1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
{
"metadata": {
"name": "Chapter11"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "11: Lasers"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 11.1, Page number 249"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the ratio of spontaneous emission to stimulated emission for visible and microwave region\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nh = 6.626*10**-34; #Planck's constant(Js)\nc = 3*10**8; #Speed of light in free space(m/s)\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nT = 300; #Temperature at absolute scale(K)\nlamda1 = 5500; #Wavelength of visible light(A)\nlamda2 = 10**-2; #Wavelength of microwave(m)\n\n#Calculation\nlamda1 = lamda1*10**-10; #Wavelength of visible light(m)\nrate_ratio = math.exp(h*c/(lamda1*k*T))-1; #Ratio of spontaneous emission to stimulated emission\nrate_ratio1 = math.exp(h*c/(lamda2*k*T))-1; #Ratio of spontaneous emission to stimulated emission\nrate_ratio1 = math.ceil(rate_ratio1*10**5)/10**5; #rounding off the value of rate_ratio1 to 5 decimals\n\n#Result\nprint \"The ratio of spontaneous emission to stimulated emission for visible region is\",rate_ratio\nprint \"The ratio of spontaneous emission to stimulated emission for microwave region is\", rate_ratio1",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The ratio of spontaneous emission to stimulated emission for visible region is 8.19422217477e+37\nThe ratio of spontaneous emission to stimulated emission for microwave region is 0.00482\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 11.2, Page number 250"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the energy of excited state\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\nh = 6.626*10**-34; #Planck's constant(Js)\nc = 3*10**8; #Speed of light in free space(m/s)\nlamda = 690; #Wavelength of laser light(nm)\nE_lower = 30.5; #Energy of lower state(eV)\n\n#Calculation\nlamda = lamda*10**-9; #Wavelength of laser light(m)\nE = h*c/lamda; #Energy of the laser light(J)\nE = E/e; #Energy of the laser light(eV)\nE_ex = E_lower + E; #Energy of excited state of laser system(eV)\nE_ex = math.ceil(E_ex*10**2)/10**2; #rounding off the value of E_ex to 2 decimals\n\n#Result\nprint \"The energy of excited state of laser system is\",E_ex, \"eV\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The energy of excited state of laser system is 32.31 eV\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 11.3, Page number 250"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To determine the condition under which stimulated emission equals spontaneous emission\n\n#importing modules\nimport math\nfrom __future__ import division\nimport numpy as np\n\n#Variable declaration\nh = 6.626*10**-34; #Planck's constant(Js)\nk = 1.38*10**-23; #Boltzmann constant(J/K)\n\n#Calculation\n#Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n#f/T = log(2)*k/h = A\nA = np.log(2)*k/h; #Frequency per unit temperature(Hz/K)\nA = A/10**10;\nA = math.ceil(A*10**3)/10**3; #rounding off the value of A to 3 decimals\n\n#Result\nprint \"The stimulated emission equals spontaneous emission iff f/T =\",A,\"*10**10 Hz/k\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The stimulated emission equals spontaneous emission iff f/T = 1.444 *10**10 Hz/k\n"
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 11.4, Page number 250"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the area of the spot and intensity at the focus \n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nlamda = 500; #Wavelength of laser light(nm)\nf = 15; #Focal length of the lens(cm)\nd = 2; #Diameter of the aperture of source(cm)\nP = 5; #Power of the laser(mW)\n\n#Calculation\nP = P*10**-3; #Power of the laser(W)\nlamda = lamda*10**-9; #Wavelength of laser light(m)\nd = d*10**-2; #Diameter of the aperture of source(m)\nf = f*10**-2; #Focal length of the lens(m)\na = d/2; #Radius of the aperture of source(m)\nA = math.pi*lamda**2*f**2/a**2; #Area of the spot at the focal plane, metre square\nI = P/A; #Intensity at the focus(W/m**2)\nI = I/10**7;\nI = math.ceil(I*10**4)/10**4; #rounding off the value of I to 1 decimal\n\n#Result\nprint \"The area of the spot at the focal plane is\",A, \"m**2\"\nprint \"The intensity at the focus is\",I,\"*10**7 W/m**2\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The area of the spot at the focal plane is 1.76714586764e-10 m**2\nThe intensity at the focus is 2.8295 *10**7 W/m**2\n"
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 11.5, Page number 251"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the energy released per pulse and number of photons\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nh = 6.626*10**-34; #Planck's constant(Js)\nc = 3*10**8; #Speed of light in free space(m/s)\nlamda = 1064; #Wavelength of laser light(nm)\nP = 0.8; #Average power output per laser pulse(W)\ndt = 25; #Pulse width of laser(ms)\n\n#Calculation\ndt = dt*10**-3; #Pulse width of laser(s)\nlamda = lamda*10**-9; #Wavelength of laser light(m)\nE = P*dt; #Energy released per pulse(J)\nE1 = E*10**3;\nN = E/(h*c/lamda); #Number of photons in a pulse\n\n#Result\nprint \"The energy released per pulse is\",E1,\"*10**-3 J\"\nprint \"The number of photons in a pulse is\", N\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The energy released per pulse is 20.0 *10**-3 J\nThe number of photons in a pulse is 1.07053023443e+17\n"
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 11.6, Page number 251"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#To calculate the angular spread and diameter of the beam\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nlamda = 693; #Wavelength of laser beam(nm)\nD = 3; #Diameter of laser beam(mm)\nd = 300; #Height of a satellite above the surface of earth(km)\n\n#Calculation\nD = D*10**-3; #Diameter of laser beam(m)\nlamda = lamda*10**-9; #Wavelength of laser beam(m)\nd = d*10**3; #Height of a satellite above the surface of earth(m)\nd_theta = 1.22*lamda/D; #Angular spread of laser beam(rad)\ndtheta = d_theta*10**4;\ndtheta = math.ceil(dtheta*10**2)/10**2; #rounding off the value of dtheta to 2 decimals\na = d_theta*d; #Diameter of the beam on the satellite(m)\na = math.ceil(a*10)/10; #rounding off the value of a to 1 decimal\n\n#Result\nprint \"The height of a satellite above the surface of earth is\",dtheta,\"*10**-4 rad\"\nprint \"The diameter of the beam on the satellite is\",a, \"m\"\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The height of a satellite above the surface of earth is 2.82 *10**-4 rad\nThe diameter of the beam on the satellite is 84.6 m\n"
}
],
"prompt_number": 25
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|