1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
|
{
"metadata": {
"name": "chapter7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Semiconductors"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.1, Page number 251"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the number of electron hole pairs\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nT1=300; #temp in K\nT2=310; #temp in K\nni1=2.5*10**19; #per cubic metre\nEgeV1=0.72; #value of Eg in eV\nEgeV2=1.12; #value of Eg in eV\n\n#Calculation\nEg1=EgeV1*1.6*10**-19; #Eg in J\nEg2=EgeV2*1.6*10**-19; #Eg in J\nKB=1.38*10**-23; #boltzmann constant in J/k\n#density of electron hole pair is ni = A*(T**(3/2))*exp(-Eg/(2*KB*T))\n#let (T**(3/2))*exp(-Eg/(2*KB*T)) be X\nX1=(T1**(3/2))*math.exp(-Eg1/(2*KB*T1));\nX2=(T2**(3/2))*math.exp(-Eg2/(2*KB*T2));\n#therefore ni1=A*X1 and ni2=A*X2. dividing ni2/ni1 we get X2/X1\nni2=ni1*(X2/X1);\n\n#Result\nprint(\"the number of electron hole pairs per cubic metre is\",ni2);\n\n#answer given in the book is wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('the number of electron hole pairs per cubic metre is', 2.3207901206362184e+16)\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.2, Page number 251"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the charge carrier density and electron mobility\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nRH=3.66*10**-4; #hall coefficient in m^3/coulomb\nsigma=112; #conductivity in ohm-1 m-1\ne=1.6*10**-19;\n\n#Calculation\nne=1/(RH*e);\n#sigma = e*ne*(mew_e+mew_h)\n#assuming mew_h = 0\nmew_e=sigma/(e*ne);\n\n#Result\nprint(\"the charge carrier density per m^3 is\",ne);\nprint(\"electron mobility in m^2/Vs is\",mew_e);\n\n#answer given in the book is wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('the charge carrier density per m^3 is', 1.7076502732240434e+22)\n('electron mobility in m^2/Vs is', 0.040992)\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.3, Page number 252"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the conductivity of intrinsic silicon and resultant conductivity\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nni=1.5*10**16; #intrinsic concentration per m^3\ne=1.6*10**-19;\nmew_e=0.13; #mobility of electrons in m^2/Vs\nmew_h=0.05; #mobility of holes in m^2/Vs\nND=5*10**20; #conductivity in atoms/m^3\n\n#Calculation\nsigma1=ni*e*(mew_e+mew_h);\nnd=(ni**2)/ND;\nsigma2=ND*e*mew_e;\nNA=5*10**20;\nna=(ni**2)/NA;\nsigma3=NA*e*mew_h;\nsigma1=math.ceil(sigma1*10**7)/10**7; #rounding off to 7 decimals\nsigma2=math.ceil(sigma2*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint(\"intrinsic conductivity of Si in ohm-1 m-1 is\",sigma1);\nprint(\"conductivity of Si during donor impurity in ohm-1 m-1 is\",sigma2);\nprint(\"conductivity of Si during acceptor impurity in ohm-1 m-1 is\",round(sigma3));",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('intrinsic conductivity of Si in ohm-1 m-1 is', 0.000432)\n('conductivity of Si during donor impurity in ohm-1 m-1 is', 10.41)\n('conductivity of Si during acceptor impurity in ohm-1 m-1 is', 4.0)\n"
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.4, Page number 253"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the conductivity\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nsigma1=2; #conductivity in ohm-1 m-1\nEgeV=0.72; #band gap in eV\nKB=1.38*10**-23; #boltzmann constant\nT1=20; #temp in C\nT2=40; #temp in C\n\n#Calculation\nEg=EgeV*1.6*10**-19; #in J\nT1=T1+273; #temp in K\nT2=T2+273; #temp in K\n#sigma2/sigma1 = exp((-Eg/(2*KB))*((1/T2)-(1/T1)))\n#by taking log on both sides we get 2.303*log10(sigma2/sigma1) = (Eg/(2*KB))*((1/T1)-(1/T2))\n#let (Eg/(2*KB))*((1/T1)-(1/T2)) be X\nX=(Eg/(2*KB))*((1/T1)-(1/T2));\n#let log10(sigma2/sigma1) be Y\nY=X/2.303;\n#log10(sigma2/sigma1) = log10(sigma2)-log10(sigma1)\n#let log10(sigma2) be A\nA=Y+math.log10(sigma1);\nsigma2=10**A;\nsigma2=math.ceil(sigma2*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint(\"the conductivity in mho m-1 is\",sigma2);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('the conductivity in mho m-1 is', 4.97)\n"
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.5, Page number 253"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the concentration of holes and electrons \n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nmew_n=1300*10**-4; #in m^2/Vs\nmew_p=500*10**-4; #in m^2/Vs\nsigma=3*10**4; #conductivity in ohm-1 m-1\ne=1.6*10**-19;\n\n#Calculation\nN=sigma/(e*mew_n);\nni=1.5*10**16; #per m^3\np=(ni**2)/N;\nP=sigma/(e*mew_p);\nn=(ni**2)/P;\nN=math.ceil(N*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint(\"concentration of electrons in n-type per cubic metre are\",N);\nprint(\"concentration of holes in n-type per cubic metre are\",round(p));\nprint(\"concentration of electrons in p-type per cubic metre are\",round(n));\nprint(\"concentration of holes in p-type per cubic metre are\",P);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('concentration of electrons in n-type per cubic metre are', 1.4423076923076921e+24)\n('concentration of holes in n-type per cubic metre are', 156000000.0)\n('concentration of electrons in p-type per cubic metre are', 60000000.0)\n('concentration of holes in p-type per cubic metre are', 3.7499999999999995e+24)\n"
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.6, Page number 254"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the resistivity\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nni=2.37*10**19; #intrinsic carrier density per m^3\nmew_e=0.38; #in m**2/Vs\nmew_n=0.18; #in m**2/Vs\n\n#Calculation\ne=1.6*10**-19;\nsigmai=ni*e*(mew_e+mew_n);\nrho=1/sigmai;\nrho=math.ceil(rho*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"resistivity in ohm m is\",rho);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('resistivity in ohm m is', 0.471)\n"
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.7, Page number 254"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the position of fermi level\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nEg=1.12; #band gap in eV\nK=1.38*10**-23;\nT=300; #temp in K\n\n#Calculation\n#EF = (Eg/2)+(3*K*T/4)*log(mh/me)\n#given me=0.12m0 and mh=0.28m0. therefore mh/me = 0.28/0.12 \n#let mh/me be X. therefore X=0.28/0.12 \nX=0.28/0.12;\nEF=(Eg/2)+((3*K*T/4)*math.log(X));\n\n#Result\nprint(\"the position of fermi level in eV is\",EF);\n\n#answer given in the book is wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('the position of fermi level in eV is', 0.56)\n"
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.8, Page number 254"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the concentration of intrinsic charge carriers\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nKB=1.38*10**-23;\nT=300; #temp in K\nh=6.626*10**-34;\nm0=9.11*10**-31;\nmh=m0;\nme=m0;\nEgeV=0.7; #energy gap in eV\n\n#Calculation\nEg=EgeV*1.6*10**-19; #in J\nA=((2*math.pi*KB/(h**2))**(3/2))*(me*mh)**(3/4);\nB=T**(3/2);\nC=math.exp(-Eg/(2*KB*T));\nni=2*A*B*C;\n\n#Result\nprint(\"concentration of intrinsic charge carriers per cubic metre is\",ni);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('concentration of intrinsic charge carriers per cubic metre is', 3.3481803992458756e+19)\n"
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.9, Page number 255"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the resistivity\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nni=2.4*10**19;\nmew_e=0.39;\nmew_h=0.19;\ne=1.6*10**-19;\n\n#Result\nsigmai=ni*e*(mew_e+mew_h);\nrhoi=1/sigmai;\nrhoi=math.ceil(rhoi*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint(\"resistivity in ohm m is\",rhoi);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('resistivity in ohm m is', 0.45)\n"
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.10, Page number 255"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the resistance\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nl=1; #length in cm\nl=l*10**-2; #length in m\ne=1.6*10**-19;\nw=1; #width in mm\nt=1; #thickness in mm\n\n#Calculation\nw=w*10**-3; #width in m\nt=t*10**-3; #thickness in m\nA=w*t;\nni=2.5*10**19;\nmew_e=0.39;\nmew_p=0.19;\nsigma=ni*e*(mew_p+mew_e);\nR=l/(sigma*A);\n\n#Result\nprint(\"resistance of intrinsic Ge rod in ohm is\",R);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('resistance of intrinsic Ge rod in ohm is', 4310.3448275862065)\n"
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.11, Page number 255"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the conductivity\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nEg=1.1; #energy gap in eV\nm=9.109*10**-31;\nk=1.38*10**-23;\nT=300;\ne=1.6*10**-19;\nh=6.626*10**-34;\nmew_e=0.48; #electron mobility\nmew_h=0.013; #hole mobility\n\n#Calculation\nC=2*(2*math.pi*m*k/(h**2))**(3/2);\nX=2*k*T/e;\nY=-Eg/X;\nA=math.exp(Y);\nni=C*(T**(3/2))*A;\nsigma=ni*e*(mew_e+mew_h);\nsigma=math.ceil(sigma*10**6)/10**6 #rounding off to 6 decimals\n\n#Result\nprint(\"conductivity in ohm-1 m-1 is\",sigma);\n\n# answer given in the book is wrong, Page number 255",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('conductivity in ohm-1 m-1 is', 0.001162)\n"
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.12, Page number 256"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the intrinsic carrier density and conductivity\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nm=9.109*10**-31;\nk=1.38*10**-23;\nT=300;\ne=1.6*10**-19;\nh=6.626*10**-34;\nEg=0.7;\nmew_e=0.4; #electron mobility\nmew_h=0.2; #hole mobility\n\n#Calculation\nC=2*(2*math.pi*m*k/((h**2)))**(3/2);\nX=2*k*T/e;\nni=C*(T**(3/2))*math.exp(-Eg/X);\nsigma=ni*e*(mew_e+mew_h);\nsigma=math.ceil(sigma*10**3)/10**3 #rounding off to 3 decimals\n\n#Result\nprint(\"conductivity in ohm-1 m-1\",sigma);\n\n#answer given in the book is wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('conductivity in ohm-1 m-1', 3.214)\n"
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.13, Page number 256"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the energy band gap\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nk=8.616*10**-5;\nT1=20; #temp in C\nT1=T1+273; #temp in K\nT2=32; #temp in C\nrho2=4.5; #resistivity in ohm m\nrho1=2; #resistivity in ohm m\n\n#Calculation\nT2=T2+273; #temp in K\ndy=math.log10(rho2)-math.log10(rho1);\ndx=(1/T1)-(1/T2);\nEg=2*k*dy/dx;\nEg=math.ceil(Eg*10**3)/10**3 #rounding off to 3 decimals\n\n#Result\nprint(\"energy band gap in eV is\",Eg);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('energy band gap in eV is', 0.452)\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.13, Page number 256"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the energy band gap\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nk=8.616*10**-5;\nT1=20; #temp in C\nT2=32; ##temp in C\nrho2=4.5; #resistivity in ohm m\nrho1=2; #resistivity in ohm m\n\n#Calculation\nT1=T1+273; #temp in K\nT2=T2+273; #temp in K\ndy=math.log10(rho2)-math.log10(rho1);\ndx=(1/T1)-(1/T2);\nEg=2*k*dy/dx;\nEg=math.ceil(Eg*10**3)/10**3 #rounding off to 3 decimals\n\n#Result\nprint(\"energy band gap in eV is\",Eg);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('energy band gap in eV is', 0.452)\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.14, Page number 257"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the temperature\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nEgeV=1; #energy in eV\nk=1.38*10**-23;\nEg=EgeV*1.602*10**-19; #in J\n#EF can be taken as (Ev+0.5)eV\n#therefore (Ev+0.5)eV = (Ec+Ev)/2--------(1)\n#let fermi level shift by 10% then (Ev+0.6)eV = ((Ec+Ev)/2)+((3*k*T/4)*log(4))-----(2)\n#subtracting (1) from (2)\n#0.1 eV = (3*k*T/4)*math.log(4)\nE=0.1; #energy in eV\nE=E*1.602*10**-19; #energy in J\nT=(4*E)/(3*k*math.log(4));\n\n#Result\nprint(\"temperature in K is\",T);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('temperature in K is', 1116.520509905372)\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.15, Page number 257"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the conductivity of intrinsic silicon\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nni=1.5*10**16;\ne=1.6*10**-19;\nmew_e=0.13;\nmew_h=0.05;\n\n#Calculation\nsigma=ni*e*(mew_e+mew_h);\nM=28.1; #atomic weight of Si\nd=2.33*10**3; #density in kg/m^3\nv=M/d;\nN=6.02*10**26;\nN1=N/v;\n#1 donor type impurity is added to 1 impurity atom\nND=N1/(10**8);\np=(ni**2)/ND;\nsigma_exd=ND*e*mew_e;\n#1 acceptor type impurity is added to 1 impurity atom\nNa=N1/(10**8);\nn=(ni**2)/Na;\nsigma_exa=Na*e*mew_h;\nsigma=math.ceil(sigma*10**7)/10**7 #rounding off to 7 decimals\nsigma_exd=math.ceil(sigma_exd*10**3)/10**3 #rounding off to 3 decimals\nsigma_exa=math.ceil(sigma_exa*10**3)/10**3 #rounding off to 3 decimals\n\n#Result\nprint(\"conductivity in ohm-1 m-1 is\",sigma);\nprint(\"number of Si atoms per m^3 is\",N1);\nprint(\"conductivity for donor type impurity in ohm-1 m-1 is\",sigma_exd);\nprint(\"conductivity for acceptor type impurity in ohm-1 m-1 is\",sigma_exa);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('conductivity in ohm-1 m-1 is', 0.000432)\n('number of Si atoms per m^3 is', 4.991672597864769e+28)\n('conductivity for donor type impurity in ohm-1 m-1 is', 10.383)\n('conductivity for acceptor type impurity in ohm-1 m-1 is', 3.994)\n"
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.16, Page number 258"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the diffusion coefficient of electrons\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nT=300; #temperature in K\nKB=1.38*10**-23;\ne=1.6*10**-19;\nmew_e=0.19; #mobility of electrons in m^2/Vs\n\n#Calculation\nDn=mew_e*KB*T/e;\nDn=math.ceil(Dn*10**6)/10**6 #rounding off to 6 decimals\n\n#Result\nprint(\"diffusion coefficient of electrons in m^2/s is\",Dn);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('diffusion coefficient of electrons in m^2/s is', 0.004917)\n"
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.17, Page number 259"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the Hall voltage\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nRH=3.66*10**-4; #hall coefficient in m^3/coulomb\nI=10**-2; #current in amp\nB=0.5; #magnetic field in wb/m^2\nt=1; #thickness in mm\n\n#Calculation\nt=t*10**-3; #thickness in m\nVH=(RH*I*B)/t;\nVH=VH*10**3; #converting from Volts to mV\n\n#Result\nprint(\"Hall voltage in mV is\",VH);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('Hall voltage in mV is', 1.83)\n"
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.18, Page number 259"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the density and mobility of charge carrier\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nRH=-7.35*10**-5; #hall coefficient\ne=1.6*10**-19;\nsigma=200;\n\n#Calculation\nn=(-1/(RH*e));\nmew=sigma/(n*e);\n\n#Result\nprint(\"density of charge carriers in m^3 is\",n);\nprint(\"mobility of charge carriers in m^2/Vs is\",mew);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('density of charge carriers in m^3 is', 8.503401360544217e+22)\n('mobility of charge carriers in m^2/Vs is', 0.0147)\n"
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.19, Page number 259"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the magnitude of Hall voltage\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nI=50; #current in amp\nB=1.5; #magnetic field in T\nn=8.4*10**28; #free electron concentration in electron/m^3\nt=0.5; #thickness in cm\ne=1.6*10**-19;\n\n#Calculation\nt=t*10**-2; #thickness in m\nVH=(I*B)/(n*e*t);\nVH=VH*10**6; #converting VH from V to micro V\nVH=math.ceil(VH*10**4)/10**4 #rounding off to 4 decimals\n\n#Result\nprint(\"magnitude of Hall voltage in microVolt is\",VH);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('magnitude of Hall voltage in microVolt is', 1.1161)\n"
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.20, Page number 260"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate mew and n\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nRH=3.66*10**-4;\ne=1.6*10**-19;\nrho_n=8.93*10**-3;\n\n#Calculation\nn=1/(RH*e);\nmew_e=RH/rho_n;\nmew_e=math.ceil(mew_e*10**5)/10**5 #rounding off to 5 decimals\n\n#Result\nprint(\"n per m^3 is\",n);\nprint(\"mew_e in m^2/V is\",mew_e);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('n per m^3 is', 1.7076502732240434e+22)\n('mew_e in m^2/V is', 0.04099)\n"
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.21, Page number 260"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the conductivity and equilibrium hole concentration\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nmew_e=0.13; #electron mobility in m^2/Vs\nmew_h=0.048; #hole mobility in m^2/Vs\nni=1.5*10**16;\ne=1.6*10**-19;\nT=300; #temp in K\nND=10**23; #density per m^3\n\n#Calculation\nsigmai=ni*e*(mew_e+mew_h);\nsigma=ND*mew_e*e;\np=(ni**2)/ND;\nsigmai=math.ceil(sigmai*10**5)/10**5 #rounding off to 5 decimals\n\n#Result\nprint(\"conductivity of intrinsic Si in s is\",sigmai);\nprint(\"conductivity in s is\",sigma);\nprint(\"equilibrium hole concentration per m^3 is\",round(p));\n\n#answers for sigmai and sigma given in the book are wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('conductivity of intrinsic Si in s is', 0.00043)\n('conductivity in s is', 2080.0)\n('equilibrium hole concentration per m^3 is', 2250000000.0)\n"
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.22, Page number 261"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the forbidden energy gap\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nT=300; #temp in K\nkB=1.38*10**-23;\nmew_e=0.36; #mobility of electrons in m^2/Vs\ne=1.6*10**-19;\nmew_h=0.7; #mobility of electrons in m^2/Vs\nsigma=2.12; #conductivity in ohm-1 m-1\nC=4.83*10**21; #proportional constant\n\n#Calculation\nni=sigma/(e*(mew_e+mew_h));\n#exp(-Eg/(2*kB*T)) = (C*(T^(3/2)))/ni\n#let X be (C*(T^(3/2)))/ni\nX=(C*(T**(3/2)))/ni;\n#exp(-Eg/(2*kB*T)) = X \n#applyinf log on both sides\n#Eg/(2*kB*T) = log(X)\nEg=2*kB*T*math.log(X);\n\n#Result\nprint(\"forbidden energy gap in eV is\",Eg);\n\n#answer given in the book is wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('forbidden energy gap in eV is', 1.2016388762259164e-19)\n"
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.23, Page number 261"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the probability of occupation\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nEg=0.4; #energy gap in eV\nEg=Eg*1.6*10**-19; #Eg in J\nKB=1.38*10**-23;\nT1=0; #temp 1 in C\nT2=50; #temp 2 in C\nT3=100; #temp 3 in C\n\n#Calculation\nT1k=T1+273; #temp 1 in K\nT2k=T2+273; #temp 2 in K\nT3k=T3+273; #temp 3 in K\n#F(E) = 1/(1+(exp((E-Ep)/(KB*T))))\n#but E-Ep = (1/2)*Eg\n#therefore F(E) = 1/(1+(exp(Eg/(2*KB*T))))\nFE1=1/(1+(math.exp(Eg/(2*KB*T1k))));\nFE2=1/(1+(math.exp(Eg/(2*KB*T2k))));\nFE3=1/(1+(math.exp(Eg/(2*KB*T3k))));\nFE1=math.ceil(FE1*10**6)/10**6 #rounding off to 6 decimals\nFE2=math.ceil(FE2*10**6)/10**6 #rounding off to 6 decimals\nFE3=math.ceil(FE3*10**6)/10**6 #rounding off to 6 decimals\n\n#Result\nprint(\"probability of occupation at 0 C in eV is\",FE1);\nprint(\"probability of occupation at 50 C in eV is\",FE2);\nprint(\"probability of occupation at 100 C in eV is\",FE3);\n\n#answers given in the book are wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('probability of occupation at 0 C in eV is', 0.000205)\n('probability of occupation at 50 C in eV is', 0.000762)\n('probability of occupation at 100 C in eV is', 0.001992)\n"
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.24, Page number 262"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the ratio between conductivity\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nEg=1.2; #energy in eV\nEg=Eg*1.6*10**-19; #in J\nKB=1.38*10**-23;\nT1=600; #temp in K\nT2=300; #temp in K\n\n#Calculation\n#sigma is proportional to exp(-Eg/(2*KB*T))\n#let sigma1/sigma2 be R\nR=math.exp((Eg/(2*KB))*((1/T2)-(1/T1)));\n\n#Result\nprint(\"the ratio between conductivity is\",round(R));\n\n#answer given in the book is wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('the ratio between conductivity is', 108467.0)\n"
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.25, Page number 263"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the resistivity of doped Ge\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nni=2.5*10**19; #density of charge carriers in m^3\nr=1/(10**6); #ratio\ne=1.6*10**-19;\nmew_e=0.36; #mobility of electrons in m^2/Vs\nmew_h=0.18; #mobility of holes in m^2/Vs\nN=4.2*10**28; #number of Si atoms per m^3\n\n#Calculation\nNe=r*N;\nNh=(ni**2)/Ne;\nsigma=(Ne*e*mew_e)+(Nh*e*mew_h);\nrho=1/sigma;\nrho=math.ceil(rho*10**8)/10**8 #rounding off to 8 decimals\n\n#Result\nprint(\"number of impurity atoms per m^3 is\",Ne);\nprint(\"the resistivity of doped Ge in ohm m is\",rho);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('number of impurity atoms per m^3 is', 4.2e+22)\n('the resistivity of doped Ge in ohm m is', 0.00041336)\n"
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.26, Page number 264"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the conductivity of material\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nn=5*10**17; #concentration in m^3\nvd=350; #drift velocity in m/s\nE=1000; #electric field in V/m\ne=1.6*10**-19;\n\n#Calculation\nmew=vd/E;\nsigma=n*e*mew;\nsigma=math.ceil(sigma*10**4)/10**4 #rounding off to 4 decimals\n\n#Result\nprint(\"the conductivity of material in ohm m is\",sigma);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('the conductivity of material in ohm m is', 0.028)\n"
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.27, Page number 264"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the concentration\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nsigma_e=2.2*10**-4; #conductivity\nmew_e=125*10**-3; #mobility of electrons in m^2/Vs\ne=1.602*10**-19;\n\n#Calculation\nne=sigma_e/(e*mew_e);\n\n#Result\nprint(\"concentration in m^3 is\",ne);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('concentration in m^3 is', 1.0986267166042448e+16)\n"
}
],
"prompt_number": 33
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.28, Page number 265"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the mobility and density of charge carrier\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nRH=3.66*10**-4; #hall coefficient in m^3/c\nrho_i=8.93*10**-3; #resistivity in ohm m\ne=1.6*10**-19;\n\n#Calculation\nnh=1/(RH*e);\nmew_h=1/(rho_i*nh*e);\nmew_h=math.ceil(mew_h*10**4)/10**4 #rounding off to 4 decimals\n\n#Result\nprint(\"density of charge carriers in m^3 is\",nh);\nprint(\"mobility of charge carriers is %f m^2/Vs\",mew_h);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('density of charge carriers in m^3 is', 1.7076502732240434e+22)\n('mobility of charge carriers is %f m^2/Vs', 0.041)\n"
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.29, Page number 265"
},
{
"cell_type": "code",
"collapsed": false,
"input": "# To calculate the Hall voltage and charge carrier concentration\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nI=3; #current in mA\nI=I*10**-3; #current in amp\ne=1.6*10**-19;\nRH=3.66*10**-4; #hall coefficient in m^3/C\nB=1; #flux density in w/m^2\nd=2; #dimension along Y in cm\nz=1; #dimension along z in mm\n\n#Calculation\nd=d*10**-2; #dimension along Y in m\nz=z*10**-3; #dimension along z in m\nA=d*z; #area in m^2\nEH=RH*I*B/A;\nVH=EH*d;\nVH=VH*10**3; #converting from V to mV\nn=1/(RH*e);\nVH=math.ceil(VH*10**2)/10**2 #rounding off to 2 decimals\n\n#Result\nprint(\"Hall voltage in mV is\",VH);\nprint(\"charge carrier concentration in m^3 is\",n);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('Hall voltage in mV is', 1.1)\n('charge carrier concentration in m^3 is', 1.7076502732240434e+22)\n"
}
],
"prompt_number": 37
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|