summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter11_1.ipynb
blob: d9dc8a6de78aae472d65fce50c5a4b8012122574 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{
 "metadata": {
  "name": "",
  "signature": "sha256:9d08f8379ee15c99ce5ad85c8c37d7ad2a3a702f52e1db068a113b3963c85435"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "11: Lasers"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.1, Page number 249"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "h = 6.626*10**-34;     #Planck's constant(Js)\n",
      "c = 3*10**8;     #Speed of light in free space(m/s)\n",
      "k = 1.38*10**-23;     #Boltzmann constant(J/K)\n",
      "T = 300;     #Temperature at absolute scale(K)\n",
      "lamda1 = 5500;     #Wavelength of visible light(A)\n",
      "lamda2 = 10**-2;     #Wavelength of microwave(m)\n",
      "\n",
      "#Calculation\n",
      "lamda1 = lamda1*10**-10;     #Wavelength of visible light(m)\n",
      "rate_ratio = math.exp(h*c/(lamda1*k*T))-1;    #Ratio of spontaneous emission to stimulated emission\n",
      "rate_ratio1 = math.exp(h*c/(lamda2*k*T))-1;     #Ratio of spontaneous emission to stimulated emission\n",
      "rate_ratio1 = math.ceil(rate_ratio1*10**5)/10**5;     #rounding off the value of rate_ratio1 to 5 decimals\n",
      "\n",
      "#Result\n",
      "print \"The ratio of spontaneous emission to stimulated emission for visible region is\",rate_ratio\n",
      "print \"The ratio of spontaneous emission to stimulated emission for microwave region is\", rate_ratio1"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ratio of spontaneous emission to stimulated emission for visible region is 8.19422217477e+37\n",
        "The ratio of spontaneous emission to stimulated emission for microwave region is 0.00482\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.2, Page number 250"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "e = 1.6*10**-19;   #Energy equivalent of 1 eV(J/eV)\n",
      "h = 6.626*10**-34;    #Planck's constant(Js)\n",
      "c = 3*10**8;    #Speed of light in free space(m/s)\n",
      "lamda = 690;    #Wavelength of laser light(nm)\n",
      "E_lower = 30.5;    #Energy of lower state(eV)\n",
      "\n",
      "#Calculation\n",
      "lamda = lamda*10**-9;     #Wavelength of laser light(m)\n",
      "E = h*c/lamda;    #Energy of the laser light(J)\n",
      "E = E/e;     #Energy of the laser light(eV)\n",
      "E_ex = E_lower + E;    #Energy of excited state of laser system(eV)\n",
      "E_ex = math.ceil(E_ex*10**2)/10**2;     #rounding off the value of E_ex to 2 decimals\n",
      "\n",
      "#Result\n",
      "print \"The energy of excited state of laser system is\",E_ex, \"eV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy of excited state of laser system is 32.31 eV\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.3, Page number 250"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "import numpy as np\n",
      "\n",
      "#Variable declaration\n",
      "h = 6.626*10**-34;     #Planck's constant(Js)\n",
      "k = 1.38*10**-23;      #Boltzmann constant(J/K)\n",
      "\n",
      "#Calculation\n",
      "#Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n",
      "#f/T = log(2)*k/h = A\n",
      "A =  np.log(2)*k/h;     #Frequency per unit temperature(Hz/K)\n",
      "A = A/10**10;\n",
      "A = math.ceil(A*10**3)/10**3;     #rounding off the value of A to 3 decimals\n",
      "\n",
      "#Result\n",
      "print \"The stimulated emission equals spontaneous emission iff f/T =\",A,\"*10**10 Hz/k\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The stimulated emission equals spontaneous emission iff f/T = 1.444 *10**10 Hz/k\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.4, Page number 250"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "lamda = 500;     #Wavelength of laser light(nm)\n",
      "f = 15;     #Focal length of the lens(cm)\n",
      "d = 2;      #Diameter of the aperture of source(cm)\n",
      "P = 5;      #Power of the laser(mW)\n",
      "\n",
      "#Calculation\n",
      "P =  P*10**-3;    #Power of the laser(W)\n",
      "lamda = lamda*10**-9;      #Wavelength of laser light(m)\n",
      "d = d*10**-2;      #Diameter of the aperture of source(m)\n",
      "f = f*10**-2;      #Focal length of the lens(m)\n",
      "a = d/2;    #Radius of the aperture of source(m)\n",
      "A = math.pi*lamda**2*f**2/a**2;     #Area of the spot at the focal plane, metre square\n",
      "I = P/A;     #Intensity at the focus(W/m**2)\n",
      "I = I/10**7;\n",
      "I = math.ceil(I*10**4)/10**4;     #rounding off the value of I to 1 decimal\n",
      "\n",
      "#Result\n",
      "print \"The area of the spot at the focal plane is\",A, \"m**2\"\n",
      "print \"The intensity at the focus is\",I,\"*10**7 W/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The area of the spot at the focal plane is 1.76714586764e-10 m**2\n",
        "The intensity at the focus is 2.8295 *10**7 W/m**2\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.5, Page number 251"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "h = 6.626*10**-34;     #Planck's constant(Js)\n",
      "c = 3*10**8;     #Speed of light in free space(m/s)\n",
      "lamda = 1064;    #Wavelength of laser light(nm)\n",
      "P = 0.8;    #Average power output per laser pulse(W)\n",
      "dt = 25;    #Pulse width of laser(ms)\n",
      "\n",
      "#Calculation\n",
      "dt = dt*10**-3;       #Pulse width of laser(s)\n",
      "lamda = lamda*10**-9;     #Wavelength of laser light(m)\n",
      "E = P*dt;   #Energy released per pulse(J)\n",
      "E1 = E*10**3;\n",
      "N = E/(h*c/lamda);    #Number of photons in a pulse\n",
      "\n",
      "#Result\n",
      "print \"The energy released per pulse is\",E1,\"*10**-3 J\"\n",
      "print \"The number of photons in a pulse is\", N\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy released per pulse is 20.0 *10**-3 J\n",
        "The number of photons in a pulse is 1.07053023443e+17\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.6, Page number 251"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "lamda = 693;     #Wavelength of laser beam(nm)\n",
      "D = 3;       #Diameter of laser beam(mm)\n",
      "d = 300;    #Height of a satellite above the surface of earth(km)\n",
      "\n",
      "#Calculation\n",
      "D = D*10**-3;    #Diameter of laser beam(m)\n",
      "lamda = lamda*10**-9;     #Wavelength of laser beam(m)\n",
      "d = d*10**3;     #Height of a satellite above the surface of earth(m)\n",
      "d_theta = 1.22*lamda/D;    #Angular spread of laser beam(rad)\n",
      "dtheta = d_theta*10**4;\n",
      "dtheta = math.ceil(dtheta*10**2)/10**2;     #rounding off the value of dtheta to 2 decimals\n",
      "a = d_theta*d;      #Diameter of the beam on the satellite(m)\n",
      "a = math.ceil(a*10)/10;     #rounding off the value of a to 1 decimal\n",
      "\n",
      "#Result\n",
      "print \"The height of a satellite above the surface of earth is\",dtheta,\"*10**-4 rad\"\n",
      "print \"The diameter of the beam on the satellite is\",a, \"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The height of a satellite above the surface of earth is 2.82 *10**-4 rad\n",
        "The diameter of the beam on the satellite is 84.6 m\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}