1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
{
"metadata": {
"name": "Chapter8"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Magnetic Materials"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 8.1, Page number 238"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the magnitude and direction of magnetic moment\n\n#importing modules\nimport math\n\n#Variable declaration\nI = 12; #current(Ampere)\nA = 7.5*10**-4 #area of loop(m**2)\n\n#Calculation\nM = I*A; #magnetic moment(Am**2)\nM = M*10**3;\n\n#Result\nprint \"magnetic moment is\",M,\"*10**-3 Am**2\"\nprint \"M is directed away from the observer and is perpendicular to the plane of the loop\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "magnetic moment is 9.0 *10**-3 Am**2\nM is directed away from the observer and is perpendicular to the plane of the loop\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 8.2, Page number 238"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the magnetic moment\n\n#importing modules\nimport math\n\n#Variable declaration\nr = 0.5; #radius of orbit(Angstrom)\ne = 1.6*10**-19; #charge of electron(C)\nnew = 10**16; #frequency(rps)\n\n#Calculation\nr = r*10**-10; #radius of orbit(m)\nI = e*new; #current(Ampere)\nA = math.pi*r**2; #area enclosed(m**2)\nM = I*A; #magnetic moment(Am**2)\n\n#Result\nprint \"magnetic moment is\",M,\"Am**2\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "magnetic moment is 1.25663706144e-23 Am**2\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 8.3, Page number 239"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the magnetic susceptibility\n\n#importing modules\nimport math\n\n#Variable declaration\nmew_r = 5000; #relative permeability\n\n#Calculation\nchi_m = mew_r-1; #magnetic susceptibility\n\n#Result\nprint \"magnetic susceptibility is\",chi_m",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "magnetic susceptibility is 4999\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 8.4, Page number 239"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the permeability\n\n#importing modules\nimport math\n\n#Variable declaration\nH = 1800; #magnetic field(A/m)\nphi = 3*10**-5; #magnetic flux(Wb)\nA = 0.2; #cross sectional area(cm**2)\n\n#Calculation\nA = A*10**-4; #cross sectional area(m**2)\nB = phi/A; #magnetic flux density(Wb/m**2)\nmew = B/H; #permeability(H/m)\nmew = mew*10**4;\nmew=math.ceil(mew*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"permeability is\",mew,\"*10**-4 H/m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "permeability is 8.34 *10**-4 H/m\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 8.5, Page number 239"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the magnetic moment\n\n#importing modules\nimport math\n\n#Variable declaration\nB = 0.65; #magnetic induction(Wb/m**2)\nrho = 8906; #density(kg/m**3)\nM = 58.7; #atomic weight\nmew0 = 4*math.pi*10**-7;\nmb = 9.27*10**-24;\nNa = 6.023*10**26; #avagadro constant\n\n#Calculation\nN = rho*Na/M; #number of atoms per unit volume(atoms/m**3)\nmew_r = B/(N*mew0); #relative permeability(A/m**2)\nM = mew_r/mb; #magnetic moment in mew_B \nM=math.ceil(M*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"magnetic moment is\",M,\"mew_B\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "magnetic moment is 0.611 mew_B\n"
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|