1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
|
{
"metadata": {
"name": "",
"signature": "sha256:86b34c03ecd694cc6fe84dc92f4325da00a13eaa92d01bb08d6c810b7af3b7f3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter3:DIELECTRIC PROPERTIES OF MATERIALS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg1:pg-119"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Eg=6.0 #dielectric constant of glass plate\n",
"dg=0.25 #thickness of glass plate in mm\n",
"Ep=3.0 #dielectric constant of plastic film\n",
"dp=0.1 #thickness of plastic film in mm\n",
"Eo=8.85e-12 #permittivity of free space in F/m \n",
"A=1 #let surface area be 1\n",
"Cg=Eg*Eo*A/dg\n",
"Cp=Ep*Eo*A/dp\n",
"ratio=Cg/Cp\n",
"print\"Cg = \",ratio,\"Cp\"\n",
"print\"Since Cp>Cg,the plastic film filled capacitor holds more charge than the glass plate filled capacitor\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cg = 0.8 Cp\n",
"Since Cp>Cg,the plastic film filled capacitor holds more charge than the glass plate filled capacitor\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg2:pg-120"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Er=2.8 #dielectric constant of a dielectric material\n",
"D=3e-8 #magnitude of electric displacement vector in C/m**2\n",
"p=(Er-1)*D/Er\n",
"print\"Polarization is \",round(p,10),\"C/m**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Polarization is 1.93e-08 C/m**2\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg3:pg-120"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"E=1000 #electric field in V/m\n",
"p=4.3e-8 #polarization in C/m**2\n",
"Eo=8.85e-12#permittivity of free space in F/m \n",
"Er=1+(p/(Eo*E))\n",
"print\"Relative permittivity of NaCl is \",round(Er,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Relative permittivity of NaCl is 5.86\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg4:pg-120"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Er=1.000074 #dielectric constant of helium \n",
"Eo=8.85e-12 #permittivity of free space in F/m (in book F/m2 is printed which is wrong)\n",
"E=100 #electric field in V/m\n",
"Na=6e23 #Avogadro number\n",
"V=22.4 #volume occupied by 1gm atom of gas at NTP in litres\n",
"N=Na/(V*1e-3)\n",
"p=Eo*(Er-1)*E\n",
"P=p/N\n",
"print\"Induced dipole moment is \",round(P,42),\"Cm\"#answer in book is in different form as 24.42e-40 Cm"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Induced dipole moment is 2.445e-39 Cm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg5:pg-121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Epsilon=1.46e-10 #permittivity of diamond in C**2/Nm**2\n",
"Eo=8.86e-12 #permittivity of free space in C**2/Nm**2\n",
"Er=Epsilon/Eo \n",
"X=Eo*(Er-1)\n",
"print\"Dielectric constant is \",round(Er,2)\n",
"print\"Electrical susceptibility is \",round(X,12),\"C**2/Nm**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dielectric constant is 16.48\n",
"Electrical susceptibility is 1.37e-10 C**2/Nm**2\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg6:pg-121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Xe=35.4e-12 #electrical susceptibility in C**2/Nm**2\n",
"Eo=8.85e-12 #permittivity of free space in C**2/Nm**2 \n",
"K=1+(Xe/Eo)\n",
"Epsilon=Eo*K\n",
"print\"Dielectric constant is \",int(K)\n",
"print\"Permittivity of the material is \",Epsilon,\"C**2/Nm**2\"\n",
"#answer in book is in different form as 44.25e-12 C**2/Nm**2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dielectric constant is 5\n",
"Permittivity of the material is 4.425e-11 C**2/Nm**2\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg7:pg-121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Vo=60 #applied potential difference in volt\n",
"V=30 #reduced potential difference in volt\n",
"K=Vo/V\n",
"print\"Dielectric constant of the liquid is \",K"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dielectric constant of the liquid is 2\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg8:pg-121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Vo=100 #potential difference in volts\n",
"t=0.3 #thickness of insulator in cm\n",
"A=100 #area in cm**2\n",
"d=1 #separation between plates in cm\n",
"K=7 #dielectric constant \n",
"Eo=8.9e-12 #permittivity of free space in C**2/Nm**2\n",
"E_o=Vo/(d*1e-2)\n",
"E=E_o/K\n",
"D=K*Eo*E\n",
"p=(K-1)*Eo*E\n",
"print\"E = \",\"{:.2e}\".format(E),\"Volt/m\"\n",
"print\"D = \",D,\"C/m**2\"\n",
"print\"p = \",round(p,9),\"C/m**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"E = 1.43e+03 Volt/m\n",
"D = 8.9e-08 C/m**2\n",
"p = 7.6e-08 C/m**2\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg9:pg-122"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"E=6e4 #electric field in V/m\n",
"K=1.000134 #dielectric constant of neon\n",
"Eo=8.9e-12 #permittivity of free space in F/m\n",
"Na=6e23 #Avogadro number\n",
"V=22.4 #volume occupied by 1gm atom of gas at NTP in litres\n",
"p=Eo*(K-1)*E\n",
"N=Na/(V*1e-3)\n",
"P=p/N\n",
"alpha=P/(Eo*E)\n",
"print\"Induced dipole moment is\",round(P,38),\"Cm\"\n",
"print\"Atomic polarizability of neon is \",round(alpha,32),\"m**3\"\n",
"#answer in book is wrong"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Induced dipole moment is 2.67e-36 Cm\n",
"Atomic polarizability of neon is 5e-30 m**3\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg11:pg-123"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Er=1.0024 #dielectric constant of argon atom\n",
"N=2.7e25 #number of atoms per cubic meter\n",
"Eo=8.85e-12 #permittivity of free space in F/m\n",
"alpha_e=Eo*(Er-1)/N\n",
"print\"Electronic polarizability is \",round(alpha_e,41),\"Fm**2\"\n",
"#answer is wrong in book"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Electronic polarizability is 7.9e-40 Fm**2\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg12:pg-123"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"N=9.8e26 #number of atoms in volume of one cubic meter of hydrogen gas\n",
"Eo=8.85e-12 #permittivity of free space in F/m\n",
"ao=0.53e-10 #radius of hydrogen atom in meter\n",
"alpha=4*math.pi*Eo*ao**3\n",
"Er=1+(4*math.pi*N*ao**3)\n",
"print\"Polarizability is \",round(alpha,43),\"Fm**2\"\n",
"print\"Relative permittivity is \",round(Er,4)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Polarizability is 1.66e-41 Fm**2\n",
"Relative permittivity is 1.0018\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg13:pg-124"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"alpha_300=2.5e-39 # total polarizability in C**2m/N at 300 K\n",
"alpha_400=2.0e-39 # total polarizability in C**2m/N at 400 K\n",
"T1 =300 # temperature in Kelvin\n",
"T2 =400 # temperature in Kelvin\n",
"beta=(alpha_300-alpha_400)*(T1*T2/(T2-T1))\n",
"alpha_def_300=alpha_300 - beta/300\n",
"alpha_oriant_300=beta/300\n",
"alpha_oriant_400=beta/400\n",
"print\"Deformational Polarizability is \",alpha_def_300,\"C**2mN**-1\"\n",
"print\"Orientational Polarizability at %d K is \"%T1,alpha_oriant_300,\"C**2mN**-1\"\n",
"print\"Orientational Polarizability at %d K is \"%T2,alpha_oriant_400,\"C**2mN**-1\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Deformational Polarizability is 5e-40 C**2mN**-1\n",
"Orientational Polarizability at 300 K is 2e-39 C**2mN**-1\n",
"Orientational Polarizability at 400 K is 1.5e-39 C**2mN**-1\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg14:pg-132"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"m=32 # Atomic weight of sulphur\n",
"d=2.08 # Density in g/cm**3\n",
"alpha_e=3.28e-40 # Electronic polarizability in Fm**2\n",
"Na=6.023e23 # Avogadro Number\n",
"Eo=8.85e-12 # Permittivity of free space in F/m\n",
"N=Na*d*1e6/m \n",
"k=N*alpha_e/(3*Eo)\n",
"epsilon_r = (1+ k*2)/(1-k)# Calculation of relative permittivity\n",
"print\"Relative dielectric constant is \",round(epsilon_r,1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Relative dielectric constant is 3.8\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg15:pg-132"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"n=1.5 # Refractive index\n",
"Er=5.6 # Static dielectric constant\n",
"per=(1-((n**2-1)/(n**2+2))*(Er+2)/(Er-1))*100 # Pecentage of ionic polarizability\n",
"print\"Percentage of ionic polarizability is \",round(per,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Percentage of ionic polarizability is 51.4 %\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg16:pg-133"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"n=math.sqrt(2.69) # Refractive index\n",
"Er=4.94 # Static dielectric constant\n",
"k1=(Er-1)/(Er+2)\n",
"k2=(n**2-1)/(n**2+2)\n",
"ratio=1/round(((k1/k2)-1),3) \n",
"print\"Ratio of electronic to ionic polarizability is \",round(ratio,3)\n",
"#in book ai/ae is mentioned instead of ae/ai in final answer which is wrong"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ratio of electronic to ionic polarizability is 1.736\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg17:pg-133"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"Er=6.75 #dielectric constant of glass\n",
"n=1.5 #refractive index of glass\n",
"f=1e9 #frequency in Hz\n",
"per=(Er-n**2)*100/(Er-1)\n",
"print\"Percentage attributed to ionic polarizability is \",round(per,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Percentage attributed to ionic polarizability is 78.3 %\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg18:pg-142"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"t=5.5e-3 #thickness of quartz crystal plate in meter\n",
"p=2.65e3 #density of quartz crystal in Kg/m**3\n",
"Y=8e10 #Young's modulus of quartz in N/m**2 (value is wrong in question in book)\n",
"m=1 \n",
"f=m*math.sqrt(Y/p)/(2*t)\n",
"print\"Frequency is \",int(f*1e-3),\"KHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency is 499 KHz\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg19:pg-148"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"Er=4.36 #real part of dielectric constant of bakelite\n",
"N=4e28 #number of atoms per cubic meter\n",
"tan_d=2.8e-2#loss tangent at 1 MHz freuqency\n",
"Eo=8.853e-12#permittivity of free space in F/m\n",
"alpha=(3*Eo/N)*(Er*(1-(1j*tan_d))-1)/(Er*(1-(1j*tan_d))+2)\n",
"x=round(alpha.real*1e40,1)\n",
"y=round(alpha.imag*1e40,2)\n",
"alpha=complex(x,y)\n",
"print\"Complex polarizability is \",alpha*1e-40,\"Fm**2\"\n",
"#in book answer is in different form and as (3.5-0.06i)*10**-40\n",
"#in book unit of answer is not mentioned"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Complex polarizability is (3.5e-40-6e-42j) Fm**2\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eg20:pg-149"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"t=18e-6 # Relaxation time in second\n",
"Er_d=1 # let real part of dielectric constant be 1\n",
"Er_dd=1 # let imaginary part of dielectric constant be 1\n",
"f=1/(2*math.pi*t) # Calculation of frequency\n",
"delta=math.atan(Er_dd/Er_d)\n",
"phi=90-(delta*180/math.pi) # Calculation of phase difference\n",
"print\"Frequency is \",round(f/1e3,1),\"KHz\"\n",
"print\"Phase difference between current and voltage is %d degree\"%(phi)\n",
"print\"Current leads the voltage \"#this part is not mentioned in answer in book"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency is 8.8 KHz\n",
"Phase difference between current and voltage is 45 degree\n",
"Current leads the voltage \n"
]
}
],
"prompt_number": 27
}
],
"metadata": {}
}
]
}
|