1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
{
"metadata": {
"name": "Chapter7",
"signature": "sha256:043709ddd748250fcd3232cc251c6d71d665f281189e172a4c8d9b59233bdcee"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "7: Semiconducting Materials"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.1, Page number 208"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nme = 9.11*10**-31; #mass of electron(kg)\nepsilon_r = 13.2; \nepsilon0 = 8.85*10**-12;\nh = 6.63*10**-34;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nm_nc = 0.067*me;\nE = m_nc*e**4/(8*(epsilon0*epsilon_r*h)**2); #energy(J)\nE = E/e; #energy(eV)\nE = math.ceil(E*10**5)/10**5; #rounding off to 5 decimals\nE_meV = E*10**3; #energy(meV)\n\n#Result\nprint \"donor binding energy is\",E,\"eV or\",E_meV,\"meV\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "donor binding energy is 0.00521 eV or 5.21 meV\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.2, Page number 208"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nimport numpy as np\n\n#Variable declaration\nNd = 10**16; #donor concentration(atoms/cm**3)\nni = 1.5*10**10; #concentration(per cm**3)\nT = 300; #temperature(K)\nkT = 0.0259;\n\n#Calculation\nn0 = Nd; #for Nd>>ni, assume n0=Nd\np0 = ni**2/n0; #equilibrium hole concentration(per cm**3)\np0 = p0*10**-4;\nEF_Ei = kT*np.log(n0/ni);\nEF_Ei = math.ceil(EF_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n\n#Result\nprint \"equilibrium hole concentration is\",p0,\"*10**4 per cm**3\"\nprint \"value of EF-Ei is\",EF_Ei,\"eV\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "equilibrium hole concentration is 2.25 *10**4 per cm**3\nvalue of EF-Ei is 0.3474 eV\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.3, Page number 209"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nNd = 10**14; #donor density(atoms/cm**3)\nmew_n = 3900;\n\n#Calculation\nn = Nd;\nsigma = n*e*mew_n; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*100)/100; #rounding off to 2 decimals\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "resistivity of sample is 16.03 ohm cm\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.4, Page number 209"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nn0 = 5*10**16; #donor density(atoms/cm**3)\nmew_0 = 800;\nIx = 2; #current(mA)\nBz = 5*10**-5;\nd = 200; #thickness(micrometre)\n\n#Calculation\nIx = Ix*10**-3; #current(A)\nd = d*10**-4; #thickness(m)\nsigma = e*n0*mew_0; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\nRH = -1/(e*n0); #Hall coefficient(cm**3/C)\nVH = Ix*Bz*RH/d; #Hall voltage(V)\nVH = VH*10**5;\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"\nprint \"Hall coefficient is\",RH,\"cm**3/C\"\nprint \"Hall voltage is\",VH,\"*10**-5 V\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "resistivity of sample is 0.1563 ohm cm\nHall coefficient is -125.0 cm**3/C\nHall voltage is -62.5 *10**-5 V\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.5, Page number 210"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\nEg = 0.7; #band gap(eV)\nme = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nh = 6.625*10**-34;\nkT = 0.0259;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\na = (2*math.pi*k*T/(h**2))**(3/2);\nb = (mn_star*mp_star)**(3/4);\nc = math.exp(-Eg/(2*kT));\nni = 2*a*b*c; #intrinsic concentration(per m**3)\nsigma = ni*e*(mew_n+mew_p); #intrinsic conductivity(per ohm m)\nsigma = math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\nrho = 1/sigma; #intrinsic resistivity(ohm m)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"intrinsic concentration is\",ni,\"per m**3\"\nprint \"intrinsic conductivity is\",sigma,\"per ohm m\"\nprint \"intrinsic resistivity is\",rho,\"ohm m\"\nprint \"answers given in the book are wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "intrinsic concentration is 1.02825111151e+19 per m**3\nintrinsic conductivity is 0.9872 per ohm m\nintrinsic resistivity is 1.013 ohm m\nanswers given in the book are wrong\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.6, Page number 211"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nNd = 10**16; #donor concentration(per cm**3)\nni = 1.45*10**10; #concentration(per cm**3)\nkT = 0.0259;\n\n#Calculation\n#ni = Nc*math.exp(-(Ec-Ei)/kT)\n#Nd = Nc*(math.exp(-(Ec-Efd)/kT)\n#dividing Nd/ni we get \nEFd_Ei = kT*np.log(Nd/ni);\nEFd_Ei = math.ceil(EFd_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"Fermi energy is\",EFd_Ei,\"eV\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Fermi energy is 0.3482 eV\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.7, Page number 211, theoretical"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.8, Page number 212"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.36; #electron mobility(m**2/Vs)\nmew_p = 0.17; #hole mobility(m**2/Vs)\nrho = 2.12; #resistivity(ohm m)\nme = 9.11*10**-31; #mass of electron(kg)\nkT = 0.0259;\nh = 6.625*10**-34;\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\nsigma = 1/rho; #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\nni = sigma/(e*(mew_n+mew_p)); #concentration of electrons(per m**3)\na = (2*math.pi*kT/(h**2))**(3/2);\nNc = 2*a*(mn_star**(3/2)); \nNv = 2*a*(mp_star**(3/2)); \nb = (Nc*Nv)**(1/2);\nEg = 2*kT*np.log(b/ni);\n\n#Result\nprint \"forbidden energy gap is\",Eg,\"eV\"\nprint \"answer given in the book is wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "forbidden energy gap is 4.09465494989 eV\nanswer given in the book is wrong\n"
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.9, Page number 213"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nni = 2.4*10**19; #concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"conductivity of sample is\",sigma,\"ohm-1 m-1\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "conductivity of sample is 2.228 ohm-1 m-1\n"
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.10, Page number 214"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nEc = 0.3; #initial position(eV)\nT1 = 300; #initial temperature(K)\nT2 = 330; #increased temperature\n\n#Calculation\n#Ec/T1 = Ec_EF330/T2\nEc_EF330 = Ec*T2/T1; #new position of Fermi level(eV)\n\n#Result\nprint \"new position of Fermi level is\",Ec_EF330,\"eV\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "new position of Fermi level is 0.33 eV\n"
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.11, Page number 214"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nme = 9.1*10**-31; #mass of electron(kg)\nh = 6.63*10**-34; #planck's constant\nEc_Ev = 1.1; #energy gap(eV)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nme_star = 0.31*me;\nA = (2*math.pi*k*T*me_star/(h**2))**(3/2);\nB = math.exp(-(Ec_Ev*e)/(2*k*T));\nni = A*B; #concentration in conduction band(per m**3)\n\n#Result\nprint \"intrinsic electron concentration is\",ni,\"per m**3\"\nprint \"answer given in the book is wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "intrinsic electron concentration is 1.26605935487e+15 per m**3\nanswer given in the book is wrong\n"
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.12, Page number 214"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nRH = 0.55*10**-10; #Hall coefficient(m**3/As)\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nmew = RH*sigma; #drift mobility(m**2/Vs)\nmew = mew*10**3;\nmew = math.ceil(mew*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"drift mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "drift mobility of electrons is 3.25 *10**-3 m**2/Vs\n"
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.13, Page number 215"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nA = 6.022*10**23; #avagadro constant\nd = 8.96*10**-9; #density(kg/m**3)\nn = 9.932*10**14; #no. of free electrons per atom\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\ne = 1.6*10**-19; #electron charge(C)\nmew = 3.2*10**-3; #drift mobility(m**2/Vs)\nw = 63.5; #atomic weight of Cu(kg)\n\n#Calculation\nni = sigma/(mew*e); #conductivity(per m**3)\nN = A*d*n/w; #concentration of free electrons in pure Cu\nAN = ni/N; #average number of electrons contributed per Cu atom\n\n#Result\nprint \"concentration of free electrons in pure Cu is\",N,\"per m**3\"\nprint \"average number of electrons contributed per Cu atom is\",int(AN)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "concentration of free electrons in pure Cu is 8.43940339906e+28 per m**3\naverage number of electrons contributed per Cu atom is 1\n"
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.14, Page number 215"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nRH = 3.66*10**-11; #hall coefficient(m**3/As)\ne = 1.6*10**-19; #electron charge(C)\nsigma = 112*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nn = 1/(e*RH); #charge carrier density(per m**3)\nmew_n = sigma/(n*e); #electron mobility(m**2/As)\nmew_n = math.ceil(mew_n*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"charge carrier density is\",n,\"per m**3\"\nprint \"electron mobility is\",mew_n,\"m**2/As\"\nprint \"answers given in the book are wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "charge carrier density is 1.70765027322e+29 per m**3\nelectron mobility is 0.041 m**2/As\nanswers given in the book are wrong\n"
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.15, Page number 216"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nB = 1.5; #magnetic field(T)\nI = 50; #current(Amp)\nn = 8.4*10**28; #free electron concentration(per m**3)\nd = 0.2; #thickness of slab(cm)\n\n#Calculation\nd = d*10**-2; #thickness of slab(m)\nVH = B*I/(n*e*d); #hall voltage(V)\n\n#Result\nprint \"magnitude of Hall voltage is\",VH,\"V\"\nprint \"answer given in the book is wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "magnitude of Hall voltage is 2.79017857143e-06 V\nanswer given in the book is wrong\n"
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.16, Page number 216"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nn = 2.5*10**19; #free electron concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\nL = 1; #length(cm)\nw = 1; #width(mm)\nt = 1; #thickness(mm)\n\n#Calculation\nL = L*10**-2; #length(m)\nw = w*10**-3; #width(m)\nt = t*10**-3; #thickness(m)\nA = w*t; #area(m**2)\nsigma = n*e*(mew_n+mew_p); #conductivity(ohm-1 m-1)\nR = L/(sigma*A); #resistance(ohm)\n\n#Result\nprint \"resistance of intrinsic Ge rod is\",int(R),\"ohm\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "resistance of intrinsic Ge rod is 4310 ohm\n"
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.17, Page number 216"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nEg = 1.12; #band gap(eV)\nme = 1;\nmn_star = 0.12*me; #electron mobility(m**2/Vs)\nmp_star = 0.28*me; #hole mobility(m**2/Vs)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature\n\n#Calculation\na = mp_star/mn_star;\nEF = (Eg/2)+((3*k*T/(4*e))*np.log(a));\nEF = math.ceil(EF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"position of Fermi level is\",EF,\"eV\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "position of Fermi level is 0.577 eV\n"
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.18, Page number 217"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 1.5*10**16; #intrinsic carrier density(per m**3)\nmew_n = 0.13; #electron mobility(m**2/Vs)\nmew_p = 0.05; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\nsigma = sigma*10**4;\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**-4 ohm-1 m-1\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "electrical conductivity is 4.32 *10**-4 ohm-1 m-1\n"
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.19, Page number 217"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.15*10**-13; #intrinsic carrier density(per cm**3)\nmew_n = 3900; #electron mobility(cm**2/Vs)\nmew_p = 1900; #hole mobility(cm**2/Vs)\n\n#Calculation\nsigmai = ni*e*(mew_n+mew_p); #electrical conductivity(ohm-1 cm-1)\nrhoi = 1/sigmai; #intrinsic resistivity(ohm cm)\n\n#Result\nprint \"intrinsic resistivity is\",rhoi,\"ohm cm\"\nprint \"answer given in the book is wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "intrinsic resistivity is 5.01202886929e+27 ohm cm\nanswer given in the book is wrong\n"
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.20, Page number 217"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.1*10**19; #intrinsic carrier density(per m**3)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\n\n#Result\nprint \"intrinsic resistivity is\",sigma,\"ohm-1 m-1\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "intrinsic resistivity is 2.016 ohm-1 m-1\n"
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.21, Page number 218"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nV = 1.35; #voltage supply(V)\nI = 5; #current(mA)\nb = 5; #breadth(mm)\nd = 1; #thickness(mm)\nL = 1; #length(cm)\nH = 0.45; #magnetic field(Wb/m**2)\nVy =20; #Hall voltage(mV)\n\n#Calculation\nVy = Vy*10**-3; #Hall voltage(V)\nL = L*10**-2; #length(m)\nd = d*10**-3; #thickness(m)\nb = b*10**-3; #breadth(m)\nI = I*10**-3; #current(A)\nR = V/I; #resistance(ohm)\nA = b*d; #area(m**2)\nrho = R*A/L; #resistivity(ohm m)\nEy = Vy/d; #Hall field(V/m)\nJx = I/A; \na = Ey/(H*Jx); #current density(m**3/C).Here a is 1/ne \nRH = a; #Hall coefficient(m**3/C)\nRH = math.ceil(RH*10**4)/10**4; #rounding off to 4 decimals\nmew_n = RH/rho; #electron mobility(m**2/Vs)\nmew_n = math.ceil(mew_n*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Hall coefficient is\",RH,\"m**3/C\"\nprint \"electron mobility is\",mew_n,\"m**2/Vs\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Hall coefficient is 0.0445 m**3/C\nelectron mobility is 0.33 m**2/Vs\n"
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 7.22, Page number 219"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nIx = 200; #current(A)\nBz = 1.5; #magnetic field(Wb/m**2)\np = 8.4*10**28; #electron concentration(per m**3)\nd = 1; #thickness(mm)\n\n#Calculation\nd = d*10**-3; #thickness(m)\nVH = Ix*Bz/(e*p*d); #Hall potential(V)\nVH = VH*10**6; #Hall potential(micro V)\n\n#Result\nprint \"Hall potential is\",int(VH),\"micro V\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Hall potential is 22 micro V\n"
}
],
"prompt_number": 22
}
],
"metadata": {}
}
]
}
|