1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
|
{
"metadata": {
"name": "",
"signature": "sha256:7c369c2593aa95d4aac8153f9063553bb327aa743223d1fff41c98aa45d77ebe"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter4:POLARISATION"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.1:pg-147"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# compare the intensities of ordinary and extraordinary rays\n",
"#intensity of ordinary rays is given by Io=a**2 *(sin theta)**2\n",
"#where theta=30 degree\n",
"#we get Io=a**2/4\n",
"Io=1.0/4\n",
"#intensity of extraordinary ray is given by IE=(a*cos theta)**2\n",
"#we get IE=3*a**2/4\n",
"IE=3.0/4\n",
"I=IE/Io\n",
"print \"the intensities of ordinary and extraordinary rays is I=\",I,\"unitless\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the intensities of ordinary and extraordinary rays is I= 3.0 unitless\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.2:pg-147"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate angle of refraction\n",
"#according to brewster's law mu=tan ip\n",
"mu=1.732 #refractive index\n",
"ip=math.degrees(math.atan(mu)) #polarising angle in degree\n",
"r=90-ip\n",
"print \"angle of refraction of ray is r=\",round(r),\"degree\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"angle of refraction of ray is r= 30.0 degree\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.3:pg-147"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate polarising angle and angle of refraction\n",
"mu=1.345 #refractive index, mu=1/sinc=1/sin48degree=1/0.7431 \n",
"ip=math.degrees(math.atan(mu))\n",
"r=90-ip\n",
"print \"polarising angle is ip=\",round(ip,3),\"degree\"\n",
"print \"angle of refraction is r=\",round(r,3),\"degree\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"polarising angle is ip= 53.369 degree\n",
"angle of refraction is r= 36.631 degree\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.4:pg-147"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate thickness of a half wave plate of quartz\n",
"lamda=5*10**-5 #wavelength in cm\n",
"mue=1.553 \n",
" #refractive index (unitless)\n",
"muo=1.544\n",
"#for a half plate of positive crystal\n",
"t=lamda/(2*(mue-muo))\n",
"print \"thickness of a half wave plate of quartz is t=\",\"{:.2e}\".format(t),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"thickness of a half wave plate of quartz is t= 2.78e-03 cm\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.5:pg-148"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate thickness of quarter wave plate\n",
"lamda=5.890*10**-5 #wavelength of light in cm\n",
"mue=1.553\n",
" #refractive index\n",
"muo=1.544\n",
"t=lamda/(4*(mue-muo)) \n",
"print \"thickness of quarter wave plate is t=\",\"{:.3e}\".format(t),\"cm\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"thickness of quarter wave plate is t= 1.636e-03 cm\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.6:pg-148"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate thickness of a doubly refracting plate\n",
"lamda=5.890*10**-5 #wavelength in cm\n",
"muo=1.53 \n",
" #refractive index\n",
"mue=1.54\n",
"t=lamda/(4*(mue-muo))\n",
"print \"thickness of a plate is t=\",\"{:.2e}\".format(t),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"thickness of a plate is t= 1.47e-03 cm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.7:pg-152"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate angle of rotation\n",
"alpha=66 #specific rotation of cane sugar in degree\n",
"c=15.0/100 #concentration of the solution in gm/cc\n",
"l=20 #length of tube in cm\n",
"theta=alpha*l*c/10\n",
"print \"the angle of rotation of the plane of polarisation is theta=\",theta,\"degree\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the angle of rotation of the plane of polarisation is theta= 19.8 degree\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.8:pg-153"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate specific rotation \n",
"theta=26.4 #in degree\n",
"l=20 #length in cm\n",
"c=0.2 #gm/cm**3\n",
"alpha=10*theta/(l*c)\n",
"print \"the specific rotation is alpha=\",alpha,\"degree\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the specific rotation is alpha= 66.0 degree\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.9:pg-153"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate strength of solution\n",
"theta=11 #degree\n",
"l=20.0 #length in cm\n",
"alpha=66 #specific rotation of sugar in degree\n",
"c=10*theta/(l*alpha)\n",
"print \"strength of solution is c=\",round(c,4),\"gm/cm**3\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"strength of solution is c= 0.0833 gm/cm**3\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.10:pg-153"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate difference in the refractive indices\n",
"#specific rotation is theta/d=29.73 degree/mm\n",
"theta=29.73 #where theta=theta/d\n",
"lamda=5.086*10**-4 #wavelength in mm\n",
"#optical rotation is given by theta=math.pi*d*(mul-mur)/lamda\n",
"#where mul and mur are refractive indices for anti-clockwise and clockwise polarised lights\n",
"mu=theta*lamda/180 #where mu=mul-mur\n",
"print \"difference in refractive indices is mu=\",\"{:.1e}\".format(mu),\"unitless\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"difference in refractive indices is mu= 8.4e-05 unitless\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.11:pg-153"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate optical rotation\n",
"#let theta' be the optical rotation by a solution of strength c' in a tube of length l' then\n",
"#we get 10*theta'/l'*c'=10*theta/l*c\n",
"c=1.0/3 #it is given that solution is 1/3 of its previous concentration i.e. c'/c=1/3,where c=c'/c\n",
"l1=30 #where l1=l'\n",
" #length in cm \n",
"l=20.0\n",
"theta=13 #degree\n",
"#formula is theta'=l'*c'*theta/(l*c)\n",
"theta1=l1*c*theta/l\n",
"print \"optical rotation is theta1=\",theta1,\"degree\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"optical rotation is theta1= 6.5 degree\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.12:pg-154"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate specific rotation\n",
"theta=52.8 #optical rotation in degree\n",
"l=20.0 #length of the solution in cm\n",
"c=20/50.0 #concentration of the solution in gm/cc\n",
"alpha=10*theta/(l*c)\n",
"print \"the specific rotation is alpha=\",alpha,\"degree\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the specific rotation is alpha= 66.0 degree\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.13:pg-154"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate length \n",
"l=40 #length in cm\n",
"c=5.0/100 #concentration in percentage\n",
"theta1=35 #optical rotation in degree ,where theta1=theta'\n",
"c1=10.0/100 #concentration in % ,where c1=c'\n",
"theta=20\n",
"#formula of specific rotation is alpha=10*theta/l*c\n",
"l1=l*c*theta1/(c1*theta)\n",
"print \"length is l1=\",l1,\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"length is l1= 35.0 cm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.14:pg-155"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate rotation of plane of polarisation of light\n",
"mur=1.53914\n",
" #refractive index\n",
"mul=1.53920\n",
"lamda=6.5*10**-5 #wavelength in cm\n",
"d=0.02 #distance in cm\n",
"thetaR=180*(mul-mur)*d/lamda\n",
"print \"rotation of plane of polarisation of light is thetaR=\",round(thetaR,3),\"degree\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"rotation of plane of polarisation of light is thetaR= 3.323 degree\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4.15:pg-155"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate % purity of the sugar sample\n",
"theta=9.9 #optical rotation in degree\n",
"alpha=66 #specific roation of pure sugar solution in dm**-1(gm/cc)**-1\n",
"l=20 #length of tube in cm\n",
"c=10*theta/(l*alpha) #concentration of solution in gm/c.c\n",
"#it is given that 80 gm of impure sugar is dissolved in a litre of water\n",
"per=(c*100*10**3)/80 #here c is in gm/litre\n",
"print \"percentage of the sugar sample is per=\",per,\"%\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"percentage of the sugar sample is per= 93.75 %\n"
]
}
],
"prompt_number": 17
}
],
"metadata": {}
}
]
}
|