summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G._Aruldhas/Chapter5_1.ipynb
blob: 8b5822ee26c297c856d29fc82a0b34c7c98d5647 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
{
 "metadata": {
  "name": "",
  "signature": "sha256:d6b4557b658267af4573aff55394c33f7ae58a19c1bc5291838cb933f306de2e"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "5: Polarization"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 5.1, Page number 113"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "mew_g = 1.72;    #Refractive index of glass\n",
      "mew_w = 4/3;      #Refractive index of water\n",
      "\n",
      "#Calculation\n",
      "#For polarization to occur on flint glass, tan(i) = mew_g/mew_w\n",
      "#Solving for i\n",
      "i_g = math.atan(mew_g/mew_w);      #angle of incidence for complete polarization for flint glass(rad)\n",
      "a = 180/math.pi;       #conversion factor from radians to degrees\n",
      "i_g = i_g*a;      #angle of incidence(degrees)\n",
      "i_g = math.ceil(i_g*10**2)/10**2;     #rounding off the value of i_g to 2 decimals\n",
      "#For polarization to occur on water, tan(i) = mew_w/mew_g\n",
      "#Solving for i\n",
      "i_w = math.atan(mew_w/mew_g);     #angle of incidence for complete polarization for water(rad)\n",
      "i_w = i_w*a;       #angle of incidence(degrees)\n",
      "i_w = math.ceil(i_w*10**3)/10**3;     #rounding off the value of i_w to 3 decimals\n",
      "\n",
      "#Result\n",
      "print \"The angle of incidence for complete polarization to occur on flint glass is\",i_g, \"degrees\"\n",
      "print \"The angle of incidence for complete polarization to occur on water is\",i_w, \"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The angle of incidence for complete polarization to occur on flint glass is 52.22 degrees\n",
        "The angle of incidence for complete polarization to occur on water is 37.783 degrees\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 5.2, Page number 113"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "I0 = 1;    #For simplicity, we assume the intensity of light falling on the second Nicol prism to be unity(W/m**2)\n",
      "theta = 30;    #Angle through which the crossed Nicol is rotated(degrees)\n",
      "\n",
      "#Calculation\n",
      "theeta = 90-theta;     #angle between the planes of transmission after rotating through 30 degrees\n",
      "a = math.pi/180;           #conversion factor from degrees to radians\n",
      "theeta = theeta*a;     ##angle between the planes of transmission(rad)\n",
      "I = I0*math.cos(theeta)**2;    #Intensity of the emerging light from second Nicol(W/m**2)\n",
      "T = (I/(2*I0))*100;    #Percentage transmission of incident light\n",
      "T = math.ceil(T*100)/100;     #rounding off the value of T to 2 decimals\n",
      "\n",
      "#Result\n",
      "print \"The percentage transmission of incident light after emerging through the Nicol prism is\",T, \"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The percentage transmission of incident light after emerging through the Nicol prism is 12.51 %\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 5.3, Page number 113"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "lamda = 6000;    #Wavelength of incident light(A)\n",
      "mew_e = 1.55;    #Refractive index of extraordinary ray\n",
      "mew_o = 1.54;     #Refractive index of ordinary ray\n",
      "\n",
      "#Calculation\n",
      "lamda = lamda*10**-8;      #Wavelength of incident light(cm)\n",
      "t = lamda/(4*(mew_e-mew_o));    #Thickness of Quarter Wave plate of positive crystal(cm)\n",
      "\n",
      "#Result\n",
      "print \"The thickness of Quarter Wave plate is\",t, \"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thickness of Quarter Wave plate is 0.0015 cm\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 5.4, Page number 114"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#Calculation\n",
      "#the thickness of a half wave plate of calcite for wavelength lamda is\n",
      "#t = lamda/(2*(mew_e - mew_o)) = (2*lamda)/(4*(mew_e - mew_o))\n",
      "\n",
      "#Result\n",
      "print \"The half wave plate for lamda will behave as a quarter wave plate for 2*lamda for negligible variation of refractive index with wavelength\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The half wave plate for lamda will behave as a quarter wave plate for 2*lamda for negligible variation of refractive index with wavelength\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 5.5, Page number 114"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#importing modules\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "lamda = 500;    #Wavelength of incident light(nm)\n",
      "mew_e = 1.5508;    #Refractive index of extraordinary ray\n",
      "mew_o = 1.5418;     #Refractive index of ordinary ray\n",
      "t = 0.032;     #Thickness of quartz plate(mm)\n",
      "\n",
      "#Calculation\n",
      "lamda = lamda*10**-9;     #Wavelength of incident light(m)\n",
      "t = t*10**-3;     #Thickness of quartz plate(m)\n",
      "dx = (mew_e - mew_o)*t;    #Path difference between E-ray and O-ray(m)\n",
      "dphi = (2*math.pi)/lamda*dx;    #Phase retardation for quartz for given wavelength(rad)\n",
      "dphi = dphi/math.pi;\n",
      "\n",
      "#Result\n",
      "print \"The phase retardation for quartz for given wavelength is\",dphi, \"pi rad\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The phase retardation for quartz for given wavelength is 1.152 pi rad\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 5.6, Page number 114"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "C = 52;    #Critical angle for total internal reflection(degrees)\n",
      "\n",
      "#Calculation\n",
      "a = math.pi/180;           #conversion factor from degrees to radians\n",
      "C = C*a;      #Critical angle for total internal reflection(rad)\n",
      "#From Brewster's law, math.tan(i_B) = 1_mew_2\n",
      "#Also math.sin(C) = 1_mew_2, so that math.tan(i_B) = math.sin(C), solving for i_B\n",
      "i_B = math.atan(math.sin(C));    #Brewster angle at the boundary(rad)\n",
      "b = 180/math.pi;           #conversion factor from radians to degrees\n",
      "i_B = i_B*b;     #Brewster angle at the boundary(degrees)\n",
      "\n",
      "#Result\n",
      "print \"The Brewster angle at the boundary between two materials is\",int(i_B), \"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Brewster angle at the boundary between two materials is 38 degrees\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 10
    }
   ],
   "metadata": {}
  }
 ]
}