summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G._Aruldhas/Chapter10_1.ipynb
blob: a64ad6b482bfeb39daed106e32789afca589e6e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
{
 "metadata": {
  "name": "",
  "signature": "sha256:78b8d610d2cc37c12bbe36fc70ba217f440b3e2b1b7e7cbb3aa498d471c77bb0"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "10: Statistical Mechanics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 10.1, Page number 222"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "k = 1.38*10**-23;    #Boltzmann constant(J/K)\n",
      "e = 1.6*10**-19;     #Energy equivalent of 1 eV(J/eV)\n",
      "g1 = 2;    #The degeneracy of ground state\n",
      "g2 = 8;    #The degeneracy of excited state\n",
      "delta_E = 10.2;     #Energy of excited state above the ground state(eV)\n",
      "T = 6000;    #Temperature of the state(K)\n",
      "\n",
      "#Calculation\n",
      "D_ratio = g2/g1;    #Ratio of degeneracy of states\n",
      "x = k*T/e;\n",
      "N_ratio = D_ratio*math.exp(-delta_E/x);     #Ratio of occupancy of the excited to the ground state\n",
      "\n",
      "#Result\n",
      "print \"The ratio of occupancy of the excited to the ground state is\",N_ratio"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ratio of occupancy of the excited to the ground state is 1.10167326887e-08\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 10.2, Page number 222"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "a = 10/2;\n",
      "#enegy of 10 bosons is E = (10*pi**2*h**2)/(2*m*a**2) = (5*pi**2*h**2)/(m*a**2)\n",
      "\n",
      "#Result\n",
      "print \"enegy of 10 bosons is E = \",int(a),\"(pi**2*h**2)/(m*a**2)\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "enegy of 10 bosons is E =  5 (pi**2*h**2)/(m*a**2)\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 10.3, Page number 223"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "n1=1;    #1st level\n",
      "n2=2;    #2nd level\n",
      "n3=3;    #3rd level\n",
      "n4=4;    #4th level\n",
      "n5=5;    #5th level\n",
      "\n",
      "#Calculation\n",
      "#an energy level can accomodate only 2 fermions. hence there will be 2 fermions in each level\n",
      "#thus total ground state energy will be E = (2*E1)+(2*E2)+(2*E3)+(2*E4)+E5\n",
      "#let X = ((pi**2)*(h**2)/(2*m*a**2)). E = X*((2*n1**2)+(2*n2**2)+(2*n3**2)+(2*n4**2)+(n5**2))\n",
      "A = (2*n1**2)+(2*n2**2)+(2*n3**2)+(2*n4**2)+(n5**2);\n",
      "#thus E = A*X\n",
      "\n",
      "#Result\n",
      "print \"the ground state energy of the system is\",A,\"(pi**2)*(h**2)/(2*m*a**2)\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the ground state energy of the system is 85 (pi**2)*(h**2)/(2*m*a**2)\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 10.4, Page number 223"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "e = 1.6*10**-19;    #Energy equivalent of 1 eV(J/eV)\n",
      "N_A = 6.02*10**23;    #Avogadro's number\n",
      "h = 6.626*10**-34;    #Planck's constant(Js)\n",
      "me = 9.1*10**-31;    #Mass of electron(kg)\n",
      "rho = 10.5;    #Density of silver(g/cm)\n",
      "m = 108;    #Molecular mass of silver(g/mol)\n",
      "\n",
      "#Calculation\n",
      "N_D = rho*N_A/m;    #Number density of conduction electrons(per cm**3)\n",
      "N_D = N_D*10**6;    #Number density of conduction electrons(per m**3)\n",
      "E_F = ((h**2)/(8*me))*(3/math.pi*N_D)**(2/3);     #fermi energy(J)\n",
      "E_F = E_F/e;          #fermi energy(eV)\n",
      "E_F = math.ceil(E_F*10**2)/10**2;     #rounding off the value of E_F to 2 decimals\n",
      "\n",
      "#Result\n",
      "print \"The number density of conduction electrons is\",N_D, \"per metre cube\"\n",
      "print \"The Fermi energy of silver is\",E_F, \"eV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The number density of conduction electrons is 5.85277777778e+28 per metre cube\n",
        "The Fermi energy of silver is 5.51 eV\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 10.5, Page number 224"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "N_A = 6.02*10**23;     #Avogadro's number\n",
      "k = 1.38*10**-23;      #Boltzmann constant(J/K)\n",
      "T = 293;     #Temperature of sodium(K)\n",
      "E_F = 3.24;    #Fermi energy of sodium(eV)\n",
      "e = 1.6*10**-19;    #Energy equivalent of 1 eV(J/eV)\n",
      "\n",
      "#Calculation\n",
      "C_v = math.pi**2*N_A*k**2*T/(2*E_F*e);     #Molar specific heat of sodium(per mole)\n",
      "C_v = math.ceil(C_v*10**2)/10**2;     #rounding off the value of C_v to 2 decimals\n",
      "\n",
      "#Result\n",
      "print \"The electronic contribution to molar specific heat of sodium is\",C_v, \"per mole\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electronic contribution to molar specific heat of sodium is 0.32 per mole\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 10.6, Page number 224"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "e = 1.6*10**-19;    #Energy equivalent of 1 eV(J/eV)\n",
      "h = 6.626*10**-34;     #Planck's constant(Js)\n",
      "m = 9.1*10**-31;       #Mass of the electron(kg)\n",
      "N_D = 18.1*10**28;       #Number density of conduction electrons in Al(per metre cube)\n",
      "\n",
      "#Calculation\n",
      "E_F = h**2/(8*m)*(3/math.pi*N_D)**(2/3);     #N_D = N/V. Fermi energy of aluminium(J)\n",
      "E_F = E_F/e;      #Fermi energy of aluminium(eV)\n",
      "E_F = math.ceil(E_F*10**3)/10**3;     #rounding off the value of E_F to 3 decimals\n",
      "Em_0 = 3/5*E_F;     #Mean energy of  the electron at 0K(eV)\n",
      "Em_0 = math.ceil(Em_0*10**3)/10**3;     #rounding off the value of Em_0 to 3 decimals\n",
      "\n",
      "#Result\n",
      "print \"The Fermi energy of aluminium is\",E_F, \"eV\"\n",
      "print \"The mean energy of  the electron is\",Em_0, \"eV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Fermi energy of aluminium is 11.696 eV\n",
        "The mean energy of  the electron is 7.018 eV\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}