1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
|
{
"metadata": {
"name": "",
"signature": "sha256:2b54094513f6b50d68fe3b6c91cd7d7cafc36254b75abea2a0d6c88b266fd509"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter2:INTERFERENCE"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.2:pg-41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate ratio of intensity\n",
"#I1/I2=1/25\n",
"#formula is a1/a2=math.sqrt(I1/I2)=1/5\n",
"a2=5 #a2=5*a1\n",
"a1=1\n",
"I=((1+5)**2)/((1-5)**2)\n",
"print \"ratio of intensity at the maxima and minima in the interference pattern is Imax/Imin=((a1+a2)**2)/((a1-a2)**2)=\",((a1+a2)**2)/((a1-a2)**2),\"unitless\"\n",
"#answer is given in terms of ratio\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"ratio of intensity at the maxima and minima in the interference pattern is Imax/Imin=((a1+a2)**2)/((a1-a2)**2)= 2 unitless\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.3:pg-42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate ratio of intensity at this point to that at the centre of a bright fringe\n",
"#the intensity at any pont is I=a1**2+a2**2+2*a1*a2*cos del\n",
"#let a1=a2=a\n",
"#phase difference del is 0\n",
"#then I0=a**2+a**2+2*a*a*cos 0\n",
"#we get I0=4a**2\n",
"I0=4 #intensity\n",
"#path difference is lemda/8\n",
"#phase difference =2*math.pi/lemda*path difference=math.pi/4\n",
"#I1=a**2+a**2+2a*a*cos math.pi/4\n",
"#I1=3.414a**2\n",
"I1=3.414\n",
"intensity=I1/I0\n",
"print \" ratio of intensity =\",intensity,\"unitless\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" ratio of intensity = 0.8535 unitless\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.4:pg-42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate ratio of maximum intensity to minimum intensity\n",
"#formula is I1/I2=a1**2/a2**2=100/1\n",
"#a1/a2=10/1\n",
"a1=10 #a1=10*a2\n",
"a2=1\n",
"print \"the ratio of maximum intensity to minmum intensity in the interference pattern Imax/Imin=((a1+a2)**2)/((a1-a2)**2)=\",((a1+a2)**2)/((a1-a2)**2),\"unitless\" \n",
"#answer is given in terms of ratio in the book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the ratio of maximum intensity to minmum intensity in the interference pattern Imax/Imin=((a1+a2)**2)/((a1-a2)**2)= 1 unitless\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.5:pg-43"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate relative intensities\n",
"#Imax/Imin=(a1+a2)**2/(a1-a2)**2+105/95\n",
"#(a1+a2)/(a1-a2)=1.051\n",
"#we get a1/a2=40 \n",
"a1=40 #a1=40*a2\n",
"a2=1\n",
"print \"the ratio of the intensities of interfering sources is I1/I2=a1**2/a2**2=\",a1**2/a2**2,\"unitless\"\n",
"#answer is given in terms of ratio in the book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the ratio of the intensities of interfering sources is I1/I2=a1**2/a2**2= 1600 unitless\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.7:pg-52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate distance between the two coherent sources\n",
"lamda=5890*10**-10 #wavelength in m\n",
"omega=9.424*10**-4 #width of the fringes in m\n",
"D=.80 #distance in m\n",
"twod=D*lamda/omega\n",
"print \"the distance between two coherent sources is twod=\",twod,\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the distance between two coherent sources is twod= 0.0005 m\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.8:pg-53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate fringe width \n",
"mu=1.5 #refractive index (unitless)\n",
"alpha=math.pi/180 #refracting angle in radian\n",
"Y1=20*10**-2 #distance between the source and the biprism in m\n",
"Y2=80*10**-2 #distance in m\n",
"D=Y1+Y2 # distance in m\n",
"lamda=6900*10**-10 #wavelength in m\n",
"twod=2*(mu-1)*alpha*Y1 \n",
"omega=D*lamda/twod\n",
"print \"the fringe width is omega=\",round(omega,7),\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the fringe width is omega= 0.0001977 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.9:pg-53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate wavelength of light\n",
"omega=(1.888*10**-2)/20 #in (m)\n",
"D=1.20 #distance of eye piece from the source in m\n",
"twod=0.00075 #distance between two virtual sources in m\n",
"lamda=(omega*twod/D)/(10e-11)\n",
"print \"the wavelength of light is lamda=\",lamda,\"Angstrom\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the wavelength of light is lamda= 5900.0 Angstrom\n"
]
}
],
"prompt_number": 44
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.10:pg-54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate thickness of glass plate\n",
"n=3\n",
"mu=1.5 #refractive index (unitless)\n",
"lamda=5450*10**-10 #wavelength in m\n",
"t=n*lamda/(mu-1)\n",
"print \"the thickness of glass plate is t=\",t,\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the thickness of glass plate is t= 3.27e-06 m\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.11:pg-54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate refractive index of the sheet\n",
"t=6.3*10**-6 #thickness of thin sheet of transparent material in m\n",
"lamda=5460*10**-10 #wavelength in m\n",
"n=6\n",
"mu=(n*lamda/t)+1\n",
"print \"the refractive index of the sheet is mu=\",mu,\"unitless\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the refractive index of the sheet is mu= 1.52 unitless\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.12:pg-54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate refractive index of mica\n",
"t=1.2*10**-8 #thickness of thin sheet of mica in m\n",
"n=1 \n",
"lamda=6*10**-7 #wavelength in m\n",
"mu=(n*lamda/t)+1\n",
"print \"the refractive index of mica is mu=\",mu,\"unitless\"\n",
"#answer is given wrong in the book=1.50\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the refractive index of mica is mu= 51.0 unitless\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.13:pg-54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate intensity\n",
"mu=1.5 #refractive index(unitless)\n",
"t=1.5*10**-6 #thickness of thin glass plate in m\n",
"pathdifference=(mu-1)*t # in m\n",
"lamda=5*10**-7 #wavelength in m\n",
"#del=2*math.pi*pathdifference/lamda\n",
"#del=3*math.pi\n",
"a1=1\n",
" #where a1=a2=a\n",
"a2=1\n",
"#formula is I=a1**2+a2**2+2*a1*a2*cos del\n",
"# where cos 3math.pi=-1\n",
"I=a1**2+a2**2+2*a1*a2*(-1) \n",
"print \"the intensity at the centre of the screen is I=\",I,\"unitless\" \n",
"#to calculate lateral shift\n",
"D=1 #distance in m\n",
"twod=5*10**-4 #distance between two slits in m\n",
"mu=1.5 #refractive index (unitless)\n",
"t=1.5*10**-6 #thickness of thin glass plate in m\n",
"x0=D*(mu-1)*t/twod\n",
"print \"the lateral shift of the central maximum is x0=\",x0,\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the intensity at the centre of the screen is I= 0 unitless\n",
"the lateral shift of the central maximum is x0= 0.0015 m\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.14:pg-55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate spacing between the slits\n",
"lamda=6*10**-5 #wavelength in cm\n",
"omegatheta=0.1*math.pi/180 #angular width of a fringe in radians\n",
"twod=lamda/omegatheta\n",
"print \"the spacing between the slits is twod=\",\"{:.2e}\".format(twod),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the spacing between the slits is twod= 3.44e-02 cm\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.15:pg-55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate distance of the third bright fringe on the screen from the central maximum \n",
"lamda=6.5*10**-5 #wavelength in cm\n",
"twod=0.2 #distance between the slits in cm\n",
"D=120 #distance between the plane of the slits and the screen in cm\n",
"n=3 \n",
"X3=D*n*lamda/twod\n",
"print \"the distance of the third bright fringe from the central maximum is X3=\",X3,\"cm\"\n",
"#to calculate the least distance from the central maximum \n",
"lamda1=6.5*10**-5 #wavelength in cm\n",
"lamda2=5.2*10**-5 #wavelength in cm\n",
"#Xn=Dnlamda1/2d=D(n+1)lamda2/2d\n",
"#we get,\n",
"n=lamda2/(lamda1-lamda2)\n",
"print \"n=\",n,\"unitless\"\n",
"Xn=D*n*lamda1/twod\n",
"print \"the distance from the central maximum when the bright fringes due to both wavelengths coincide is Xn=\",Xn,\"cm\"\n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the distance of the third bright fringe from the central maximum is X3= 0.117 cm\n",
"n= 4.0 unitless\n",
"the distance from the central maximum when the bright fringes due to both wavelengths coincide is Xn= 0.156 cm\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.16:pg-56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate refractive index \n",
"D=10 #distance in cm\n",
"twod=0.2 #distance detween the slits in cm\n",
"t=0.05 #thickness of transparent plate in cm\n",
"deltaX=0.5 #in cm\n",
"mu=(deltaX*twod/(D*t))+1\n",
"print \"the refractive index of the transparent plate is mu=\",mu,\"unitless\"\n",
"#to calculate order\n",
"n=10 \n",
"lamda=7000*10**-8 #wavelength in cm\n",
"#path difference =n*lamda\n",
"n1=n*lamda/(5000*10**-8) \n",
"print \"the order will be visible is n1=\",n1,\"unitless\"\n",
"#to calculate distance between the two coherent sources\n",
"D=100 #distance in m \n",
"lamda=6000*10**-8 #wavelength in cm\n",
"omega=0.05 #distance between two consecutive bright fringes on the screen in cm\n",
"twod=D*lamda/omega\n",
"print \"the distance between the coherent sources is twod=\",twod,\"cm\"\n",
"#to calculate wavelength\n",
"Xn=1 #distance of fourth bright fringe from the central fringe in cm\n",
"twod=0.02 #distance between the two coherent sources in cm\n",
"n=4 \n",
"D=100 #distance in cm \n",
"lamda=Xn*twod/(n*D)\n",
"print \"the wavelength of light is lamda=\",lamda,\"cm\"\n",
"#to calculate wavelength\n",
"#position of nth bright fringe from the centre of the central fringe is Xn=D*n*lamda/2d----eq(1)\n",
"#fringe width umega=D*lamda/2d---------------------eq(2)\n",
"#from eq(1) and eq(2) we get, Xn=n*omega\n",
"#for 11th bright fringe X11=11*omega\n",
"#position for nth dark fringe Xn'=(2n+1)D*lamda/4d\n",
"#X4'=(7/2)*omega\n",
"#distance between 11th and 4th dark fringe =0.8835 cm\n",
"#we get \n",
"omega=0.1178 #in cm\n",
"twod=0.05 #distance between slis in cm\n",
"D=100 # distance in cm\n",
"lamda=omega*twod/D \n",
"print \"the wavelength of light is lamda=\",lamda,\"cm\"\n",
"#to calculate changed fringe width\n",
"#X10-X0=10*omega\n",
"#given that X10-X0=14.73-12.34=2.39mm \n",
"omega=0.239 #in mm\n",
"lamda=6000 #wavelength in angstrom\n",
"lamda1=5000 #lamda'=5000 angstrom\n",
"omega1=omega*lamda1/lamda\n",
"print \"the changed fringe width is omega1=\",omega1,\"mm\"\n",
"#to calculate thickness of mica sheet\n",
"n=3\n",
"mu=1.6 #refractive index(unitless)\n",
"lamda=5.89*10**-5 #wavelength in cm\n",
"t=n*lamda/(mu-1)\n",
"print \"the thickness of mica sheet is t=\",t,\"cm\"\n",
"#answer of thickness is given wrong in the book =0.002945 cm\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the refractive index of the transparent plate is mu= 1.2 unitless\n",
"the order will be visible is n1= 14.0 unitless\n",
"the distance between the coherent sources is twod= 0.12 cm\n",
"the wavelength of light is lamda= 5e-05 cm\n",
"the wavelength of light is lamda= 5.89e-05 cm\n",
"the changed fringe width is omega1= 0.199166666667 mm\n",
"the thickness of mica sheet is t= 0.0002945 cm\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.17:pg-75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate the smallest thickness of the plate\n",
"mu=1.5 #refractive index(unitless)\n",
"r=60*math.pi/180 #angle of refraction in radians\n",
"lamda=5890*10**-10 #wavelength in m\n",
"n=1\n",
"#formula is t=n*lamda/(2*mu*cosr) where cosr=0.5\n",
"t=n*lamda/(2*mu*0.5)\n",
"print \"the smallest thickness of the plate which will appear dark by reflection is t=\",\"{:.3e}\".format(t),\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the smallest thickness of the plate which will appear dark by reflection is t= 3.927e-07 m\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.18:pg-75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate least thickness of the film\n",
"lamda=5893*10**-10#wavelength in m\n",
"r=0 #in degree\n",
"mu=1.42 #refractive index\n",
"n=1\n",
"#the formula is t=n*lamda/(2*mu*cosr), where cos0=1\n",
"t=n*lamda/(2*mu*1)\n",
"print \"the least thickness of the film that will appear black is t=\",t,\"m\"\n",
"t=(2*n-1)*lamda/(2*mu*1*2)\n",
"print \"the least thickness of the film that will appear bright is t=\",t,\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the least thickness of the film that will appear black is t= 2.075e-07 m\n",
"the least thickness of the film that will appear bright is t= 1.0375e-07 m\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.19:pg-76"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate thickness of the film\n",
"lamda1=6.1*10**-7 #wavelength in m\n",
"lamda2=6*10**-7 # wavelength in m\n",
"#the two dark consecutive fringes are overlapping for the wavelength lamda1 and lamda2 respectively\n",
"#then, n*lamda1=(n+1)*lamda2\n",
"#we get,\n",
"n=lamda2/(lamda1-lamda2)\n",
"sini=4.0/5\n",
"mu=4.0/3\n",
"#formula is mu=sini/sinr\n",
"sinr=0.6\n",
"cosr=math.sqrt(1-(sinr)**2)\n",
"t=n*lamda1/(2*mu*cosr)\n",
"print \"the thickness of the film is t=\",\"{:.2e}\".format(t),\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the thickness of the film is t= 1.72e-05 m\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.20:pg-77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate thickness of the film\n",
"mu=1.33 #refractive index of soap film (unitless)\n",
"i=45*math.pi/180\n",
"#the formula is mu=sini/sinr \n",
"sinr=0.5317 \n",
"cosr=math.sqrt(1-(sinr)**2)\n",
"#for destructive interference\n",
"lamda=5890*10**-10 #wavelength in m\n",
"n=1\n",
"t=n*lamda/(2*mu*cosr)\n",
"print \"the thickness of the film is t=\",\"{:.3e}\".format(t),\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the thickness of the film is t= 2.614e-07 m\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.21:pg-77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate angle of the wedge\n",
"lamda=6000*10**-10 #wavelength in m\n",
"mu=1.4 #refractive index in unitless\n",
"omega=2*10.0**-3 #distance in m\n",
"theta=lamda/(2*mu*omega)\n",
"print \"the angle of the wedge is theta =\",\"{:.2e}\".format(theta),\"radians\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the angle of the wedge is theta = 1.07e-04 radians\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.22:pg-77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate wavelength of light \n",
"theta=10*22.0/(7*60*60*180.0) #angle of wedge in radians\n",
"omega=5*10.0**-2 #distance between the successive fringes in m\n",
"mu=1.4 #refractive index\n",
"lamda=2.0*mu*theta*omega/(10e-10)\n",
"print \"the wavelength of light is lamda=\",round(lamda),\"Angstrom\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the wavelength of light is lamda= 6790.0 Angstrom\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.23:pg-78"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate wavelength of the light\n",
"D15=0.590*10**-2 #diamater of 15th ring in m\n",
"D5=0.336*10**-2 #diameter of 5th ring in m\n",
"p=1 # in m\n",
"R=1 #radius of plano convex lens in m\n",
"#formula is lamda=Dn+p**2-Dn**2/4pR\n",
"lamda=((D15**2)-(D5**2))/(4*p*R)/(10e-10)\n",
"print \"the wavelength of the monochromatic light is lamda=\",int(lamda),\"Angstrom\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the wavelength of the monochromatic light is lamda= 5880 Angstrom\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.24:pg-78"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate refractive index of the liquid\n",
"n=6\n",
"lamda=6000*10**-10 #wavelength in m\n",
"R=1 #radius of curvature of the curved surface in m\n",
"Dn=3.1*10**-3 #diameter of 6th bright ring in m\n",
"mu=2*(2*n-1)*lamda*R/Dn**2\n",
"print \"the refractive index of the liquid is mu=\",round(mu,3),\"unitless\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the refractive index of the liquid is mu= 1.374 unitless\n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.25:pg-78"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate radius of curvature\n",
"lamda=5900*10**-10 #wavelength in m\n",
"n=10\n",
"Dn=5*10**-3 # diameter of 10th dark ring in m\n",
"R=Dn**2/(4*n*lamda)\n",
"print \"the radius of curvature of the lens is R=\",round(R,3),\"m\"\n",
"#to calculate thichness\n",
"t=n*lamda/2\n",
"print \"the thickness of the air film is t=\",t,\"m\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the radius of curvature of the lens is R= 1.059 m\n",
"the thickness of the air film is t= 2.95e-06 m\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.26:pg-79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate the distance from the apex of the wedge at which the maximum due to the two wavelengths first coincide\n",
"#condition for maxima for normal incidence air film is 2t=(2n+1)lamda/2\n",
"#let nth order maximum due to lamda1 coincides with (n+1)th order maximum due to lamda2 \n",
"#we get , n=(3lamda2-lamda1)/2(lamda1-lamda2)\n",
"# we also get, 2t=lamda1*lamda2/(lamda1-lamda2)\n",
"#t=X*theta\n",
"lamda1=5896.0*10**-8 #wavelength in cm\n",
"lamda2=5890.0*10**-8 #wavelength in cm\n",
"theta=0.3*math.pi/180 #angle of wedge\n",
"X=lamda1*lamda2/(2*(lamda1-lamda2)*theta)\n",
"print \"the distance from the apex of the wedge is X=\",round(X,3),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the distance from the apex of the wedge is X= 5.527 cm\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.27:pg-80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate radius of curvature \n",
"n=10.0\n",
"Dn=0.50 #diameter of 10th ring in cm\n",
"lamda=6000*10**-8 #wavelength in cm\n",
"R=Dn**2/(4*n*lamda)\n",
"print \"the radius of curvature of the lens is R=\",R,\"cm\"\n",
"#answer is given wrong in the book =106 cm\n",
"#to calculate thickness of the film\n",
"t=Dn**2/(8*R)\n",
"print \"the thickness of the film is t=\",\"{:.1e}\".format(t),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the radius of curvature of the lens is R= 104.166666667 cm\n",
"the thickness of the film is t= 3.0e-04 cm\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.28:pg-80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate diameter\n",
"#the difference of (n+p)th and nth dark ring is Dn+p**2-Dn**2=4nRlamda\n",
"N=12 #where N=n+p\n",
"n=4\n",
"D12=0.7 #diameter of 12th dark ring in cm\n",
"D4=0.4 #diameter of 4th dark ring in cm\n",
"#D12**2-D4**2=4pRlamda where p=8 ----eq(1)\n",
"#D20**2-D4**2=4pRlamda where p=16 -----eq(2)\n",
"#divide eq(2) by eq(1) ,we get\n",
"D20=math.sqrt((2*D12**2)-D4**2)\n",
"print \"the diameter of 20th dark ring is D20=\",round(D20,2),\"cm\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the diameter of 20th dark ring is D20= 0.91 cm\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.29:pg-80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate diameter \n",
"lamda1=6*10**-5 #wavelength in cm\n",
"lamda2=4.5*10**-5 #wavelength in cm\n",
"R=90 #radius of curvature of the curved surface in cm\n",
"#Dn**2=4nRlamda1 -------eq(1)\n",
"#Dn+1**2=4(n+1)Rlamda2-------eq(2)\n",
"#the nth dark ring due to lamda1 coincides with (n+1)th dark ring due to lamda2\n",
"#from eq(1) and eq(2)-4nRlamda1=4(n+1)Rlamda2\n",
"# we get,\n",
"n=lamda2/(lamda1-lamda2)\n",
"Dn=math.sqrt(4*n*R*lamda1)\n",
"print \"the diameter of nth dark ring for lamda1 is Dn=\",round(Dn,3),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the diameter of nth dark ring for lamda1 is Dn= 0.255 cm\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.30:pg-81"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#to calculate the difference of square of diameters for nth and (n+p)th ring when light of wavelength lamda is changed to lamda'\n",
"lamda=6*10**-5 #wavelength in cm\n",
"lamda1=4.5*10**-5 #wavelength in cm\n",
"#Let D=(D**2-Dn**2)=0.125 cm**2 \n",
"D=0.125\n",
"#formula is D'(n+p)**2-D'n**2=lamda'*(D(n+p)**2-Dn**2)/lamda\n",
"print \"the difference of square of diameters is D1(n+p)**2-D1n**2=(lamda1*D)/lamda=\",(lamda1*D)/lamda,\"cm**2\"\n",
"#to calculate difference of square of diamaters when liqquid of refractive index mu' is introduced\n",
"mu=1 #refractive index (unitless)\n",
"mu1=1.33 # mu'=1.33\n",
"#formula is D'(n+p)**2-D'n**2=(mu/mu')*(D(n+p)**2-Dn**2)\n",
"print \"the difference of square of diameters is D1(n+p)**2-D1n**2=(mu*D)/mu1=\",round((mu*D)/mu1,3),\"cm**2\"\n",
"#to calculate difference of square of diameters when radius of curvature of convex surface of the plano convex lens is doubled\n",
"R1=2 #radius of curvature is R'=2R\n",
"R=1\n",
"#formula is D'(n+p)**2-D'n**2=(R'/R)*(D(n+p)**2-Dn**2)\n",
"print \"the difference of square of diameters is D1(n+p)**2-D1n**2=(R1*D)/R=\",round((R1*D)/R,2),\"cm**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the difference of square of diameters is D1(n+p)**2-D1n**2=(lamda1*D)/lamda= 0.09375 cm**2\n",
"the difference of square of diameters is D1(n+p)**2-D1n**2=(mu*D)/mu1= 0.094 cm**2\n",
"the difference of square of diameters is D1(n+p)**2-D1n**2=(R1*D)/R= 0.25 cm**2\n"
]
}
],
"prompt_number": 27
}
],
"metadata": {}
}
]
}
|