summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter18_1.ipynb
blob: aca2037570c589778e4e911dbab7e5509ecf1494 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
{
 "metadata": {
  "name": "Chapter18"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "18: Acoustics of Buildings"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 18.1, Page number 361"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the output power of the sound source\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nr = 200;       #Distance of the point of reduction from the source(m)\nI_0 = 10**-12;    #Final intensity of sound(W/m**2)\nI_f = 60;        #Intensity gain of sound at the point of reduction(dB)\n\n#Calculation\n#As A_I = 10*log10(I/I_0), solving for I\nI = I_0*10**(I_f/10);      #Initial Intensity of sound(W/m**2)\nP = 4*math.pi*r**2*I;      #Output power of the sound source(W)\nP = math.ceil(P*100)/100;     #rounding off the value of P to 2 decimals\n\n#Result\nprint \"The output power of the sound source is\",P, \"W\"",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The output power of the sound source is 0.51 W\n"
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 18.2, Page number 361"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the change in sound level\n\n#importing modules\nimport math\nfrom __future__ import division\nimport numpy as np\n\n#Variable declaration\nI1 = 1;    #For simplicity assume first intensity level to be unity(W/m**2)\n\n#Calculation\nI2 = 2*I1;    #Intensity level after doubling(W/m**2)\ndA_I = 10*np.log10(I2/I1);    #Difference in gain level(dB)\n\n#Result\nprint \"The sound intensity level is increased by\",int(dA_I), \"dB\"",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The sound intensity level is increased by 3 dB\n"
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 18.3, Page number 361"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the total absorption of sound in the hall\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nV = 8000;    #Volume of the hall(m**3)\nT = 1.5;     #Reverbration time of the hall(s)\n\n#Calculation\nalpha_s = 0.167*V/T;     #Sabine Formula giving total absorption of sound in the hall(OWU)\nalpha_s = math.ceil(alpha_s*10)/10;     #rounding off the value of alpha_s to 1 decimal\n\n#Result\nprint \"The total absorption of sound in the hall is\",alpha_s, \"OWU\"\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The total absorption of sound in the hall is 890.7 OWU\n"
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 18.4, Page number 362"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the average absorption coefficient of the surfaces\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nV = 25*20*8;       #Volume of the hall(m**3)\nT = 4;     #Reverbration time of the hall(s)\n\n#Calculation\nS = 2*(25*20+25*8+20*8);    #Total surface area of the hall(m**2)\nalpha = 0.167*V/(T*S);     #Sabine Formule giving total absorption in the hall(OWU)\nalpha = math.ceil(alpha*10**4)/10**4;     #rounding off the value of alpha to 4 decimals\n\n#Result\nprint \"The average absorption coefficient of the surfaces is\",alpha, \"OWU/m**2\"\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The average absorption coefficient of the surfaces is 0.0971 OWU/m**2\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 18.5, Page number 362"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the reverbration time for the hall\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nV = 475;      #Volume of the hall(m**3)\nA_f = 100;     #Area of the floor(m**2)\nA_c = 100;     #Area of the ceiling(m**2)\nA_w = 200;     #Area of the wall(m**2)\nalpha_w = 0.025;     #Absorption coefficients of the wall(OWU/m**2)\nalpha_c = 0.02;      #Absorption coefficients of the ceiling(OWU/m**2)\nalpha_f = 0.55;      #Absorption coefficients of the floor(OWU/m**2)\n\n#Calculation\nalpha_s = (A_w*alpha_w)+(A_c*alpha_c)+(A_f*alpha_f);    \nT = 0.167*V/alpha_s;    #Sabine Formula for reverbration time(s)\nT = math.ceil(T*100)/100;     #rounding off the value of T to 2 decimals\n\n#Result\nprint \"The reverbration time for the hall is\",T, \"s\"\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The reverbration time for the hall is 1.28 s\n"
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example number 18.6, Page number 362"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#To calculate the reverbration time for the hall\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nI0 = 1;    #For simplicity assume initial sound intensity to be unity(W/m**2)\nA_I1 = 80;   #First intensity gain of sound(dB)\nA_I2 = 70;   #Second intensity gain of sound(dB)\n\n#Calculation\n#As A_I = 10*log10(I/I_0), solving for I1 and I2\nI1 = 10**(A_I1/10)*I0;    #First intensity of sound(W/m**2)\nI2 = 10**(A_I2/10)*I0;    #Second intensity of sound(W/m**2)\nI = I1 + I2;     #Resultant intensity level of sound(W/m**2)\nA_I = 10*np.log10(I/I0);    #Intensity gain of resultant sound(dB)\nA_I = math.ceil(A_I*10**3)/10**3;     #rounding off the value of A_I to 3 decimals\n\n#Result\nprint \"The intensity gain of resultant sound is\",A_I, \"dB\"\n\n#answer given in the book is wrong",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The intensity gain of resultant sound is 80.414 dB\n"
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "",
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}