summaryrefslogtreecommitdiff
path: root/Engineering_Physics_-_I/chapter1.ipynb
blob: 4b7927978365964d85e6c5002de8b6f66007b322 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "metadata": {
  "name": "Chapter1(s)"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "Chapter 1: Ultrasonics"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 1, Page No:1.29"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n# variable declaration\nP           = 1;            # for fundamental mode\nt           = 0.1*10**-2;    # thickness of piezo electric crystal\nE           = 80*10**9       # young's modulus\np           = 2654          # density in kg/m^3\n\n# Calculations\n\nf           = (P/(2*t))*math.sqrt(E/p);      # frequency of the oscillator circuit\n\n# Result\nprint 'The Frequency of the oscillator circuit %3.4g' %f,'Hz';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The Frequency of the oscillator circuit 2.745e+06 Hz\n"
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 2, Page No:1.29"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n# variable declaration\nP           = 1;             # for fundamental mode\nt           = 0.1*10**-2;    # thickness of piezo electric crystal\nE           = 7.9*10**10     # young's modulus\np           = 2650           # density in kg/m^3\n\n# Calculations\n\nf           = (P/(2*t))*math.sqrt(E/p);      # frequency of the oscillator circuit\n\n#Result\nprint 'The Frequency of the vibrating crystal %0.2f'%(f/(10**6)),'MHz';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The Frequency of the vibrating crystal 2.73 MHz\n"
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 3, Page No:1.30"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n# variable Declaration\nf       = 1.5*10**6;         # frequency of ultrasonics in Hz\nd6      = 2.75*10**-3;       # distance between 6 consecutive nodes\n\n# Calculations\nd       = d6/5;             # distance b/w two nodes\nlamda   = 2*d;              #  wavelength in m\nv       = f*lamda;          # velocity of ultrasonics\n\n# Result\nprint 'Velocity of ultrasonics ' ,v,'m/sec';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Velocity of ultrasonics  1650.0 m/sec\n"
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Add_example 1, Page No: 1.31"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n# Variable Declaration\nP           = 1;            # for fundamental mode\nt           = 1.5*10**-3;    # thickness of quartz crystal\nE           = 7.9*10**10     # young's modulus in N/m^2\np           = 2650          # density in kg/m^3\n\n# Calculations\n\nf           = (P/(2*t))*math.sqrt(E/p);      # frequency of the oscillator circuit\n\n# Result\nprint 'The Fundamental Frequency of the Quartz crystal %3.2f'%(f/10**6), 'MHz';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The Fundamental Frequency of the Quartz crystal 1.82 MHz\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Add_example 2, Page No: 1.31"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n# Variable Declaration\nv       = 5000;         # velocity of ultrasonics in m/s\ndf      = 60*10**3;      # difference b/w two adjacent harmonic freq. in Hz\n\n# Calculations\n\nd       = (float(v)/(2*df))  ;       # thickness of steel plate\n\n# Result\nprint 'The thickness of steel plate %3.4f'%(d),'m';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The thickness of steel plate 0.0417 m\n"
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Add_example 3, Page No: 1.32"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n# Variable Declaration\nv       = 1440;         # velocity of ultrasonics in  sea water in m/s\nt       = 0.33          # time taken b/w tx and rx in sec\n\n# Calculations\n\nd       = v*t;          # distance travelled by ultrasonics\nD       = d/2;          # depth of submerged submarine in m\n\n# Result\nprint 'Depth of submerged submarine',D,'m';\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Depth of submerged submarine 237.6 m\n"
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Add_example 4, Page No: 1.33"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n# Variable Declaration\nd           = 0.55*10**-3;        #  distance b/w two antinodes\nf           = 1.5*10**6;         # freq of the crystal\n\n# Calculations\n\nlamda       = 2*d;              # wavelength\nv           = f*lamda;          # velocity of ultronics\n\n# Result\nprint 'Velocity of waves in sea water',v,'m/s';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Velocity of waves in sea water 1650.0 m/s\n"
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Add_example 5, Page No: 1.33\n"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "import math\n\n# Variable Declaration\nP           = 1;            # for fundamental mode\np           = 2660          # density of quartz in kg/m^3\nf           = 1300*10**3     # freq of quartz plate for sub division ii\nk           = 2.87*10**3\n\n#f1        = (k)/t  # freq for sub division i\n\n# Calculations\n\n#f           = (P/(2*t))*sqrt(E/p);  \nE             = p*4*(k)**2;      # Youngs modulus in N/m^2\nt           = (float(P)/(2*f))*math.sqrt(E/p);       \n\n\n# Result\nprint 'Youngs modulus of quartz plate %3.5g'%E,'Nm^-2'\nprint 'Thickness of the crystal %.4e'%t,'m';",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "Youngs modulus of quartz plate 8.7641e+10 Nm^-2\nThickness of the crystal 2.2077e-03 m\n"
      }
     ],
     "prompt_number": 15
    }
   ],
   "metadata": {}
  }
 ]
}