1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
{
"metadata": {
"name": "",
"signature": "sha256:2292e5def6e87e01b63e6b748e8fe3955bb5676e5121c51dac319cd9531c4833"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"15: Thermal Properties "
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 15.1, Page number 323"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
"h = 6.626*10**-34; #Planck's constant(Js)\n",
"f_D = 64*10**11; #Debye frequency for Al(Hz)\n",
"\n",
"#Calculation\n",
"theta_D = h*f_D/k; #Debye temperature(K)\n",
"theta_D = math.ceil(theta_D*10)/10; #rounding off the value of theta_D to 1 decimal\n",
"\n",
"#Result\n",
"print \"The Debye temperature of aluminium is\",theta_D, \"K\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Debye temperature of aluminium is 307.3 K\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 15.2, Page number 323"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"N = 6.02*10**26; #Avogadro's number(per kmol)\n",
"k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
"h = 6.626*10**-34; #Planck's constant(Js)\n",
"f_D = 40.5*10**12; #Debye frequency for Al(Hz)\n",
"T = 30; #Temperature of carbon(Ks)\n",
"\n",
"#Calculation\n",
"theta_D = h*f_D/k; #Debye temperature(K)\n",
"C_l = 12/5*math.pi**4*N*k*(T/theta_D)**3; #Lattice specific heat of carbon(J/k-mol/K)\n",
"C_l = math.ceil(C_l*10**3)/10**3; #rounding off the value of C_l to 3 decimals\n",
"\n",
"#Result\n",
"print \"The lattice specific heat of carbon is\",C_l, \"J/k-mol/K\"\n",
"\n",
"#answer given in the book is wrong in the 2nd decimal"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The lattice specific heat of carbon is 7.132 J/k-mol/K\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 15.3, Page number 323"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
"h = 6.626*10**-34; #Planck's constant(Js)\n",
"theta_E = 1990; #Einstein temperature of Cu(K)\n",
"\n",
"#Calculation\n",
"f_E = k*theta_E/h; #Einstein frequency for Cu(K)\n",
"\n",
"#Result\n",
"print \"The Einstein frequency for Cu is\",f_E, \"Hz\"\n",
"print \"The frequency falls in the near infrared region\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Einstein frequency for Cu is 4.14458194989e+13 Hz\n",
"The frequency falls in the near infrared region\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 15.4, Page number 323"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
"N = 6.02*10**23; #Avogadro's number(per mol)\n",
"T = 0.05; #Temperature of Cu(K)\n",
"E_F = 7; #Fermi energy of Cu(eV)\n",
"k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
"h = 6.626*10**-34; #Planck's constant(Js)\n",
"theta_D = 348; #Debye temperature of Cu(K)\n",
"\n",
"#Calculation\n",
"C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Cu(J/mol/K)\n",
"C_V = (12/5)*math.pi**4*(N*k)*(T/theta_D)**3; #Lattice heat capacity of Cu(J/mol/K)\n",
"\n",
"#Result\n",
"print \"The electronic heat capacity of Cu is\",C_e, \"J/mol/K\"\n",
"print \"The lattice heat capacity of Cu is\",C_V, \"J/mol/K\"\n",
"\n",
"#answer for lattice heat capacity given in the book is wrong"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electronic heat capacity of Cu is 2.52566877726e-05 J/mol/K\n",
"The lattice heat capacity of Cu is 5.76047891492e-09 J/mol/K\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 15.5, Page number 324"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"T = 1; #For simplicity assume temperature to be unity(K)\n",
"R = 1; #For simplicity assume molar gas constant to be unity(J/mol/K)\n",
"theta_E = T; #Einstein temperature(K)\n",
"\n",
"#Calculation\n",
"C_V = 3*R*(theta_E/T)**2*math.exp(theta_E/T)/(math.exp(theta_E/T)-1)**2; #Einstein lattice specific heat(J/mol/K)\n",
"C_V = C_V/3;\n",
"C_V = math.ceil(C_V*10**3)/10**3; #rounding off the value of C_V to 3 decimals\n",
"\n",
"#Result\n",
"print \"The Einstein lattice specific heat is\",C_V, \"X 3R\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Einstein lattice specific heat is 0.921 X 3R\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 15.6, Page number 324"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
"v = 2; #Valency of Zn atom\n",
"N = v*6.02*10**23; #Avogadro's number(per mol)\n",
"T = 300; #Temperature of Zn(K)\n",
"E_F = 9.38; #Fermi energy of Zn(eV)\n",
"k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
"h = 6.626*10**-34; #Planck's constant(Js)\n",
"\n",
"#Calculation\n",
"N = v*6.02*10**23; #Avogadro's number(per mol)\n",
"C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Zn(J/mol/K)\n",
"C_e = math.ceil(C_e*10**4)/10**4; #rounding off the value of C_e to 4 decimals\n",
"\n",
"#Result\n",
"print \"The molar electronic heat capacity of zinc is\",C_e, \"J/mol/K\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The molar electronic heat capacity of zinc is 0.2262 J/mol/K\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|