10**-19;   #Eg for silicon(eV)\n",
    "kb=1.38*10**-23;    #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n",
    "m=9.11*10**-31;   #mass of electon(kg)\n",
    "h=6.625*10**-34;   #plank's constant(m^2 Kg/sec)\n",
    "\n",
    "#Calculation\n",
    "Nd=d/nd;     #The donor concentration(atoms/m^3)\n",
    "Ef=(Eg/2)+(kb*T*(math.log(Nd/(2*((2*math.pi*m*kb*T)/h**2)**(3/2)))));    #The position of fermi level at 300K(J)\n",
    "\n",
    "#Result\n",
    "print \"The position of fermi level is\",round(Ef*10**20,3),\"*10**-20 J or\",round(Ef/(1.6*10**-19),4),\"eV\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.5, Page number 310"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The density of the intrinsic crystal for p-type is 1.302 *10**21 m^-3\n",
      "The minor carrier concentration for p-type is 1.728e+11 electrons/m^3\n",
      "The density of the intrinsic crystal for n-type is 4.6296 *10**20 m^-3\n",
      "The minor carrier concentration for n-type is 4.86e+11 holes/m^3\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "ni=1.5*10**16;   #intrinsic charge carriers(m^-3)\n",
    "r1=10*10**-2;    #resistivity of p-type silicon(ohm m)\n",
    "r2=10*10**-2;    #resistivity of n-type silicon(ohm m)\n",
    "me=1350*10**-4;   #The mobility of the charge carrier(m^2 V^-1 s^-1)\n",
    "mh=480*10**-4;    #The hole charge carrier(m^2 V^-1 s^-1)\n",
    "e=1.6*10**-19;    #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "Na=1/(r1*e*mh);    #The density of the intrinsic crystal for p-type(m^-3)\n",
    "ne=ni**2/Na;    #The minor carrier concentration for p-type(electrons/m^3)\n",
    "Nd=1/(r2*e*me);    #The density of the intrinsic crystal for n-type(m^-3)\n",
    "nh=ni**2/Nd;       #The minor carrier concentration for n-type(electrons/m^3)\n",
    "\n",
    "#Result\n",
    "print \"The density of the intrinsic crystal for p-type is\",round(Na/10**21,3),\"*10**21 m^-3\"\n",
    "print \"The minor carrier concentration for p-type is\",ne,\"electrons/m^3\"\n",
    "print \"The density of the intrinsic crystal for n-type is\",round(Nd/10**20,4),\"*10**20 m^-3\"\n",
    "print \"The minor carrier concentration for n-type is\",nh,\"holes/m^3\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.6, Page number 315"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The electron mobility is 0.14 m^2 V^-1 s^-1\n",
      "The charge carrier density is 5e+21 electrons/m^3\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "c=112;   #conductivity of a n-type silicon specimen(ohm^-1 m^-1)\n",
    "RH=1.25*10**-3;   #Hall coefficient of a n-type silicon specimen(m^3 C^-1)\n",
    "e=1.6*10**-19;    #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "me=c*RH;     #electron mobility(m^2 V^-1 s^-1)\n",
    "ne=c/(me*e);    #The charge carrier density(electrons/m^3)\n",
    "\n",
    "#Result\n",
    "print \"The electron mobility is\",me,\"m^2 V^-1 s^-1\"\n",
    "print \"The charge carrier density is\",ne,\"electrons/m^3\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.7, Page number 315"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Hall coefficient of semiconductor is 3.7e-06 C^-1 m^3\n",
      "The density of the charge carrier is 1.689 *10**24 electrons/m^3\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "l=12*10**-3;    #length of semi conductor crystal(m)\n",
    "b=1*10**-3;     #breadth of semi conductor crystal(m)\n",
    "t=1*10**-3;     #thickness of semi conductor crystal(m)\n",
    "I=20*10**-3;    #current(A)\n",
    "Vh=37*10**-6;    #voltage measured across the width(V)\n",
    "B=0.5;   #magnetic flux density(Wb/m^2)\n",
    "e=1.6*10**-19;    #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "RH=Vh*t/(I*B);    #Hall coefficient of semiconductor(C^-1 m^3)\n",
    "ne=1/(RH*e);      #The density of the charge carrier(electrons/m^3)\n",
    "\n",
    "#Result\n",
    "print \"Hall coefficient of semiconductor is\",RH,\"C^-1 m^3\"\n",
    "print \"The density of the charge carrier is\",round(ne/10**24,3),\"*10**24 electrons/m^3\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.8, Page number 315"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Hall coefficient of silicon plate is 3.66 *10**-4 m^3 C^-1\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "l=100*10**-3;   #length of silicon plate(m)\n",
    "b=10*10**-3;    #breadth of silicon plate(m)\n",
    "t=1*10**-3;    #thickness of silicon plate(m)\n",
    "I=10**-2;   #current(A)\n",
    "Vh=1.83*10**-3;   #voltage measured across the width(V)\n",
    "B=0.5;    #magnetic flux density(Wb/m^2)\n",
    "\n",
    "#Calculation\n",
    "RH=Vh*t/(I*B);     #Hall coefficient of silicon plate(m^3 C^-1)\n",
    "\n",
    "#Result\n",
    "print \"Hall coefficient of silicon plate is\",RH*10**4,\"*10**-4 m^3 C^-1\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.9, Page number 316"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The negative sign of the Hall coefficient indicates that the nature of the semiconductor is n-type\n",
      "The density of the charge carrier is 8.503 *10**22 electrons/m^3\n",
      "The mobility of the charge carrier is 14.7 *10**-3 m^2 V^-1 s^-1\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "RH=7.35*10**-5;   #Hall coefficient of silicon specimen(m^3 C^-1)\n",
    "rh=-7.35*10**-5;   #Hall coefficient of silicon specimen(m^3 C^-1)\n",
    "c=200;   #conductivity(ohm^-1 m^-1)\n",
    "e=1.6*10**-19;   #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "ne=1/(RH*e);    #The density of the charge carrier(electrons/m^3)\n",
    "me=c*RH;      #The mobility of the charge carrier(m^2 V^-1 s^-1)\n",
    "\n",
    "#Result\n",
    "print \"The negative sign of the Hall coefficient indicates that the nature of the semiconductor is n-type\"\n",
    "print \"The density of the charge carrier is\",round(ne/10**22,3),\"*10**22 electrons/m^3\"\n",
    "print \"The mobility of the charge carrier is\",me*10**3,\"*10**-3 m^2 V^-1 s^-1\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.10, Page number 316"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The density of the charge carrier is 1.7728 *10**22 electrons/m^3\n",
      "The mobility of the charge carrier is 0.06346 m^2 V^-1 s^-1\n",
      "answer given in the book is wrong\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "RH=4.16*10**-4;    #Hall coefficient of n-type semiconductor(m^3 C^-1)\n",
    "c=180;    #conductivity(ohm^-1 m^-1)\n",
    "e=1.6*10**-19;   #charge of electron(c)\n",
    "x=1.18;    #correction factor for RH\n",
    "\n",
    "#Calculation\n",
    "ne=x/(RH*e);    #The density of the charge carrier(electrons/m^3)\n",
    "me=c/(ne*e);    #The mobility of the charge carrier(m^2 V^-1 s^-1)\n",
    "\n",
    "#Result\n",
    "print \"The density of the charge carrier is\",round(ne/10**22,4),\"*10**22 electrons/m^3\"\n",
    "print \"The mobility of the charge carrier is\",round(me,5),\"m^2 V^-1 s^-1\"\n",
    "print \"answer given in the book is wrong\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.11, Page number 317"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The hall coefficient measured by the probes is 1.75 mV\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "l=1*10**-3;    #length of rectangular plane sheet of doped silicon(m)\n",
    "b=1*10**-3;    #breadth of semi rectangular plane sheet of doped silicon(m)\n",
    "t=0.5*10**-3;    #thickness of rectangular plane sheet of doped silicon(m)\n",
    "RH=1.25*10**-3;    #Hall coefficient of the material(m^3 C^-1)\n",
    "I=1*10**-3;    #current(A)\n",
    "B=0.7;     #magnetic flux density(Wb/m^2)\n",
    "e=1.6*10**-19;   #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "Vh=RH*I*B/t;     #The hall coefficient measured by the probes(mV)\n",
    "\n",
    "#Result\n",
    "print \"The hall coefficient measured by the probes is\",Vh*10**3,\"mV\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.12, Page number 317"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The density of the charge carrier is 1.70765 *10**22 m^-3\n",
      "The mobility is 0.04099 m^2 V^-1 s^-1\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "RH=3.66*10**-4;    #Hall coefficient of a doped silicon(m^3 C^-1)\n",
    "r=8.93*10**-3;     #The resistivity(ohm m)\n",
    "e=1.6*10**-19;    #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "n=1/(RH*e);     #The density of the charge carrier(m^-3)\n",
    "me=RH/r;        #The mobility(m^2 V^-1 s^-1)\n",
    "\n",
    "#Result\n",
    "print \"The density of the charge carrier is\",round(n/10**22,5),\"*10**22 m^-3\"\n",
    "print \"The mobility is\",round(me,5),\"m^2 V^-1 s^-1\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 11.13, Page number 317"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The current density is 2880.0 A/m^2\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "RH=0.0125;    #Hall coefficient of a sample n-type semiconductor(m^3 C^-1)\n",
    "rh=-0.0125;   #Hall coefficient of a sample n-type semiconductor(m^3 C^-1)\n",
    "me=0.36;      #electron mobility(m^2 V^-1 s^-1)\n",
    "EH=100;       #electric field(V/m)\n",
    "e=1.6*10**-19;    #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "n=1/(RH*e);    #The density of the charge carrier(m^-3)\n",
    "c=n*e*me;      #conductivity of n-type semiconductor(ohm^-1 m^-1)\n",
    "J=c*EH;        #The current density(A/m^2)\n",
    "\n",
    "#Result\n",
    "print \"The current density is\",J,\"A/m^2\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}