summaryrefslogtreecommitdiff
path: root/Engineering_Physics/chapter6.ipynb
blob: 26000b3143f0193dee22dc405629ffaeb67b7480 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
{

 "metadata": {

  "name": "",

  "signature": "sha256:7bd6880823e892a54fce1336eeffd037b53706d16df72c924dbe7c27da815476"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter6:FIBER OPTICS AND HOLOGRAPHY"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex6.1:pg-189"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "import math\n",

      "#to calculate critical angle for core-cladding interface\n",

      "n1=1.5\n",

      "n2=1.45\n",

      "thetac=math.degrees(math.asin(n2/n1))\n",

      "theta1=90-thetac\n",

      "\n",

      "print \"critical angle for core-cladding interface is theta1=\",round(theta1),\"degree\"\n",

      "#to calculate acceptance angle in air for fibre and corresponding angle of obliquences\n",

      "na=1\n",

      "thetaa=math.degrees(math.asin(n1*0.26/na))\n",

      "\n",

      "print \"acceptance angle thetaa=\",round(thetaa),\"degree\"\n",

      "#to calculate numerical aperture\n",

      "NA=((n1+n2)*(n1-n2))**(1/2.0)\n",

      "print \"numerical aperture of fibre is NA=\",round(NA,4),\"unitless\"\n",

      "#to calculate % of light\n",

      "per=(NA)**2*100\n",

      "print \"light collected is per=\",round(per,2),\"%\"\n",

      "\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "critical angle for core-cladding interface is theta1= 15.0 degree\n",

        "acceptance angle thetaa= 23.0 degree\n",

        "numerical aperture of fibre is NA= 0.3841 unitless\n",

        "light collected is per= 14.75 %\n"

       ]

      }

     ],

     "prompt_number": 8

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex6.2:pg-190"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "import math\n",

      "#to calculate numerical aperture\n",

      "Del=0.02 #relative refractive index difference between the core and the cladding of the fibre i.e. del=(n1-n2)/n1\n",

      "n1=1.46      #refractive index of core of W-step index fibre \n",

      "n2=n1-Del*n1\n",

      "NA=((n1+n2)*(n1-n2))**(1/2.0)\n",

      "print \"numerical aperture is NA=\",round(NA,2),\"unitless\"\n",

      "#to calculate critical angle at the core cladding interface within the fibre\n",

      "thetac=math.degrees(math.asin(n2/n1))\n",

      "print \"thetac=\",int(thetac),\"degree\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "numerical aperture is NA= 0.29 unitless\n",

        "thetac= 78 degree\n"

       ]

      }

     ],

     "prompt_number": 10

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex6.3:pg-190"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "import math\n",

      "#to calculate refractive index of the cladding\n",

      "a=35.0*10**-6 #core diameter in micrometre\n",

      "#formula is del=(n1-n2)/n1\n",

      "#we get\n",

      "Del=1.5/100 \n",

      "n1=1.46 #refractive index of the fibre \n",

      "lamda=0.85*10**-6 #wavelength in micrometer\n",

      "n2=n1-Del*n1\n",

      "print \"refractive index is n2=\",round(n2,3),\"unitless\"\n",

      "#to calculate normalised frequency V number of the fibre\n",

      "V=round((2*math.pi*a*n1*0.173)/lamda,1)\n",

      "print \"normalised frequency V number of the fibre is V=\",V,\"unitless\"\n",

      "#to calculate total number of guided modes in the fibre\n",

      "M=(V**2)/2.0\n",

      "print \"total number of guided modes in the fibre is M=\",int(M),\"modes\"\n",

      "\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "refractive index is n2= 1.438 unitless\n",

        "normalised frequency V number of the fibre is V= 65.3 unitless\n",

        "total number of guided modes in the fibre is M= 2132 modes\n"

       ]

      }

     ],

     "prompt_number": 15

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex6.4:pg-191"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "import math\n",

      "#to calculate cut-off wavelength of the fibre\n",

      "#(2*del)**(1/2)=(2*(n1-n2)/n1)**(1/2)=(0.005)**(1/2)=0.071\n",

      "a=5*10**-6 #radius in micrometre\n",

      "n1=1.46 #core refractive index in micrometre\n",

      "Vc=2.405 #cut-off value of V parametre for single mode operation\n",

      "#formula is LAMBDAc=(2*math.pi*a*n1*(2*del)**(1/2))/Vc \n",

      "lamdac=(2*math.pi*a*n1*0.071)/Vc\n",

      "print \"cut-off wavelength is LAMBDAc=\",round(lamdac/1e-6,2),\"micrometre\"\n",

      "\n",

      "# answer is slightly different due to approximation in book\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "cut-off wavelength is LAMBDAc= 1.35 micrometre\n"

       ]

      }

     ],

     "prompt_number": 5

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex6.5:pg-191"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "import math\n",

      "#to calculate maximum and minimum value of phase constant\n",

      "lamda=0.8*10**-6 #wavelength in micrometre\n",

      "n1=1.6*10**-6 \n",

      "                   #refractive indices in micrometre\n",

      "n2=1.44*10**-6\n",

      "maximum=(2*math.pi*n1)/lamda\n",

      "minimum=(2*math.pi*n2)/lamda\n",

      "print \"maximum value of phase constant is maximum=\",round(maximum,3),\"radian/micrometre\"\n",

      "print \"minimum value of phase constant is minimum=\",round(minimum,2),\"radian/micrometre\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "maximum value of phase constant is maximum= 12.566 radian/micrometre\n",

        "minimum value of phase constant is minimum= 11.31 radian/micrometre\n"

       ]

      }

     ],

     "prompt_number": 6

    }

   ],

   "metadata": {}

  }

 ]

}