1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#6: Fiber Optics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.1, Page number 146"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The critical angle is 75 degrees 23 minutes\n",
"The acceptance angle is 22 degrees 56 minutes\n",
"The numerical aperture is 0.3899\n",
"answer varies due to rounding off errors\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n1=1.545; #refractive index of optical fibre core\n",
"n2=1.495; #refractive index of cladding\n",
"\n",
"#Calculation\n",
"CA=math.asin(n2/n1); #critical angle(radian)\n",
"CA=CA*180/math.pi; #critical angle(degree)\n",
"CAm=int(CA);\n",
"CAs=int(60*(CA-CAm));\n",
"AA=math.asin(math.sqrt(n1**2-n2**2)); #acceptance angle(radian)\n",
"AAd=AA*180/math.pi; #acceptance angle(degree) \n",
"AAm=int(AAd);\n",
"AAs=int(60*(AAd-AAm));\n",
"NA=math.sin(AA); #numerical aperture\n",
"\n",
"#Result\n",
"print \"The critical angle is\",CAm,\"degrees\",CAs,\"minutes\"\n",
"print \"The acceptance angle is\",AAm,\"degrees\",AAs,\"minutes\"\n",
"print \"The numerical aperture is\",round(NA,4)\n",
"print \"answer varies due to rounding off errors\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.2, Page number 147"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The numerical aperture is 0.3487\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n1=1.54; #refractive index of optical fibre core\n",
"n2=1.5; #refractive index of cladding\n",
"\n",
"#Calculation\n",
"NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
"\n",
"#Result\n",
"print \"The numerical aperture is\",round(NA,4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.3, Page number 147"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The critical angle is 71 degrees 30 minutes\n",
"The acceptance angle is 29 degrees 26 minutes\n",
"The numerical aperture is 0.4915\n",
"answer for acceptance angle and numerical aperture given in the book is wrong\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n1=1.55; #refractive index of optical fibre core\n",
"n2=1.47; #refractive index of cladding\n",
"\n",
"#Calculation\n",
"CA=math.asin(n2/n1); #critical angle(radian)\n",
"CA=CA*180/math.pi; #critical angle(degree) \n",
"CAm=int(CA);\n",
"CAs=int(60*(CA-CAm));\n",
"NA=math.sqrt(n1**2-n2**2); #numerical aperture \n",
"AA=math.asin(NA); #acceptance angle(radian)\n",
"AAd=AA*180/math.pi; #acceptance angle(degree) \n",
"AAm=int(AAd);\n",
"AAs=int(60*(AAd-AAm));\n",
"\n",
"#Result\n",
"print \"The critical angle is\",CAm,\"degrees\",CAs,\"minutes\"\n",
"print \"The acceptance angle is\",AAm,\"degrees\",AAs,\"minutes\"\n",
"print \"The numerical aperture is\",round(NA,4)\n",
"print \"answer for acceptance angle and numerical aperture given in the book is wrong\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.4, Page number 147"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The refractive index of optical fibre is 1.5628\n",
"The numerical aperture when fibre is in water is 0.15\n",
"The Acceptance angle for the fibre in water is 8 degrees 38 minutes\n",
"answer for minutes varies due to rounding off errors\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n2=1.55; #refractive index of cladding\n",
"no=1.33; #refractive index of water\n",
"NA=0.20; #numerical aperture of optical fibre\n",
"\n",
"#Calculation\n",
"n1=math.sqrt(n2**2+NA**2); #refractive index of optical fibre\n",
"NAW=math.sqrt(n1**2-n2**2)/no; #numerical aperture when fibre is in water\n",
"AA=math.asin(NAW); #Acceptance angle for the fibre in water(degrees)\n",
"AAd=AA*180/math.pi; #acceptance angle(degree) \n",
"AAm=int(AAd);\n",
"AAs=int(60*(AAd-AAm));\n",
"\n",
"#Result\n",
"print \"The refractive index of optical fibre is\",round(n1,4)\n",
"print \"The numerical aperture when fibre is in water is\",round(NAW,2)\n",
"print \"The Acceptance angle for the fibre in water is\",AAm,\"degrees\",AAs,\"minutes\"\n",
"print \"answer for minutes varies due to rounding off errors\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 6.5, Page number 148"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The refractive index of the core of a fibre is 1.42\n",
"The refractive index of the cladding is 1.403\n",
"answer varies due to rounding off errors\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"NA=0.22; #numerical aperture of optical fibre\n",
"no=0.012; #refractive index difference\n",
"\n",
"#Calculation\n",
"n1=NA/math.sqrt(2*no); #The refractive index of the core of a fibre\n",
"n2=n1*(1-no); #The refractive index of the cladding\n",
"\n",
"#Result\n",
"print \"The refractive index of the core of a fibre is\",round(n1,2)\n",
"print \"The refractive index of the cladding is\",round(n2,3)\n",
"print \"answer varies due to rounding off errors\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|