1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
{
"metadata": {
"name": "",
"signature": "sha256:7187247d22d4e816cffb8e16cb739591c46b8ff453a1af7a76514de7cc4fae35"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"7: Superconductivity"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.1, Page number 152"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#importing modules\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration\n",
"Tc=3.722; #critical temperature(K)\n",
"T=2; #temperature(K)\n",
"Bc_0=0.0305; #critical field(T)\n",
"\n",
"#Calculation\n",
"Bc_T=Bc_0*(1-(T/Tc)**2); #critical field at 2K(T)\n",
"Bc_T = math.ceil(Bc_T*10**4)/10**4; #rounding off the value of Bc_T to 4 decimals\n",
"\n",
"#Result\n",
"print \"The critical field at 2K is\",Bc_T, \"T\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The critical field at 2K is 0.0217 T\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.2, Page number 152"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#importing modules\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration\n",
"V = 1; #DC voltage applied across the Josephson junction(micro-volt)\n",
"e = 1.6*10**-19; #Charge on an electron(C)\n",
"h = 6.626*10**-34; #Planck's constant(Js)\n",
"\n",
"#Calculation\n",
"V = V*10**-6; #DC voltage applied across the Josephson junction(V)\n",
"f = 2*e*V/h; #Frequency of Josephson current(Hz)\n",
"f = f*10**-6; #Frequency of Josephson current(MHz)\n",
"f = math.ceil(f*10**2)/10**2; #rounding off the value of f to 2 decimals\n",
"\n",
"#Result\n",
"print \"The frequency of Josephson current is\",f, \"MHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The frequency of Josephson current is 482.95 MHz\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.3, Page number 152"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#importing modules\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration\n",
"T_c = 0.517; #Critical temperature for cadmium(K)\n",
"k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
"e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
"\n",
"#Calculation\n",
"E_g = 3.5*k*T_c/e; #Superconducting energy gap at absolute zero(eV)\n",
"E_g = E_g*10**4;\n",
"E_g = math.ceil(E_g*10**3)/10**3; #rounding off the value of E_g to 3 decimals\n",
"\n",
"#Result\n",
"print \"The superconducting energy gap for Cd at absolute zero is\",E_g,\"*10**-4 eV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The superconducting energy gap for Cd at absolute zero is 1.561 *10**-4 eV\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.4, Page number 152"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration\n",
"e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
"c = 3*10**8; #Speed of light in free space(m/s)\n",
"h = 6.626*10**-34; #Planck's constant(Js)\n",
"E_g = 1.5*10**-4; #Superconducting energy gap for a material(eV)\n",
"\n",
"#Calculation\n",
"#As E_g = h*new = h*c/lamda, solving for lambda\n",
"lamda = h*c/(E_g*e); #Wavelength of photon to break up a Cooper-pair(m)\n",
"lamda = lamda*10**3;\n",
"lamda = math.ceil(lamda*10**3)/10**3; #rounding off the value of lamda to 3 decimals\n",
"\n",
"#Result\n",
"print \"The wavelength of photon to break up a Cooper-pair is\",lamda,\"*10**-3 m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The wavelength of photon to break up a Cooper-pair is 8.283 *10**-3 m\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.5, Page number 153"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#importing modules\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration\n",
"lambda_0 = 37; #Penetration depth of lead at 0 kelvin(nm)\n",
"T_c = 7.193; #Critical temperature of superconducting transition for lead(kelvin)\n",
"T = 5.2; #Temperature at which penetration depth for lead becomes lambda_T(kelvin) \n",
"\n",
"#Calculation\n",
"lambda_T = lambda_0*(1-(T/T_c)**4)**(-1/2); #Penetration depth of lead at 5.2 kelvin(nm)\n",
"lambda_T = math.ceil(lambda_T*10)/10; #rounding off the value of lamda_T to 1 decimal\n",
"\n",
"#Result\n",
"print \"The penetration depth of lead is\",lambda_T, \"nm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The penetration depth of lead is 43.4 nm\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.6, Page number 153"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#importing modules\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#Variable declaration\n",
"M1 = 199; #Mass of an isotope of mercury(amu)\n",
"T_C1 = 4.185; #Transition temperature of the isoptope of Hg(K)\n",
"T_C2 = 4.153; #Transition temperature of another isoptope of Hg(K)\n",
"alpha = 0.5; #Isotope coefficient\n",
"\n",
"#Calculation\n",
"M2 = M1*(T_C1/T_C2)**(1/alpha); #Mass of another isotope of mercury(amu)\n",
"M2 = math.ceil(M2*100)/100; #rounding off the value of M2 to 2 decimals\n",
"\n",
"#Result\n",
"print \"The mass of another isotope of mercury is\",M2, \"amu\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mass of another isotope of mercury is 202.08 amu\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|