summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G._Aruldhas/Chapter3_1.ipynb
blob: 645d75950ba23221fc63fd54b46f15b428ecc7e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
{
 "metadata": {
  "name": "",
  "signature": "sha256:bdc5e7b39dc3529751aa6372cd3db8b0870c9abab4c9b51855fb3bce7de6dc73"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "3: Interference"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.1, Page number 71"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "beta = 0.51;    #Fringe width(mm)\n",
      "d = 2.2;        #Distance between the slits(mm)\n",
      "D = 2;      #Distance between the slits and the screen(m)\n",
      "\n",
      "#Calculation\n",
      "beta = beta*10**-1;     #Fringe width(cm)\n",
      "d = d*10**-1;    #Distance between the slits(cm)\n",
      "D=D*10**2;    #Distance between the slits and the screen(cm)\n",
      "lamda = beta*d/D;    #Wavelength of light(cm)\n",
      "lamda = lamda*10**8;     #Wavelength of light(A)\n",
      "\n",
      "#Result\n",
      "print \"The wavelength of light is\",lamda, \"angstrom\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The wavelength of light is 5610.0 angstrom\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.2, Page number 71"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "lambda1 = 4250;    #First wavelength emitted by source of light(A)\n",
      "lambda2 = 5050;    #Second wavelength emitted by source of light(A)\n",
      "D = 1.5;    #Distance between the source and the screen(m)\n",
      "d = 0.025;       #Distance between the slits(mm)\n",
      "n = 3;    #Number of fringe from the centre\n",
      "\n",
      "#Calculation\n",
      "lambda1 = lambda1*10**-10;     #First wavelength emitted(m)\n",
      "lambda2 = lambda2*10**-10;     #Second wavelength emitted(m)\n",
      "d = d*10**-3;     #Distance between the slits(m)\n",
      "x3 = n*lambda1*D/d;    #Position of third bright fringe due to lambda1(m)\n",
      "x3_prime = n*lambda2*D/d;    #Position of third bright fringe due to lambda2(m)\n",
      "x = x3_prime-x3;      #separation between the third bright fringe(m)\n",
      "x = x*10**2;    #separation between the third bright fringe(cm)\n",
      "\n",
      "#Result\n",
      "print \"The separation between the third bright fringe due to the two wavelengths is\",x, \"cm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The separation between the third bright fringe due to the two wavelengths is 1.44 cm\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.3, Page number 71"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "lamda = 5.5*10**-5;    #Wavelength emitted by source of light(cm)\n",
      "n = 4;    #Number of fringes shifted\n",
      "t = 3.9*10**-4;    #Thickness of the thin glass sheet(cm)\n",
      "\n",
      "#Calculation\n",
      "mew = (n*lamda/t)+1;    #Refractive index of the sheet of glass\n",
      "mew = math.ceil(mew*10**4)/10**4;     #rounding off the value of v to 4 decimals\n",
      "\n",
      "#Result\n",
      "print \"The refractive index of the sheet of glass is\",mew"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The refractive index of the sheet of glass is 1.5642\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.4, Page number 72"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "lamda = 5893;    #Wavelength of monochromatic lihgt used(A)\n",
      "n = 1;    #Number of fringe for the least thickness of the film\n",
      "cosr = 1;    #for normal incidence\n",
      "mew = 1.42;    #refractive index of the soap film\n",
      "\n",
      "#Calculation\n",
      "#As for constructive interference, \n",
      "#2*mew*t*cos(r) = (2*n-1)*lambda/2, solving for t\n",
      "t = (2*n-1)*lamda/(4*mew*cosr);    #Thickness of the film that appears bright(A)\n",
      "#As for destructive interference, \n",
      "#2*mu*t*cos(r) = n*lambda, solving for t\n",
      "t1 = n*lamda/(2*mew*cosr);    #Thickness of the film that appears bright(A)\n",
      "\n",
      "#Result\n",
      "print \"The thickness of the film that appears bright is\",t, \"angstrom\"\n",
      "print \"The thickness of the film that appears dark is\",t1, \"angstrom\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thickness of the film that appears bright is 1037.5 angstrom\n",
        "The thickness of the film that appears dark is 2075.0 angstrom\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.5, Page number 72"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#importing modules\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "lamda = 5893;    #Wavelength of monochromatic lihgt used(A)\n",
      "n = 10;    #Number of fringe that are found \n",
      "d = 1;     #Distance of 10 fringes(cm)\n",
      "\n",
      "#Calculation\n",
      "beta = d/n;    #Fringe width(cm)\n",
      "lamda = lamda*10**-8;    #Wavelength of monochromatic lihgt used(cm)\n",
      "theta = lamda/(2*beta);    #Angle of the wedge(rad)\n",
      "theta = theta*10**4;\n",
      "theta = math.ceil(theta*10**4)/10**4;     #rounding off the value of theta to 4 decimals\n",
      "\n",
      "#Result\n",
      "print \"The angle of the wedge is\",theta,\"*10**-4 rad\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The angle of the wedge is 2.9465 *10**-4 rad\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.6, Page number 72"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "lamda = 5900;    #Wavelength of monochromatic lihgt used(A)\n",
      "t = 0.010;    #Spacer thickness(mm)\n",
      "l = 10;    #Wedge length(cm)\n",
      "\n",
      "#Calculation\n",
      "t = t*10**-1;    #Spacer thickness(cm)\n",
      "theta = t/l;    #Angle of the wedge(rad)\n",
      "lamda = lamda*10**-8;    #Wavelength of monochromatic lihgt used(cm)\n",
      "beta = lamda/(2*theta);    #Fringe width(cm)\n",
      "\n",
      "#Result\n",
      "print \"The separation between consecutive bright fringes is\",beta, \"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The separation between consecutive bright fringes is 0.295 cm\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.7, Page number 72"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "D4 = 0.4;    #Diameter of 4th dark ring(cm)\n",
      "D12 = 0.7;    #Diameter of 12th dark ring(cm)\n",
      "\n",
      "#Calculation\n",
      "#We have (dn_plus_k**2)-Dn**2 = 4*k*R*lamda\n",
      "#D12**2-D4**2 = 32*R*lamda and D20**2-D12**2 = 32*R*lamda for k = 8\n",
      "#since RHS are equal, by equating the LHS we get D12**2-D4**2 = D20**2-D12**2\n",
      "D20 = math.sqrt((2*D12**2)-D4**2);    #Diameter of 20th dark ring(cm)\n",
      "D20 = math.ceil(D20*10**4)/10**4;     #rounding off the value of D20 to 4 decimals\n",
      "\n",
      "#Result\n",
      "print \"The diameter of 20th dark ring is\",D20, \"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The diameter of 20th dark ring is 0.9056 cm\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.8, Page number 73"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "Dn = 0.30;    #Diameter of nth dark ring with air film(cm)\n",
      "dn = 0.25;    #Diameter of nth dark ring with liquid film(cm)\n",
      "\n",
      "#Calculation\n",
      "mew = (Dn/dn)**2;    #Refractive index of the liquid\n",
      "\n",
      "#Result\n",
      "print \"The refractive index of the liquid is\", mew\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The refractive index of the liquid is 1.44\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.9, Page number 73"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#importing modules\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "x = 0.002945;    #Distance through which movable mirror is shifted(cm)\n",
      "N = 100;    #Number of fringes shifted\n",
      "\n",
      "#Calculation\n",
      "x = x*10**-2;    #Distance through which movable mirror is shifted(m)\n",
      "lamda = 2*x/N;   #Wavelength of light(m)\n",
      "lamda = lamda*10**10;    #Wavelength of light(A)\n",
      "\n",
      "#Result\n",
      "print \"The wavelength of light is\",lamda, \"angstrom\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The wavelength of light is 5890.0 angstrom\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.10, Page number 73"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "lambda1 = 5896;    #Wavelength of D1 line of sodium(A)\n",
      "lambda2 = 5890;    #Wavelength of D2 line of sodium(A)\n",
      "\n",
      "#Calculation\n",
      "lamda = (lambda1+lambda2)/2;\n",
      "x = (lamda**2)/(2*(lambda1-lambda2));    #Shift in movable mirror of Michelson Interferometer(A)\n",
      "x = x*10**-7;           #Shift in movable mirror of Michelson Interferometer(mm)\n",
      "x = math.ceil(x*10**4)/10**4;     #rounding off the value of D20 to 4 decimals\n",
      "\n",
      "#Result\n",
      "print \"The shift in movable mirror is\",x, \"mm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The shift in movable mirror is 0.2894 mm\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}