summaryrefslogtreecommitdiff
path: root/Engineering_Physics/chapter6_2.ipynb
blob: 4c7f2be8592cced1dafa858a5c61243bd51da903 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
{
 "metadata": {
  "name": "chapter6 (1)"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "Dielectric Properties"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.1, Page number 187"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the energy stored in the condenser and polarizing the dielectric\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nC=2;    #capacitance in micro farad\nC=C*10**-6;    #capacitance in farad\nV=1000;         #voltage in Volts\nepsilon_r=100;    \n\n#Calculation\nW=(C*(V**2))/2;\nC0=C/epsilon_r;\nW0=(C0*(V**2))/2;\nW_0=1-W0;\n\n#Result\nprint(\"energy stored in the condenser in Joule is\",W);\nprint(\"energy stored in the dielectric in Joule is\",W_0);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('energy stored in the condenser in Joule is', 1.0)\n('energy stored in the dielectric in Joule is', 0.99)\n"
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.2, Page number 188"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the ratio between electronic and ionic polarizability\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilon_r=4.94;\nN=2.69;     #let n**2 be N\n\n#Calculaion\n#(epsilon_r-1)/(epsilon_r+2) = (N*alpha)/(3*epsilon_0)\n#alpha = alpha_e+alpha_i\n#therefore (epsilon_r-1)/(epsilon_r+2) = (N*(alpha_e+alpha_i))/(3*epsilon_0)\n#let (N*(alpha_e+alpha_i))/(3*epsilon_0) be X\nX=(epsilon_r-1)/(epsilon_r+2);\n#Ez=n^2\n#therefore (N-1)/(N+2) = (N*alpha_e)/(3*epsilon_0)\n#let (N*alpha_e)/(3*epsilon_0) be Y\nY=(N-1)/(N+2);\n#dividing X/Y = (N*(alpha_e+alpha_i))/(N*alpha_e)\n#therefore X/Y = 1+(alpha_i/alpha_e)\n#let alpha_i/alpha_e be A\nR=(X/Y)-1;\nR=math.ceil(R*10**4)/10**4;   #rounding off to 4 decimals\n\n#Result\nprint(\"ratio between electronic and ionic polarizability is\",R);\n\n#answer given in the book is wrong in the second part",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('ratio between electronic and ionic polarizability is', 0.5756)\n"
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.3, Page number 188"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the dielectric constant of the material\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nN=3*10**28;   #atoms per m^3\nalpha_e=10**-40;   #farad m^2\nepsilon_0=8.854*10**-12;    #f/m\n\n#Calculation\nepsilon_r=1+(N*alpha_e/epsilon_0);\nepsilon_r=math.ceil(epsilon_r*10**3)/10**3;   #rounding off to 3 decimals\n\n#Result\nprint(\"dielectric constant of the material is\",epsilon_r);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('dielectric constant of the material is', 1.339)\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.4, Page number 189"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the electronic polarizability of He atoms\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilon_0=8.854*10**-12;    #f/m\nepsilon_r=1.0000684;\n\n#Calculation\nN=2.7*10**25;               #atoms per m^3\nalpha_e=(epsilon_0*(epsilon_r-1))/N;\n\n#Result\nprint(\"electronic polarizability of He atoms in Fm^2 is\",alpha_e);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('electronic polarizability of He atoms in Fm^2 is', 2.2430133333322991e-41)\n"
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.5, Page number 189"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the capacitance and charge\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilon_0=8.854*10**-12;    #f/m\nA=100;    #area in cm^2\nA=A*10**-4;   #area in m^2\nV=100;   #potential in V\nd=1;   #plate seperation in cm\n\n#Calculation\nd=d*10**-2;    #plate seperation in m\nC=(epsilon_0*A)/d;\nQ=C*V;\n\n#Result\nprint(\"charge on the plates in F is\",C);\nprint(\"charge on the capacitor in coulomb is\",Q);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('charge on the plates in F is', 8.854e-12)\n('charge on the capacitor in coulomb is', 8.854e-10)\n"
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.6, Page number 190"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the resultant voltage across the capacitors\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nQ=2*10**-10;   #charge in coulomb\nd=4;   #plate seperation in mm\nd=d*10**-3;    #plate seperation in m\nepsilon_r=3.5;\nepsilon_0=8.85*10**-12;    #f/m\nA=650;    #area in mm^2\n\n#Calculation\nA=A*10**-6;    #area in m^2\nV=(Q*d)/(epsilon_0*epsilon_r*A);\nV=math.ceil(V*10**3)/10**3;   #rounding off to 3 decimals\n\n#Result\nprint(\"voltage across the capacitor in Volts is\",V);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('voltage across the capacitor in Volts is', 39.735)\n"
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.7, Page number 190"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the dielectric displacement\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nV=10;   #potential in volts\nd=2*10**-3;    #plate seperation in m\nepsilon_r=6;    #dielectric constant\nepsilon_0=8.85*10**-12;    #f/m\n\n#Calculation\nE=V/d;\nD=epsilon_0*epsilon_r*E;\n\n#Result\nprint(\"dielectric displacement in cm^-2 is\",D);\n\n#answer given in the book is wrong in the 7th decimal point",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('dielectric displacement in cm^-2 is', 2.6549999999999994e-07)\n"
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.8, Page number 191"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the polarizability and relative permittivity of He\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nR=0.55;    #radius of He atom in angstrom\nR=R*10**-10;    #radius of He atom in m\nepsilon_0=8.84*10**-12;    #f/m\nN=2.7*10**25;\n\n#Calculation\nalpha_e=4*math.pi*epsilon_0*R**3;\nepsilon_r=(N*alpha_e/epsilon_0)+1;\nepsilon_r=math.ceil(epsilon_r*10**6)/10**6;   #rounding off to 6 decimals\n\n#Result\nprint(\"polarizability in farad m^2 is\",alpha_e);\nprint(\"relative permitivity is\",epsilon_r);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('polarizability in farad m^2 is', 1.848205241292183e-41)\n('relative permitivity is', 1.000057)\n"
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.9, Page number 191"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the field strength and total dipole moment\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nV=15;    #potential difference in volts\nC=6;    #capacity in micro farad\nC=C*10**-6;    #capacity in farad\nepsilon_0=8.84*10**-12;    #f/m\nepsilon_r=8;\nA=360;     #surface area in cm^2\n\n#Calculation\nA=A*10**-4;    #surface area in m^2\nE=(V*C)/(epsilon_0*epsilon_r*A);\nd=epsilon_0*(epsilon_r-1)*V*A;\n\n#Result\nprint(\"field strength in V/m is\",E);\nprint(\"total dipole moment in cm is\",d);\n\n#answer for field strength E given in the book is wrong ",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('field strength in V/m is', 35350678.73303167)\n('total dipole moment in cm is', 3.34152e-11)\n"
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 6.10, Page number 191"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "# To calculate the complex polarisability of material\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilonr=4.36;      #dielectric constant\nt=2.8*10**-2;       #loss tangent(t)\nN=4*10**28;         #number of electrons\nepsilon0=8.84*10**-12;      \n\n#Calculation\nepsilon_r = epsilonr*t;\nepsilonstar = (complex(epsilonr,-epsilon_r));\nalphastar = (epsilonstar-1)/(epsilonstar+2);\nalpha_star = 3*epsilon0*alphastar/N;             #complex polarizability(Fm**2)\n\n#Result\nprint(\"the complex polarizability in F-m^2 is\"'alphastar',alpha_star);\n#disp('j',I,R);\n#by taking 10^-40 common we get alphastar = (3.5-j0.06)*10^-40 F-m^2",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('the complex polarizability in F-m^2 isalphastar', (3.5037933503257222e-40-6.000743833211258e-42j))\n"
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "",
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}