summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter_11.ipynb
blob: 6e1a896d024487807623f98eae8325185ee5f78a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
{
 "metadata": {
  "name": "Chapter 11"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "Dielectric materials"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 11.1, Page number 335"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the relative dielectric constant\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nA=10*10*10**-6;    #area of capacitor in m^2\nd=2*10**-3;     #distance of seperation in m\nC=10**-9;      #capacitance in F\n\n#Calculation\nepsilon_r=(C*d)/(epsilon_0*A);\nepsilon_r=math.ceil(epsilon_r*10**2)/10**2;   #rounding off to 2 decimals\n\n#Result\nprint(\"dielectric constant of material is\",epsilon_r);\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('dielectric constant of material is', 2258.87)\n"
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 11.2, Page number 335"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the electronic polarizability of atoms\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nepsilon_r=1.0000684;     #dielectric constant of He gas\nN=2.7*10**25;    #concentration of dipoles per m^3\n\n#Calculation\n#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n#therefore alpha_e=epsilon_0(epsilon_r-1)/N\nalpha_e=(epsilon_0*(epsilon_r-1))/N;\n\n#Result\nprint(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n"
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 11.3, Page number 336"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the polarisation\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nepsilon_r=6;  #dielectric constant\nE=100;    #electric field intensity in V/m\n\n#Calculation\nP=epsilon_0*(epsilon_r-1)*E;\n\n#Result\nprint(\"polarization in C/m^2 is\",P);\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('polarization in C/m^2 is', 4.426999999999999e-09)\n"
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 11.4, Page number 336"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the electronic polarizability of Ne\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nR=0.158;    #radius of Ne in nm\n\n#Calculation\nR=R*10**-9;      #converting nm to m\nalpha_e=4*math.pi*epsilon_0*R**3;\n\n#Result\nprint(\"electronic polarizability in Fm^2 is\",alpha_e);\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 11.5, Page number 336"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the area of metal sheet\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nC=0.02;      #capacitance in micro farad\nepsilon_r=6;  #dielectric constant\nt=0.002;     #thickness of mica in cm\nd=0.002;    #thickness of metal sheet in cm\n\n#Calculation\nC=C*10**-6;    #converting micro farad to farad\nd=d*10**-2;    #converting cm to m\nA=(C*d)/(epsilon_0*epsilon_r);\nA=A*10**3;\nA=math.ceil(A*10**4)/10**4;   #rounding off to 4 decimals\nA1=A*10;    #converting m**2 to cm**2\nA1=math.ceil(A1*10**3)/10**3;   #rounding off to 3 decimals\n\n#Result\nprint(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\nprint(\"area of metal sheet in cm^2 is\",A1);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n('area of metal sheet in cm^2 is', 75.296)\n"
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 11.6, Page number 336"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the relative permitivity of the crystal\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nE=1000;     #electric field in V/m\nP=4.3*10**-8;     #polarization in C/m^2\n\n#Calculation\nepsilon_r=(P/(E*epsilon_0)+1);\nepsilon_r=math.ceil(epsilon_r*10**4)/10**4;   #rounding off to 4 decimals\n\n#Result\nprint(\"dielectric constant is\",epsilon_r);\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('dielectric constant is', 5.8566)\n"
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 11.7, Page number 337"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the polarisability of the material\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nchi=4.94;    #relative susceptibility\nN=10**28;     #number of dipoles per m^3\n\n#Calculation\n#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n#epsilon_0*chi*E=N*alpha*E\nalpha=(epsilon_0*chi)/N;\n\n#Result\nprint(\"polarisability of material in F/m^2 is\",alpha);\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "('polarisability of material in F/m^2 is', 4.373876e-39)\n"
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "",
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}