1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
{
"metadata": {
"name": "Chapter 12"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Superconducting Materials"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 12.1, Page number 356"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the critical field\n\n#importing modules\nimport math\n\n#Variable declaration\nTc=3.7; #critical temperature in K\nH0=0.0306; #magnetic field in T\nT=2; #temperature in K\n\n#Calculation\nHc=H0*(1-(T**2/Tc**2));\nHc=math.ceil(Hc*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint(\"critical field in T is\",Hc);\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('critical field in T is', 0.02166)\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 12.2, Page number 356"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the critical field\n\n#importing modules\nimport math\n\n#Variable declaration\nTc=7.26; #critical temperature in K\nH0=6.4*10**3; #magnetic field in T\nT=5; #temperature in K\n\n#Calculation\nHc=H0*(1-(T**2/Tc**2));\nHc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"critical field in T is\",Hc);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('critical field in T is', 3364.385)\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 12.3, Page number 357"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the value of Tc\n\n#importing modules\nimport math\n\n#Variable declaration\nTc1=4.185; #critical temperature in K\nM1=199.5; #atomic mass\nM2=203.4; #atomic mass after changing\n\n#Calculation\n#according to maxwell equation Tc*M^0.5=constant\n#Tc1*M1^0.5=Tc2*M2^0.5\nTc2=(Tc1*M1**0.5)/M2**0.5;\nTc2=math.ceil(Tc2*10**6)/10**6; #rounding off to 6 decimals\n\n#Result\nprint(\"critical temperature of Hg in K is\",Tc2);\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('critical temperature of Hg in K is', 4.144685)\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 12.4, Page number 357"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the critical current density\n\n#importing modules\nimport math\n\n#Variable declaration\nd=1; #diameter of wire in mm\nT=4.2; #temperature in K\nTc=7.18; #critical temperature in K\nH0=6.5*10**4; #magnetic field\n\n#Calculation\nd=d*10**-3; #diameter in m\nR=d/2;\nHc=H0*(1-(T**2/Tc**2));\nHC=Hc/10**4;\nHC=math.ceil(HC*10**3)/10**3; #rounding off to 2 decimals\nIc=2*math.pi*R*Hc;\nIc=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\nA=math.pi*R**2;\nJ=Ic/A;\nJ=J/10**8;\nJ=math.ceil(J*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint(\"critical magnetic field at 4.2K in A/m is\",HC,\"*10**4\");\nprint(\"critical current in A is\",Ic);\nprint(\"critical current density in A/m^2 is\",J,\"*10**8\");",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('critical magnetic field at 4.2K in A/m is', 4.276, '*10**4')\n('critical current in A is', 134.33)\n('critical current density in A/m^2 is', 1.71035, '*10**8')\n"
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 12.5, Page number 358"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the frequency of radiation\n\n#importing modules\nimport math\n\n#Variable declaration\ne=1.6*10**-19;\nh=6.626*10**-34;\nV=6; #voltage applied in micro volts\n\n#Calculation\nV=V*10**-6; #converting micro volts to volts\nnew=(2*e*V)/h;\nnew=new/10**9;\nnew=math.ceil(new*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint(\"frequency of ac signal in Hz is\",new,\"*10**9\");",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('frequency of ac signal in Hz is', 2.8977, '*10**9')\n"
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 12.6, Page number 358"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the band gap\n\n#importing modules\nimport math\n\n#Variable declaration\nKb=1.38*10**-23;\nTc=7.19; #critical temperature in K\n\n#Calculation\nEg=3.5*Kb*Tc;\nEg=Eg/(1.6*10**-19); #converting J to eV\nEg=Eg*10**3; #converting eV into milli eV\nEg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"band gap of superconducting lead in meV is\",Eg);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "('band gap of superconducting lead in meV is', 2.171)\n"
}
],
"prompt_number": 17
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|