summaryrefslogtreecommitdiff
path: root/Engineering_Physics_By_G_Vijayakumari/Chapter12.ipynb
blob: 54bbbf070601a1187ef0b0acfac8d891325ee6f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#12: Superconducting Materials"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 12.1, Page number 328"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The transition temperature for the isotope of mercury of mass number 200 is 4.2209 K\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "M1=202;   #mass number of mercury\n",
    "a=0.50;   #coefficient of mass number\n",
    "T1=4.2;   #temperaturefor mass number 200(K)\n",
    "M2=200;   #mass number of mercury\n",
    "\n",
    "#Calculation\n",
    "T2=((M1/M2)**a)*T1;   #The transition temperature for the isotope of mercury of mass number 200(K)\n",
    "\n",
    "#Result\n",
    "print \"The transition temperature for the isotope of mercury of mass number 200 is\",round(T2,4),\"K\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 12.2, Page number 328"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The critical field is 0.1117 T\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "Tc=9.15;   #critical temperature of Nb(K)\n",
    "t=6;  #temperature of critical field(K)\n",
    "Ho=0.196;  #The critical field AT 0K(T)\n",
    "\n",
    "#Calculation\n",
    "Hc=(Ho*(1-(t/Tc)**2));     #The critical field at 6K(T)\n",
    "\n",
    "#Result\n",
    "print \"The critical field is\",round(Hc,4),\"T\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 12.3, Page number 329"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Isotopic mass if the critical temperature falls is 204.55\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "M1=199.5;   #Isotopic mass of metal\n",
    "T1=4.185;   #Critical temperature for a metal with isotopic mass(K)\n",
    "T2=4.133;   #fall of critical temperature for a metal with isotopic mass(K)\n",
    "a=0.50;     #coefficient of mass\n",
    "\n",
    "#Calculation\n",
    "M2=(((M1)**a)*(T1/T2))**2;     #The Isotopic mass if the critical temperature falls to 4.133\n",
    "\n",
    "#Result\n",
    "print \"The Isotopic mass if the critical temperature falls is\",round(M2,2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 12.4, Page number 329"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The critical current through a long thin superconductor is 22.619 A\n",
      "answer varies due to rounding off errors\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "Hc=7.2*10**3;    #The critical magnetic field(A/m)\n",
    "r=0.5*10**-3;    #radius of long thin superconducting wire(m)\n",
    "\n",
    "#Calculation\n",
    "Ic=(2*math.pi*Hc*r);     #The critical current through a long thin superconductor(A)\n",
    "\n",
    "#Result\n",
    "print \"The critical current through a long thin superconductor is\",round(Ic,3),\"A\"\n",
    "print \"answer varies due to rounding off errors\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 12.5, Page number 329"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The critical field is 0.021659 tesla\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "Tc=3.7;     #critical temperature of superconducting Sn(K)\n",
    "t=2;   #temperature of critical field(K)\n",
    "Ho=0.0306;   #The critical field at 0K(T)\n",
    "\n",
    "#Calculation\n",
    "Hc=(Ho*(1-(t/Tc)**2));    #The critical field at 6K(T)\n",
    "\n",
    "#Result\n",
    "print \"The critical field is\",round(Hc,6),\"tesla\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 12.6, Page number 329"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The critical density for a superconducting wire of lead is 134.33 A\n",
      "answer varies due to rounding off errors\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "Ho=6.5*10**4;   #The critical field at 0K(A/m)\n",
    "Tc=7.18;    #The temperature for lead(K)\n",
    "r=0.5*10**-3;   #radius of superconducting wire of lead(m)\n",
    "T=4.2;    #temperature of superconducting wire(K)\n",
    "\n",
    "#Calculation\n",
    "Hc=(Ho*(1-(T/Tc)**2));    #The critical field(KA/m)\n",
    "Ic=2*math.pi*Hc*r;    #The critical density for a superconducting wire of lead(A)\n",
    "\n",
    "#Result\n",
    "print \"The critical density for a superconducting wire of lead is\",round(Ic,2),\"A\"\n",
    "print \"answer varies due to rounding off errors\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 12.7, Page number 330"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The critical temperature is 12.13395 K\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "Hc=10**5;    #The critical field for vanadium(A/m)\n",
    "Ho=2*10**5;   #The critical field for vanadium at 0K(A/m)\n",
    "T=8.58;    #temperature for vanadium(K)\n",
    "\n",
    "#Calculation\n",
    "Tc=T/math.sqrt(1-(Hc/Ho));     #The critical temperature(K)\n",
    "\n",
    "#Result\n",
    "print \"The critical temperature is\",round(Tc,5),\"K\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 12.8, Page number 338"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The frequency of the radiation emitted by the junction is 2.85196 *10**9 Hz\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "V=5.9*10**-6;     #voltage applied across a Josephson junction(V)\n",
    "e=1.6*10**-19;     #charge of electron(c)\n",
    "h=6.62*10**-34;    #Planck's constant(J-sec)\n",
    "\n",
    "#Calculation\n",
    "v=(2*e*V)/h;     #The frequency of the radiation emitted by the junction(Hz)\n",
    "\n",
    "#Result\n",
    "print \"The frequency of the radiation emitted by the junction is\",round(v/10**9,5),\"*10**9 Hz\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}