1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
{
"metadata": {
"name": "",
"signature": "sha256:141e2987b2be679ae1fc9e807cf81c12805438f836d3be09701fc88866bf9bb5"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter5:LASERS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5.1:pg-164"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate area of the spot on the moon\n",
"lamda=6*10**-7 #wavelength in m\n",
"d=2 #diameter in m\n",
"dtheta=lamda/d #angular spread in radian\n",
"D=4*10**8 #distance of the moon\n",
"A=(D*dtheta)**2\n",
"print \"the areal spread is A=\",\"{:.2e}\".format(A),\"m**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the areal spread is A= 1.44e+04 m**2\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5.2:pg-164"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate angular spread of the beam\n",
"lamda=8*10**-7 #wavelength in m\n",
"d=5*10**-3 #aperture in m\n",
"dtheta=lamda/d \n",
"print \"the angular spread of the beam is dtheta=\",\"{:.1e}\".format(dtheta),\"radian\"\n",
"#to calculate the areal spread when it reaches the moon\n",
"D=4*10**8 #distance of the moon in m\n",
"A=(D*dtheta)**2\n",
"print \"the areal spread is A=\",\"{:.3e}\".format(A),\"m**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the angular spread of the beam is dtheta= 1.6e-04 radian\n",
"the areal spread is A= 4.096e+09 m**2\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5.3:pg-165"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate number of oscillations corresponding to the coherence length\n",
"L=2.945*10**-2 #coherence length in m\n",
"lamda=5890*10**-10 #wavelength of sodium light in m\n",
"n=L/lamda\n",
"print \"the number of oscillations is n=\",\"{:.1e}\".format(n),\"unitless\"\n",
"#to calculate coherence time\n",
"c=3*10**8 #light speed in m\n",
"Time=L/c #coherence time\n",
"print \"the coherence Time=\",\"{:.2e}\".format(Time),\"s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the number of oscillations is n= 5.0e+04 unitless\n",
"the coherence Time= 9.82e-11 s\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5.4:pg-165"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate area and intensity of the image\n",
"lamda=7200*10**-10 #wavelength in m\n",
"d=5*10**-3 #aperture in m\n",
"dtheta=lamda/d #angular spread in radian \n",
"f=0.1 #focal length in m\n",
"arealspread=(dtheta*f)**2\n",
"print \"areal spread =\",\"{:.3e}\".format(arealspread),\"m**2\"\n",
"power=50*10**-3\n",
"I=power/arealspread\n",
"print \"intensity of the image is I=\",\"{:.3e}\".format(I),\"watts/m**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"areal spread = 2.074e-10 m**2\n",
"intensity of the image is I= 2.411e+08 watts/m**2\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|