1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
{
"metadata": {
"name": "",
"signature": "sha256:435dc2503f7ab5f5c4bb167df36c6ef12f8211207bc52e60997787c4d2bd8d5c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"12: Holography and Fibre Optics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 12.1, Page number 271"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n1 = 1.43; #Refractive index of fibre core\n",
"n2 = 1.4; #Refractive index of fibre cladding\n",
"\n",
"#Calculation\n",
"#As sin (alpha_c) = n2/n1, solving for alpha_c\n",
"alpha_c = math.asin(n2/n1); #Critical angle for optical fibre(rad)\n",
"alpha_c = alpha_c*57.2957795; #Critical angle for optical fibre(degrees)\n",
"alpha_c = math.ceil(alpha_c*10**3)/10**3; #rounding off the value of alpha_c to 3 decimals\n",
"#AS cos(theta_c) = n2/n1, solving for theta_c\n",
"theta_c = math.acos(n2/n1); #Critical propagation angle for optical fibre(rad)\n",
"theta_c = theta_c*57.2957795; #Critical propagation angle for optical fibre(degrees)\n",
"theta_c = math.ceil(theta_c*10**2)/10**2; #rounding off the value of theta_c to 2 decimals\n",
"NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n",
"NA = math.ceil(NA*10**3)/10**3; #rounding off the value of NA to 3 decimals\n",
"\n",
"#Result\n",
"print \"The critical angle for optical fibre is\",alpha_c, \"degrees\"\n",
"print \"The critical propagation angle for optical fibre is\",theta_c, \"degrees\"\n",
"print \"Numerical aperture for optical fibre is\",NA\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The critical angle for optical fibre is 78.244 degrees\n",
"The critical propagation angle for optical fibre is 11.76 degrees\n",
"Numerical aperture for optical fibre is 0.292\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 12.2, Page number 271"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n1 = 1.45; #Refractive index of fibre core\n",
"n2 = 1.4; #Refractive index of fibre cladding\n",
"\n",
"#Calculation\n",
"NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n",
"NA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n",
"#As sin(theta_a) = sqrt(n1^2 - n2^2), solving for theta_a\n",
"theta_a = math.asin(math.sqrt(n1**2 - n2**2)); #Half of acceptance angle of optical fibre(rad)\n",
"theta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\n",
"theta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\n",
"theta_accp = math.ceil(theta_accp*10**2)/10**2; #rounding off the value of theta_accp to 2 decimals\n",
"Delta = (n1 - n2)/n1; #Relative refractive index difference\n",
"Delta = math.ceil(Delta*10**4)/10**4; #rounding off the value of Delta to 4 decimals\n",
"\n",
"#Result\n",
"print \"Numerical aperture for optical fibre is\", NA\n",
"print \"The acceptance angle of optical fibre is\",theta_accp, \"degrees\"\n",
"print \"Relative refractive index difference is\", Delta\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical aperture for optical fibre is 0.3775\n",
"The acceptance angle of optical fibre is 44.36 degrees\n",
"Relative refractive index difference is 0.0345\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 12.3, Page number 271"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n1 = 1.55; #Refractive index of fibre core\n",
"n2 = 1.53; #Refractive index of fibre cladding\n",
"n0 = 1.3; #Refractive index of medium\n",
"\n",
"#Calculation\n",
"NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n",
"NA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n",
"#n0*sin(theta_a) = sqrt(n1^2 - n2^2) = NA, solving for theta_a\n",
"theta_a = math.asin(math.sqrt(n1**2 - n2**2)/n0); #Half of acceptance angle of optical fibre(rad)\n",
"theta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\n",
"theta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\n",
"\n",
"#Result\n",
"print \"Numerical aperture for step index fibre is\",NA\n",
"print \"The acceptance angle of step index fibre is\",int(theta_accp), \"degrees\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical aperture for step index fibre is 0.2482\n",
"The acceptance angle of step index fibre is 22 degrees\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 12.4, Page number 271 Theoritical proof"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 12.5, Page number 272"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"alpha = 2; #Power loss through optical fibre(dB/km)\n",
"P_in = 500; #Poer input of optical fibre(micro-watt)\n",
"z = 10; #Length of the optical fibre(km)\n",
"\n",
"#Calculation\n",
"#As alpha = 10/z*log10(P_in/P_out), solving for P_out\n",
"P_out = P_in/10**(alpha*z/10); #Output power in fibre optic communication(micro-Watt)\n",
"\n",
"#Result\n",
"print \"The output power in fibre optic communication is\",P_out, \"micro-Watt\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The output power in fibre optic communication is 5.0 micro-Watt\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|