summaryrefslogtreecommitdiff
path: root/Engineering_Physics_By_G_Vijayakumari/Chapter8.ipynb
blob: e403d61e2853ac36e0d3cae0a48b148a0829f3f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#8: Quantum Physics"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.1, Page number 204"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The energy of photon is 12412.5 eV\n",
      "The momentum of the photon is 6.62e-24 Kg m s^-1\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "W=0.1*10**-9;   #wavelength of photon(m)\n",
    "h=6.62*10**-34;    #Planck's constant(m^2 Kg/sec)\n",
    "c=3*10**8;      #velocity of light(m/s)\n",
    "e=1.6*10**-19;   #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "E=h*c/(W*e);    #energy of photon(eV)\n",
    "P=h/W;       #momentum of the photon(Kgms^-1)\n",
    "\n",
    "#Result\n",
    "print \"The energy of photon is\",E,\"eV\"\n",
    "print \"The momentum of the photon is\",P,\"Kg m s^-1\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.2, Page number 205"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The total number of photons emitted per second is 2.965 *10**20 per sec\n",
      "answer varies due to rounding off errors\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "w=5893*10**-10;      #wavelength of emitted light(m)\n",
    "e=100;     #total energy emitted per sec\n",
    "h=6.625*10**-34;    #Planck's constant(m^2 Kg/sec)\n",
    "c=3*10**8;     #velocity of light(m/s)\n",
    "\n",
    "#Calculation\n",
    "E=h*c/w;    #energy of one photon(J)\n",
    "N=e/E;      #The total numberof photons emitted(sec)\n",
    "\n",
    "#Result\n",
    "print \"The total number of photons emitted per second is\",round(N/10**20,3),\"*10**20 per sec\"\n",
    "print \"answer varies due to rounding off errors\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.3, Page number 205"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The energy density per unit wavelength in a black body cavity is 0.018349 J/m^4\n",
      "answer varies due to rounding off errors\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "w=4000*10**-10;    #wavelength in black body(m)\n",
    "t=1500;     #temperature of black body(K)\n",
    "h=6.625*10**-34;   #Planck's constant(m^2 Kg/sec)\n",
    "c=3*10**8;    #velocity of light(m/s)\n",
    "Kb=1.38*10**-23;   #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
    "\n",
    "#Calculation\n",
    "Edw=(8*math.pi*h*c/w**5)*(1/(math.exp(h*c/(w*Kb*t))-1));    #The energy density per unit wavelength in a black body cavity(J/m^4)\n",
    "\n",
    "#Result\n",
    "print \"The energy density per unit wavelength in a black body cavity is\",round(Edw,6),\"J/m^4\"\n",
    "print \"answer varies due to rounding off errors\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.4, Page number 211"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The compton wavelength for an electron is 0.0242 Angstrom\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "h=6.625*10**-34;     #Planck's constant(m^2 Kg/sec)\n",
    "c=3*10**8;     #velocity of light(m/s)\n",
    "m=9.11*10**-31;    #mass of electron(Kg)\n",
    "\n",
    "#Calculation\n",
    "w=h/(c*m)*10**10;     #The compton wavelength for an electron(Armstrong)\n",
    "\n",
    "#Result\n",
    "print \"The compton wavelength for an electron is\",round(w,4),\"Angstrom\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.5, Page number 212"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The change in wavelength for X ray photon is 0.0242 Angstrom\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "theta=90;    #x ray photon scattered at a angle(degrees)\n",
    "h=6.625*10**-34;   #Planck's constant(J-sec)\n",
    "c=3*10**8;    #velocity of light(m/s)\n",
    "m=9.11*10**-31;   #mass of electron(Kg)\n",
    "\n",
    "#Calculation\n",
    "theta=theta*math.pi/180;     #angle(radian)\n",
    "deltalamda=((h/(c*m))*(1-math.cos(x)))/10**-10;    #The change in wavelength for Xray photon(Angstrom)\n",
    "\n",
    "#Result\n",
    "print \"The change in wavelength for X ray photon is\",round(deltalamda,4),\"Angstrom\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.6, Page number 212"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The wavelength of X-rays carbon is 1.72 Angstrom\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "theta=180;     #x ray carbon scattered at a angle(degrees)\n",
    "h=6.625*10**-34;   #Planck's constant(m^2 Kg/sec)\n",
    "c=3*10**8;    #velocity of light(m/s)\n",
    "m=9.11*10**-31;   #mass of electron(kg)\n",
    "v=1.8*10**18;     #frequency of incident rays(s^-1)\n",
    "\n",
    "#Calculation\n",
    "theta=theta*math.pi/180;    #angle(radian)\n",
    "w=c/v;    #wavelength(m)\n",
    "tw=(h/(c*m))*(1-math.cos(theta));    #The change wavelength for Xray carbon(m)\n",
    "lamda_dash=(w+tw)/10**-10;       #The wavelength of X-rays carbon(Angstrom)\n",
    "\n",
    "#Result\n",
    "print \"The wavelength of X-rays carbon is\",round(lamda_dash,2),\"Angstrom\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.7, Page number 212"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The wavelength of scattered photons is 3.012 Angstrom\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "w=3*10**-10;    #wavelength of incident photons(m)\n",
    "theta=60;     #angle of view(degrees)\n",
    "h=6.625*10**-34;    #Planck's constant(m^2 Kg/sec)\n",
    "c=3*10**8;    #velocity of light(m/sec)\n",
    "m=9.11*10**-31;   #mass of electron(Kg)\n",
    "\n",
    "#Calculation\n",
    "theta=theta*math.pi/180;    #angle(radian)\n",
    "lamda_dash=(w+((h/(c*m))*(1-math.cos(theta))))/10**-10;    #The wavelength of scattered photons(Angstrom)\n",
    "\n",
    "#Result\n",
    "print \"The wavelength of scattered photons is\",round(lamda_dash,3),\"Angstrom\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.8, Page number 213"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Velocity of moving electron is 2.9047 *10**8 m/sec\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "x=4;     #Total energy increase to 4 times of its initial rest energy\n",
    "c=3*10**8;    #velocity of light(m/sec)\n",
    "\n",
    "#Calculation\n",
    "v=math.sqrt(c**2*(1-(1/x**2)));    #The Velocity of moving electron(m/sec)\n",
    "\n",
    "#Result\n",
    "print \"The Velocity of moving electron is\",round(v/10**8,4),\"*10**8 m/sec\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.9, Page number 224"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The least energy of the particle can be obtained is 37.639 eV\n",
      "answer varies due to rounding off errors\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=0.1*10**-9;    #width of high potential box(m)\n",
    "h=6.625*10**-34;    #Planck's constant(m^2 Kg/sec)\n",
    "m=9.11*10**-31;     #mass of electron(Kg)\n",
    "e=1.6*10**-19;      #charge of electron(c)\n",
    "n=1;    #take n equal to one\n",
    "\n",
    "#Calculation\n",
    "E=(n**2*h**2)/(8*m*a**2*e);     #The least energy of the particle can be obtained(eV)\n",
    "\n",
    "#Result\n",
    "print \"The least energy of the particle can be obtained is\",round(E,3),\"eV\"\n",
    "print \"answer varies due to rounding off errors\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.10, Page number 224"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The least energy of the neutron can be obtained is 2.053 MeV\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=10**-14;    #length of impenerable box(m)\n",
    "m=1.67*10**-27;    #mass of neutron(Kg)\n",
    "n=1;    #for lowest energy\n",
    "h=6.625*10**-34;    #Planck's constant(m^2 Kg/sec)\n",
    "\n",
    "#Calculation\n",
    "E=(n**2*h**2)/(8*m*a**2);     #The least energy of the neutron can be obtained(J)\n",
    "\n",
    "#Result\n",
    "print \"The least energy of the neutron can be obtained is\",round(E/(1.6*10**-19*10**6),3),\"MeV\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.11, Page number 225"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The first permitted energy level by taking n=1 is 2.352 eV\n",
      "The second permitted energy level by taking n=2 is 9.41 eV\n",
      "The third permitted energy level by taking n=3 is 21.172 eV\n",
      "answer varies due to rounding off errors\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=4*10**-10;    #width of electron box(m)\n",
    "h=6.625*10**-34;   #Planck's constant(m^2 Kg/sec)\n",
    "m=9.11*10**-31;    #mass of electron(kg)\n",
    "e=1.6*10**-19;     #charge of electron(c)\n",
    "n=1;     #first permitted level\n",
    "\n",
    "#Calculation\n",
    "E1=((n**2*h**2)/(8*m*a**2*e));    #The first permitted energy level by taking n=1(eV)\n",
    "E2=4*E1;    #The second permitted energy level by taking n=2(eV)\n",
    "E3=9*E1;    #The third permitted energy level by taking n=3(eV)\n",
    "\n",
    "#Result\n",
    "print \"The first permitted energy level by taking n=1 is\",round(E1,3),\"eV\"\n",
    "print \"The second permitted energy level by taking n=2 is\",round(E2,2),\"eV\"\n",
    "print \"The third permitted energy level by taking n=3 is\",round(E3,3),\"eV\"\n",
    "print \"answer varies due to rounding off errors\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.12, Page number 226"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The lowest energy of electron in a cubical box is 50.186 eV\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=1.5*10**-10;     #each side of cubical box(m)\n",
    "n1=1;    #for lowest energy\n",
    "n2=1;    #for lowest energy\n",
    "n3=1;    #for lowest energy\n",
    "h=6.625*10**-34;    #Planck's constant(m^2 Kg/sec)\n",
    "m=9.11*10**-31;    #mass of electron(Kg)\n",
    "e=1.6*10**-19;     #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "n=(n1**2+n2**2+n3**2);     #total value of n\n",
    "E=((n*h**2)/(8*m*a**2*e));    #The lowest energy of electron ina cubical box(eV)\n",
    "\n",
    "#Result\n",
    "print \"The lowest energy of electron in a cubical box is\",round(E,3),\"eV\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.13, Page number 226"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The lowest energy of electron in deep potential well is 0.02352 eV\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=4*10**-9;    #width of potential well(m)\n",
    "n=1;    #For minimum energy n value\n",
    "h=6.625*10**-34;    #Planck's constant(m^2 Kg/sec)\n",
    "m=9.11*10**-31;     #mass of electron(Kg)\n",
    "e=1.6*10**-19;      #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "E=((n**2*h**2)/(8*m*a**2*e));     #The lowest energy of electron in deep potential well(eV)\n",
    "\n",
    "#Result\n",
    "print \"The lowest energy of electron in deep potential well is\",round(E,5),\"eV\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.14, Page number 227"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The energy required the electron from its ground state to the fifth exited state is 1317 eV\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=0.1*10**-9;    #length of one dimensional box(m)\n",
    "n=1;        #first permitted level\n",
    "h=6.625*10**-34;    #Planck's constant(m^2 Kg/sec)\n",
    "m=9.11*10**-31;     #mass of electron(kg)\n",
    "e=1.6*10**-19;      #charge of electron(c)\n",
    "\n",
    "#Calculation\n",
    "E1=((n**2*h**2)/(8*m*a**2*e));     #The ground state of electron in an one dimensional box(eV)\n",
    "E6=36*E1;    #The fifth exited state of electron(eV)\n",
    "E=E6-E1;     #The energy required the electron from its ground state to the fifth exited state(eV)\n",
    "\n",
    "#Result\n",
    "print \"The energy required the electron from its ground state to the fifth exited state is\",int(E),\"eV\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 8.15, Page number 227"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The lowest energy of the system consisting of three electron ia a one dimensional box is 112.9184 eV\n",
      "answer varies due to rounding off errors\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "a=0.1*10**-9;    #length of one dimensional box(m)\n",
    "n=1;     #first permitted level\n",
    "h=6.625*10**-34;    #Planck's constant(m^2 Kg/sec)\n",
    "m=9.11*10**-31;     #mass of electron(Kg)\n",
    "e=1.6*10**-19;      #charge of electron(c)\n",
    "ne=3;      #the number of electrons\n",
    "\n",
    "#Calculation\n",
    "E=((n**2*h**2)/(8*m*a**2*e))*ne;    #The lowest energy of the system consisting of three electron ia a one dimensional box(eV)\n",
    "\n",
    "#Result\n",
    "print \"The lowest energy of the system consisting of three electron ia a one dimensional box is\",round(E,4),\"eV\"\n",
    "print \"answer varies due to rounding off errors\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}