1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
{
"metadata": {
"name": "Chapter 6"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Crystallography"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.1, Page number 185"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the density of diamond\n\n#importing modules\nimport math\n\n#Variable declaration\nr=0.071; #radius in nm\nN=6.022*10**26; \n\n#Calculation\nr=r*10**-9; #converting r from nm to m\n#mass of carbon atom m = 12/N\nm=12/N;\n#mass of diamond M = 8*mass of one carbon atom\nM=8*m;\n#volume of diamond V = (8*r/sqrt(3))^3\nV=(8*r/math.sqrt(3))**3;\nd=M/V; #density in kg/m^3\nd=math.ceil(d*100)/100; #rounding off to 2 decimals\n\n#Result\nprint(\"density of diamond in kg/m^3 is\",d);\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('density of diamond in kg/m^3 is', 4520.31)\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.2, Page number 185"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the percentage volume change\n\n#importing modules\nimport math\n\n#Variable declaration\naBCC=0.332; #lattice constant in nm\naHCP=0.296; #lattice constant in nm\nc=0.468; #c in nm\n\n#Calculation\naBCC=aBCC*10**-9; #converting nm to m\nVbcc=aBCC**3;\naHCP=aHCP*10**-9; #converting nm to m\nc=c*10**-9; #converting nm to m\nVhcp=6*(math.sqrt(3)/4)*aHCP**2*c;\nV=Vhcp-Vbcc;\nVch=(V*100)/Vbcc;\nVch=math.ceil(Vch*100)/100; #rounding off to 2 decimals\n\n#Result\nprint(\"percentage change in volume is\",Vch);\n\n#answer given in the book is wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('percentage change in volume is', 191.12)\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.3, Page number 186"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the density\n\n#importing modules\nimport math\n\n#Variable declaration\nr=1.278; #atomic radius of Cu in Angstrom\nA=63.54; #atomic weight of Cu\nn=4; #for FCC n=4\nNa=6.022*10**26;\n\n#Calculation\nr=r*10**-10; #converting atomic radius from Angstrom to m\na=2*math.sqrt(2)*r; \nrho=(n*A)/(Na*a**3);\nrho=math.ceil(rho*100)/100; #rounding off to 2 decimals\n\n#Result\nprint(\"density of Cu in kg/m^3 is\",rho);\n\n#answer given in the book is wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('density of Cu in kg/m^3 is', 8935.92)\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.4, Page number 186"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the distance between adjacent atoms\n\n#importing modules\nimport math\nimport numpy as np\n\n#Variable declaration\nrho=2180; #density of NaCl in kg/m^3\nwNa=23; #atomic weight of Na\nwCl=35.5; #atomic weight of Cl\nn=4; #for FCC n=4\nNa=6.022*10**26;\n\n#Calculation\nA=wNa+wCl; #molecular weight of NaCl\nx=np.reciprocal(3.);\na=((n*A)/(Na*rho))**x;\n\n#Result\nprint(\"interatomic distance in NaCl in m is\",a); \n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('interatomic distance in NaCl in m is', 5.6278114346454509e-10)\n"
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.5, Page number 187"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the interplanar spacing\n\n#importing modules\nimport math\n\n#Variable declaration\na=0.42; #lattice constant in nm\nh1=1;\nk1=0;\nl1=1; #indices of the plane (101)\nh2=2;\nk2=2;\nl2=1; #indices of the plane (221)\n\n#Calculation\na=a*10**-9; #converting from nm to m\nd1=a/math.sqrt((h1**2)+(k1**2)+(l1**2)); #interplanar spacing for plane (101)\nd1=d1*10**9; #converting from m to nm\nd1=math.ceil(d1*10**5)/10**5; #rounding off to 5 decimals\nd2=a/math.sqrt((h2**2)+(k2**2)+(l2**2)); #interplanar spacing for plane (221)\nd2=d2*10**9; #converting from m to nm\n\n#Result\nprint(\"interplanar spacing for (101) in nm is\",d1);\nprint(\"interplanar spacing for (221) in nm is\",d2);\n\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('interplanar spacing for (101) in nm is', 0.29699)\n('interplanar spacing for (221) in nm is', 0.14)\n"
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.6, Page number 187"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To identify the axial intercepts\n\n#Variable declaration\nh1=1;\nk1=0;\nl1=2; #indices for plane (102)\nh2=2;\nk2=3;\nl2=1; #indices for plane (231)\nh3=3;\nk3=-1;\nl3=2; #indices for plane (31'2)\n\n#Calculation\n#intercepts made by the plane is a/h, b/k, c/l\n#for plane (102) intercepts are a/1=a, b/0=infinite, c/2\n#for plane (231) intercepts are a/2, b/3, c/1=c\n#for plane (31'2) intercepts are a/3=a, b/-1=-b, c/2\n\n#Result\nprint(\"for plane (102) intercepts are a/1=a, b/0=infinite, c/2\");\nprint(\"for plane (231) intercepts are a/2, b/3, c/1=c\");\nprint(\"for plane (312) intercepts are a/3=a, b/-1=-b, c/2\");\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "for plane (102) intercepts are a/1=a, b/0=infinite, c/2\nfor plane (231) intercepts are a/2, b/3, c/1=c\nfor plane (312) intercepts are a/3=a, b/-1=-b, c/2\n"
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.7, Page number 188"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the angle between 2 planes\n\n#importing modules\nimport math\n\n#Variable declaration\nu1=1;\nv1=1;\nw1=1; #indices for plane (111)\nu2=2;\nv2=1;\nw2=2; #indices for plane (212)\n\n#Calculation\nA=u1*u2+v1*v2+w1*w2; \nB1=math.sqrt((u1**2)+(v1**2)+(w1**2));\nB2=math.sqrt((u2**2)+(v2**2)+(w2**2));\nB=A/(B1*B2);\nB=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\ntheta=math.acos(B); #angle in radian\ntheta=theta*57.2957795; #converting radian to degrees\ntheeta=math.ceil(theta*10**3)/10**3; #rounding off to 3 decimals\ndeg=int(theta); #converting to degrees\nt=60*(theta-deg);\nmi=int(t); #converting to minutes\nsec=60*(t-mi); #converting to seconds\nsec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint(\"angle between the planes in degrees is\",theeta);\nprint(\"angle between the planes is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n\n#answer given in the book is wrong",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('angle between the planes in degrees is', 15.783)\n('angle between the planes is', 15, 'degrees', 46, 'minutes', 57.85, 'seconds')\n"
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.8, Page number 188"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#sketching the crystallographic planes",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.9, Page number 189"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the lattice constant\n\n#importing modules\nimport math\n\n#Variable declaration\nd=0.2338; #interplanar distance in nm\nh=-1;\nk=1;\nl=1; #indices of the plane (1'11)\n\n#Calculation\nd=d*10**-9; #converting from nm to m\na=d*math.sqrt((h**2)+(k**2)+(l**2));\na=a*10**9; #converting lattice constant from m to nm\na=math.ceil(a*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint(\"lattice constant in nm is\",a);\n\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('lattice constant in nm is', 0.40496)\n"
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.10, Page number 189"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To show that for a simple cubic system d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n\n#importing modules\nimport math\n\n#variable declaration\nh1=1;\nk1=0;\nl1=0; #indices for plane (100)\nh2=1;\nk2=1;\nl2=0; #indices for plane (110)\nh3=1;\nk3=1;\nl3=1; #indices for plane (111)\n\n#Calculation\n#d=a/math.sqrt((h**2)+(k**2)+(l**2))\n#d100=a/math.sqrt((h1**2)+(k1**2)+(l1**2))\nx1=math.sqrt((h1**2)+(k1**2)+(l1**2));\n#d100=a/x1 = a/1 = a\n#d110=a/math.sqrt((h2**2)+(k2**2)+(l2**2))\nx2=math.sqrt((h2**2)+(k2**2)+(l2**2));\nx2=math.ceil(x2*10**4)/10**4; #rounding off to 4 decimals\n#d110=a/x2 = a/sqrt(2)\n#d111=a/math.sqrt((h3**2)+(k3**2)+(l3**2))\nx3=math.sqrt((h3**2)+(k3**2)+(l3**2));\nx3=math.ceil(x3*10**4)/10**4; #rounding off to 4 decimals\n#d111=a/x3 = a/sqrt(3)\n#hence d100:d110:d111=a:a/sqrt(2):a/sqrt(3)\n#multiplying RHS by sqrt(6) we get d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n\n#Result\nprint(\"value of x1 is\",x1);\nprint(\"value of x2 is\",x2);\nprint(\"value of x3 is\",x3);\nprint(\"d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\");",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('value of x1 is', 1.0)\n('value of x2 is', 1.4143)\n('value of x3 is', 1.7321)\nd100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n"
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.11, Page number 190"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To find the ratio of intercepts in a simple cubic crystal\n\n#variable declaration\nh=2;\nk=3;\nl=1; #indices for plane (231)\n\n#Calculation\n#intercepts made by the plane is a/h, b/k, c/l\n#for a cubic unit cell, a=b=c\n#for plane (231) intercepts are a/2, a/3, a/1 = a\n#ratio of the intercepts is 1/2:1/3:1\n#LCM is 6. multiplying by LCM, we get ratio l1:l2:l3 = 3:2:6\n\n#Result\nprint(\"l1:l2:l3 = 3:2:6\");",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "l1:l2:l3 = 3:2:6\n"
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.12, Page number 190"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To find the lengths of intercepts along Y and Z axes\n\n#variable declaration\nh=1;\nk=2;\nl=3; #indices for plane (123)\nl1=0.8; #l1 in armstrong\na=0.8; #a in armstrong\nb=1.2; #b in armstrong\nc=1.5; #c in armstrong\n\n#Calculation\n#intercepts made by the plane is a/h, b/k, c/l\n#for plane (123) intercepts are a/1 = a, b/2, c/3\n#ratio of the intercepts l1:l2:l3 = a:b/2:c/3\n#thus 0.8:l2:l3 = 0.8:1.2/2:1.5/3\nl2=1.2/2; #l2 in armstrong\nl3=1.5/3; #l3 in armstrong\n\n#Result\nprint(\"value of l2 in armstrong is\",l2);\nprint(\"value of l3 in armstrong is\",l3);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('value of l2 in armstrong is', 0.6)\n('value of l3 in armstrong is', 0.5)\n"
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.13, Page number 191"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the nearest neighbour distance\n\n#Calculation\n#in simple cubic unit cell, corner atom is the nearest neighbour to another corner atom. \n#Hence nearest neighbour distance is a.\n#in BCC the body centered atom is the nearest neighbour to a corner atom.\n#the distance between body centered atom and corner atom is 2r\n#but r=sqrt(3)*a/4\n#distance = 2*sqrt(3)*a/4 = sqrt(3)*a/2\n#in FCC the face centered atom is the nearest neighbour to a corner atom.\n#the distance between face centered atom and corner atom is 2r\n#but r = a/sqrt(8)\n#distance = 2*a/sqrt(8) = a/sqrt(2)\n\n#Result\nprint(\"in simple cubic unit cell nearest neighbour distance is a\");\nprint(\"in body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\");\nprint(\"in face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\");",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "in simple cubic unit cell nearest neighbour distance is a\nin body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\nin face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\n"
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.14, Page number 191"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the spacing of the lattice plane\n\n#importing modules\nimport math\n\n#variable declaration\na=2.04; #lattice parameter in armstrong\nh=2;\nk=1;\nl=2; #indices for plane (212)\n\n#Calculation\na=a*10**-10; #converting from armstrong to m\nd=a/math.sqrt((h**2)+(k**2)+(l**2));\nd=d*10**10; #converting from m to armstrong\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"interplanar distance in armstrong is\",d);\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('interplanar distance in armstrong is', 0.681)\n"
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.15, Page number 191"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the number of atoms per unit cell\n\n#importing modules\nimport math\n\n#variable declaration\nr=1.278; #radius of Cu in armstrong\nM=63.54; #atomic weight of Cu\nrho=8980; #density in kg/m^3\nNa=6.022*10**26;\n\n#Calculation\nr=r*10**-10; #radius in m\na=math.sqrt(8)*r;\nn=(rho*Na*a**3)/M;\n\n#Result\nprint(\"interatomic distance in m is\",a);\nprint(\"number of atoms per Cu unit cell is\",int(n));",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('interatomic distance in m is', 3.6147298654256317e-10)\n('number of atoms per Cu unit cell is', 4)\n"
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.16, Page number 192"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the Miller indices \n\n#variable declaration\na=0.429;\nb=1;\nc=0.379; #intercepts of an orthorhombic crystal\n\n#Calculation\n#ratio of intercepts are 0.214:1:0.188 = (a/0.429)*0.214:1:(c/0.379)*0.188 = a/2:b:c/2\n#thus the coefficients are 1/2:1:1/2. inverses are 2,1,2.\n#thus miller indices for the first plane are (212)\n#ratio of intercepts are 0.858:1:0.754 = (a/0.429)*0.0.858:1:(c/0.379)*0.754 = 2a:b:2c\n#thus the coefficients are 2:1:2. inverses are 1/2,1,1/2. LCM is 2. multiplying with LCM we get 1,2,1\n#thus miller indices for the second plane are (121)\n#ratio of intercepts are 0.429:infinite:0.126 = (a/0.429)*0.429:infinite:(c/0.379)*0.126 = a:infiniteb:c/3\n#thus the coefficients are 1:infinte:1/3. inverses are 1,0,3.\n#thus miller indices for the third plane are (103)\n\n#Result\nprint(\"miller indices for the first plane are (212)\");\nprint(\"miller indices for the second plane are (121)\");\nprint(\"miller indices for the third plane are (103)\");\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "miller indices for the first plane are (212)\nmiller indices for the second plane are (121)\nmiller indices for the third plane are (103)\n"
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.17, Page number 193"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the number of atoms per unit area\n\n#importing modules\nimport math\nimport numpy as np\n\n#variable declaration\nh1=1;\nk1=0;\nl1=0; #indices of the first plane (100)\nh2=1;\nk2=1;\nl2=0; #indices of the second plane (110)\nh3=1;\nk3=1;\nl3=1; #indices of the third plane (111)\n\n#Calculation\nn_1=np.reciprocal(4.);\nn_2=np.reciprocal(2.);\nn_3=np.reciprocal(6.);\nn1=(n_1*4)+1; #number of atoms per unit cell in (100)\n#number of atoms per m^2 is 2/a**2. but a=sqrt(8)*r.\n#hence number of atoms per m^2 is 1/(4*r**2)\nn2=(n_1*4)+(2*n_2); #number of atoms per unit cell in (110)\n#number of atoms per m^2 is 1/a*sqrt(2)*a. but a=sqrt(8)*r.\n#hence number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\nn3=(n_3*3)+(3*n_2); #number of atoms per unit cell in (111)\n#number of atoms per m^2 is 2/(sqrt(3)/4)*a**2. but a=4*r.\n#hence number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n\n#Result\nprint(\"number of atoms per unit cell in (100)\",n1);\nprint(\"number of atoms per m^2 is 1/(4*r**2)\");\nprint(\"number of atoms per unit cell in (110)\",n2);\nprint(\"number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\");\nprint(\"number of atoms per unit cell in (111)\",n3);\nprint(\"number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\");\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('number of atoms per unit cell in (100)', 2.0)\nnumber of atoms per m^2 is 1/(4*r**2)\n('number of atoms per unit cell in (110)', 2.0)\nnumber of atoms per m^2 is 1/(8*sqrt(2)*r**2)\n('number of atoms per unit cell in (111)', 2.0)\nnumber of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n"
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.18, Page number 194"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the atomic packing fraction and ionic packing fraction of NaCl\n\n#importing modules\nimport math\n\n#variable declaration\nr=0.97; #radius of Na+ ion in armstrong\nR=1.81; #radius of Cl- ion in armstrong\n\n#Calculation\n#atomic packing factor=packing density PD\n#PD=Volume of atoms/Volume of unit cell\n#volume of unit cell=a**3\n#volume of atoms=number of atoms*volume of 1 atom = 4*(4/3)*math.pi*r**3\n#but r=a/sqrt(8). hence PD = 4*(4/3)*math.pi*(a/(2*sqrt(2)))**3*(1/a**3) = 0.74\n#atomic packing factor = 0.74\nr=r*10**-10; #radius of Na+ ion in m\nR=R*10**-10; #radius of Cl- ion in m\nVna = (4*4*math.pi*r**3)/3; #volume of Na atoms\nVcl = (4*4*math.pi*R**3)/3; #volume of Cl atoms \nV=(2*(r+R))**3; #volume of unit cell\nIPF=(Vna+Vcl)/V; #ionic packing factor\nIPF=math.ceil(IPF*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint(\"atomic packing factor = 0.74\");\nprint(\"ionic packing factor of NaCl crystal is\",IPF);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "atomic packing factor = 0.74\n('ionic packing factor of NaCl crystal is', 0.6671)\n"
}
],
"prompt_number": 24
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|