1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
{
"metadata": {
"name": "",
"signature": "sha256:23fe0a698ddd73a9b73b082e06aebc62f797877523bf19c5324fc5a8330a2aa8"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"13: Dielectric Properties of Materials"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.1, Page number 287"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#importing modules\n",
"import math\n",
"\n",
"#Variable declaration\n",
"epsilon_0 = 8.85*10**-12; #Absolute electrical permittivity of free space(F/m)\n",
"R = 0.52; #Radius of hydrogen atom(A)\n",
"n = 9.7*10**26; #Number density of hydrogen(per metre cube)\n",
"\n",
"#Calculation\n",
"R = R*10**-10; #Radius of hydrogen atom(m)\n",
"alpha_e = 4*math.pi*epsilon_0*R**3; #Electronic polarizability of hydrogen atom(Fm**2)\n",
"\n",
"#Result\n",
"print \"The electronic polarizability of hydrogen atom is\", alpha_e, \"Fm**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electronic polarizability of hydrogen atom is 1.56373503182e-41 Fm**2\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.2, Page number 287"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n",
"A = 100; #Area of a plate of parallel plate capacitor(cm**2)\n",
"d = 1; #Distance between the plates of the capacitor(cm)\n",
"V = 100; #Potential applied to the plates of the capacitor(V)\n",
"\n",
"#Calculation\n",
"A= A*10**-4; #Area of a plate of parallel plate capacitor(m**2)\n",
"d = d*10**-2; #Distance between the plates of the capacitor(m)\n",
"C = epsilon_0*A/d; #Capacitance of parallel plate capacitor(F)\n",
"Q = C*V; #Charge on the plates of the capacitor(C)\n",
"\n",
"#Result\n",
"print \"The capacitance of parallel plate capacitor is\",C, \"F\"\n",
"print \"The charge on the plates of the capacitor is\",Q, \"C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The capacitance of parallel plate capacitor is 8.854e-12 F\n",
"The charge on the plates of the capacitor is 8.854e-10 C\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.3, Page number 288"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n",
"epsilon_r = 5.0; #Dielectric constant of the material between the plates of capacitor\n",
"V = 15; #Potential difference applied between the plates of the capacitor(V)\n",
"d = 1.5; #Separation between the plates of the capacitor(mm)\n",
"\n",
"#Calculation\n",
"d = d*10**-3; #Separation between the plates of the capacitor(m)\n",
"#Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so \n",
"D = epsilon_0*epsilon_r*V/d; #Dielectric displacement(C/m**2)\n",
"\n",
"#Result\n",
"print \"The dielectric displacement is\",D, \"C/m**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dielectric displacement is 4.427e-07 C/m**2\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.4, Page number 288"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n",
"N = 3*10**28; #Number density of solid elemental dielectric(atoms/metre cube)\n",
"alpha_e = 10**-40; #Electronic polarizability(Fm**2)\n",
"\n",
"#Calculation\n",
"epsilon_r = 1 + (N*alpha_e/epsilon_0); #Relative dielectric constant of the material\n",
"epsilon_r = math.ceil(epsilon_r*10**3)/10**3; #rounding off the value of epsilon_r to 3 decimals\n",
"\n",
"#Result\n",
"print \"The Relative dielectric constant of the material is\",epsilon_r\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Relative dielectric constant of the material is 1.339\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.5, Page number 288"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"N_A = 6.02*10**23; #Avogadro's number(per mole)\n",
"epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n",
"epsilon_r = 3.75; #Relative dielectric constant\n",
"d = 2050; #Density of sulphur(kg/metre cube)\n",
"y = 1/3; #Internal field constant\n",
"M = 32; #Atomic weight of sulphur(g/mol)\n",
"\n",
"#Calculation\n",
"N = N_A*10**3*d/M; #Number density of atoms of sulphur(per metre cube)\n",
"#Lorentz relation for local fields give E_local = E + P/(3*epsilon_0) which gives\n",
"#(epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n",
"alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N; #Electronic polarizability of sulphur(Fm**2)\n",
"\n",
"#Result\n",
"print \"The electronic polarizability of sulphur is\",alpha_e, \"Fm**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electronic polarizability of sulphur is 3.2940125351e-40 Fm**2\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.6, Page number 289"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"N = 3*10**28; #Number density of atoms of dielectric material(per metre cube)\n",
"epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n",
"n = 1.6; #Refractive index of dielectric material\n",
"\n",
"#Calculation\n",
"#As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n",
"alpha_e = (n**2 - 1)/(n**2 + 2)*3*epsilon_0/N; #Electronic polarizability of dielectric material(Fm**2)\n",
"\n",
"#Result\n",
"print \"The electronic polarizability of dielectric material is\",alpha_e, \"Fm**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electronic polarizability of dielectric material is 3.029e-40 Fm**2\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 13.7, Page number 289"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"epsilon_r = 4.9; #Absolute relative dielectric constant of material(F/m)\n",
"n = 1.6; #Refractive index of dielectric material\n",
"\n",
"#Calculation\n",
"#As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2)\n",
"#let alpha_ratio = alpha_i/alpha_e\n",
"alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n**2 + 2)/(n**2 - 1) - 1)**(-1); #Ratio of electronic polarizability to ionic polarizability\n",
"alpha_ratio = math.ceil(alpha_ratio*10**3)/10**3; #rounding off the value of alpha_ratio to 3 decimals\n",
"\n",
"#Result\n",
"print \"The ratio of electronic polarizability to ionic polarizability is\",alpha_ratio"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ratio of electronic polarizability to ionic polarizability is 1.534\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|