1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
{
"metadata": {
"name": "Chapter1",
"signature": "sha256:e55f587b2da98ead68f73bb2b4d29bef91aa67eb577c460fb9dcaab92acc4339"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "1: Ultrasonics"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.1, Page number 20"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.33; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "depth of the submerged submarine is 237.6 m\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.2, Page number 21"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 115*10**9; #Young's modulus(N/m**2)\nrho = 7.25*10**3; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "depth of the submerged submarine is 49.785 kHz\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.3, Page number 21"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1; #length of quartz crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"fundamental frequency of crystal is\",new, \"*10**6 Hz\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "fundamental frequency of crystal is 2.73 *10**6 Hz\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.4, Page number 22"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.55; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "velocity of waves is 1650 m/s\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.5, Page number 22"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nl = 50; #length of rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew = math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"natural frequency of rod is\",new, \"kHz\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "natural frequency of rod is 39.83 kHz\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.6, Page number 22"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nl = 2; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "frequency of crystal is 1.365 MHz\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.7, Page number 23"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nl = 3; #length of crystal(mm)\nE = 8*10**10; #Young's modulus(N/m**2)\nrho = 2500; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"kHz\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "frequency of crystal is 942.81 kHz\n"
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.8, Page number 23"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1.5; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "frequency of crystal is 1.82 MHz\n"
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.9, Page number 24"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.95; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of sea(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "depth of the submerged submarine is 684 m\n"
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.10, Page number 24"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.83; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "depth of the submerged submarine is 597.6 m\n"
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.11, Page number 24"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\naS = 1050; #total absorption inside hall(Sabine)\nV = 9000; #volume of cinema hall(m**3)\n\n#Calculation\nT = 0.165*V/aS; #reverberation time of hall(s)\nT = math.ceil(T*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall is\",T, \"s\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "reverberation time of the hall is 1.4143 s\n"
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.12, Page number 25"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\na = 0.65; #average absorption coefficient(Sabine/m**2)\nV = 13500; #volume of auditorium(m**3)\nT = 1.2; #reverberation time of hall(s)\n\n#Calculation\nS = 0.165*V/(a*T); #reverberation time of hall(s)\nS = math.ceil(S*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"total area of interior surface is\",S, \"m**2\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "total area of interior surface is 2855.8 m**2\n"
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.13, Page number 25"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nV = 15000; #volume of cinema hall(m**3)\nT1 = 1.3; #initial reverberation time of hall(s)\na1S1 = 300; #number of chairs placed\n\n#Calculation\naS = 0.165*V/T1; #total absorption of hall\nT2 = (0.165*V)/(aS+a1S1); #reverberation time of hall after adding chairs(s)\nT2 = math.ceil(T2*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall after adding chairs is\",T2, \"s\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "reverberation time of the hall after adding chairs is 1.1231 s\n"
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.14, Page number 26"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.5; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "depth of the submerged submarine is 360 m\n"
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.15, Page number 26"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.4; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "velocity of waves is 1200 m/s\n"
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 1.16, Page number 26"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "depth of the submerged submarine is 49.785 kHz\n"
}
],
"prompt_number": 18
}
],
"metadata": {}
}
]
}
|