summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter5_8.ipynb
blob: e98a2c789fb77d36407c70e7d24d7f4f211aee5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chapter 5:Axial force, Shear and Bending moment "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example5.2 pagenumber 231"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The X,Y components of reaction force at A is  0 , -410.0 N\n",
      "The X,Y components of reaction force at B is  0 , 670.0 N\n"
     ]
    }
   ],
   "source": [
    "#Given \n",
    "L_ab = 0.4  #mt The total length of the rod\n",
    "M = 200     #N_m - the moment acting on rod\n",
    "l_1 = 0.1   #mt -moment acting point the distance from 'a'\n",
    "R_1 = 100   #N - The Force acting \n",
    "l_2 = 0.2   #mt -R_1 acting point the distance from 'a'\n",
    "R_2 = 160   #N The Force acting \n",
    "l_3 = 0.3   #mt -R_2 acting point the distance from 'a'\n",
    "#caliculations\n",
    "\n",
    "#F_X = 0 forces in x directions \n",
    "R_A_X = 0   # since there are no forces in X-direction \n",
    "R_B_X = 0\n",
    "#M_A = 0 momentum at point a is zero\n",
    "\n",
    "# M + R_1*l_2 + R_2*l_3 = R_B*L_ab *the moment for a force is FxL\n",
    "R_B_Y =  (M + R_1*l_2 + R_2*l_3)/L_ab\n",
    "\n",
    "#M_B= 0 momentum at point b is zero\n",
    "# R_A_Y*L_ab + M - R_1*l_2 - R_2*0.1 = 0\n",
    "\n",
    "R_A_Y = -(M - R_1*l_2 - R_2*0.1)/L_ab\n",
    "    \n",
    "print \"The X,Y components of reaction force at A is \",R_A_X,\",\",R_A_Y,\"N\"\n",
    "print \"The X,Y components of reaction force at B is \",R_B_X,\",\",R_B_Y,\"N\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.2 page number 233"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The X,Y components of reaction force at A is  0 , -9.0 N\n",
      "The X,Y components of reaction force at B is  0 , 6.0 N\n"
     ]
    }
   ],
   "source": [
    "#Given   \n",
    "P_Max  = 10   #N - the maximum distribution in a triangular distribution\n",
    "L = 3         #mt the total length of force distribution \n",
    "L_X = 5       #mt - the horizantal length of the rod\n",
    "#caliculations \n",
    "\n",
    "F_y = P_Max*L*0.5 #N - The force due to triangular distribition \n",
    "L_com  = 2*L /3   #mt - the resultant force acting as a result of distribution acting position \n",
    "#F_X = 0 forces in x directions\n",
    "R_A_X = 0         # since there are no forces in X-direction\n",
    "R_B_X = 0\n",
    "#M_A = 0 momentum at point a is zero\n",
    "#F_y*L_com - R_B_Y*L_X = 0\n",
    "R_B_Y = F_y*L_com/L_X\n",
    "\n",
    "#M_B= 0 momentum at point b is zero\n",
    "#- R_A_Y*L_X = F_y*(L_X-L )\n",
    "\n",
    "R_A_Y = - F_y*L/L_X \n",
    "print \"The X,Y components of reaction force at A is \",R_A_X,\",\",R_A_Y,\"N\"\n",
    "print \"The X,Y components of reaction force at B is \",R_B_X,\",\",R_B_Y,\"N\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##  Example 5.3 page number 233   "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The X,Y components and resultant of reaction force at A is  4 , 3 , 5.0 N\n",
      "The X,Y components and resultant of reaction force at B is  1 , 1 , 1.41 N\n"
     ]
    }
   ],
   "source": [
    "#given\n",
    "F = 5       #K - force acting on the system\n",
    "tan = (4/3) # the Tan of the angle of force with x axis\n",
    "l_ab = 12   #inch - the total length of ab \n",
    "l = 3       # inch - Distance from 'a'\n",
    "#caliculation\n",
    "F_X = 4 #K\n",
    "F_Y = 3 #k\n",
    "\n",
    "#M_A = 0 momentum at point a is zero\n",
    "# F_X*l- R_B_Y*l_ab = 0 \n",
    "R_B_Y = F_X*l/l_ab\n",
    "\n",
    "#M_B= 0 momentum at point b is zero\n",
    "# R_A_Y*l_ab - F_X*(l_ab - l)\n",
    "R_A_Y = F_X*(l_ab - l)/l_ab\n",
    "    \n",
    "#F_X = 0 forces in x directions\n",
    "R_A_X = F_Y + R_B_Y  \n",
    "R_B_X = R_B_Y      # since the angle is 45 degrees\n",
    "\n",
    "#resultants \n",
    "R_A = pow(R_A_X**2 + R_A_Y**2,0.5)\n",
    "R_B = pow(R_B_X**2 + R_B_Y**2,0.5)\n",
    "\n",
    "print \"The X,Y components and resultant of reaction force at A is \",R_A_X,\",\",R_A_Y,\",\",R_A,\"N\"\n",
    "print \"The X,Y components and resultant of reaction force at B is \",R_B_X,\",\",R_B_Y,\",\",round(R_B,2),\"N\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.4 page number 239"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The force and moment in section a--a are -2.33 KN , -13.644 KN-m\n",
      "The force and moment in section b--b are 6.0 KN , -6.0 KN-m\n"
     ]
    }
   ],
   "source": [
    "#Given   \n",
    "P_Max  = 10   #N - the maximum distribution in a triangular distribution\n",
    "L = 3         #mt the total length of force distribution \n",
    "L_X = 5       #mt - the horizantal length of the rod\n",
    "#caliculations \n",
    "\n",
    "F_y = P_Max*L*0.5 #N - The force due to triangular distribition \n",
    "L_com  = 2*L /3   #mt - the resultant force acting as a result of distribution acting position \n",
    "#F_X = 0 forces in x directions\n",
    "R_A_X = 0         # since there are no forces in X-direction\n",
    "R_B_X = 0\n",
    "#M_A = 0 momentum at point a is zero\n",
    "#F_y*L_com - R_B_Y*L_X = 0\n",
    "R_B_Y = F_y*L_com/L_X\n",
    "\n",
    "#M_B= 0 momentum at point b is zero\n",
    "#- R_A_Y*L_X = F_y*(L_X-L )\n",
    "\n",
    "R_A_Y = - F_y*L/L_X\n",
    "\n",
    "#For a---a section \n",
    "l_a = 2 #mt - a---a section from a \n",
    "l_com_a = 2*l_a/3\n",
    "v_a = R_A_Y + 0.5*l_a*(10.0*2/3) #*(10*2/3) because the maximum moves\n",
    "\n",
    "M_a =  (10.0*0.66)*l_a*(0.33) + R_A_Y*l_a \n",
    "\n",
    "#For b---b section \n",
    "\n",
    "v_b = F_y + R_A_Y #equilabrium conditions\n",
    "M_b =  (F_y + R_A_Y)*(-1)\n",
    "\n",
    "print \"The force and moment in section a--a are\",round(v_a,2),\"KN ,\",M_a,\"KN-m\"\n",
    "print \"The force and moment in section b--b are\",v_b,\"KN ,\",M_b,\"KN-m\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.5 page number 241"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEhCAYAAACQrrywAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+4XfOZ9/H3JyIlgiTTqjw8oqWo+BGpoKUcLUar40fH\nryltJKnSMcNIoqMUKQ/9YZI+crXphRCqikbjKSaUDodJ2rSRSJMGGROpYqpTZCTBFZHczx/fdXa2\n45ycX3uf795nf17Xda6svffaa91nn5Nz7/v7Xft7KyIwMzMD6Jc7ADMzqx1OCmZmVuKkYGZmJU4K\nZmZW4qRgZmYlTgpmZlbipFDnJF0q6feSfidpkaTRxf0rJQ3NHV9H2otT0poqnW+mpM8X2zdK2qsa\n56kFkvaX9JlO7vuopFHF9v2StqtudFar+ucOwLpP0iHAZ4GREfFO8cd1QPFwxT+AImmLiNhQ4cO2\nF2fVP0ATEWdX+xyZjQQOBB7oypMi4nOVOHmVfl+sylwp1LdhwCsR8Q5ARLwWES8Xjwk4X9LCoorY\nA0DSQEk3SZpfPPY3xf3DJT0u6Yni65Di/iOK+38OLGsdgKTpkn4raamkK8ruXylpchvnHyrpF8X+\nNxZxtkWSphZV0MOS/qq488OSHpC0QNJjZcedKek6SfMk/WdLNVA89n1JT0t6CNih7P7yd8drJP0f\nSYsl/UrSB8rO9+vie7iqrQqmeO2eLmJYLul2SUcXsSyXdGCx3xBJ9xTH+pWkfYr7r5B0S/E6r5T0\neUnXSloiaY6kLYr9RklqLr73ByR9sOz7+Lak30h6RtKhkrYErgROLSrIU1rFvJWkOyQtkzQb2KrV\nz25osX1Pcb6lkr5cts/44nubL+kGSdPKfg4/lDQf+I6k0cX3ulDSXEkfKfYbUxz7IUnPSfoHSROL\nWH8laXA7vxdWbRHhrzr9ArYBngSeAX4AHF722Erg74vtrwI3FNtXA18otrcHlgNbk/4oDCju3x1Y\nUGwfAawBdmknhsHFv/2AR4F9Ojj/dcA3iu3PAhuAoW0cdyNwerF9GTCt2P4lsFuxfRDwb8X2TOCu\nYvujwLPF9ueBXxTbw4BVwOeL248Co8rO99li+zvAJcX2fcCpxfY5wOo2Yh0OvA3sXdx+Arip2D4e\nmF1sTwMuK7aPBJ4stq8AHi9ew/2AN4FjisdmF8foD8wD/qq4/9SyczwKXFtsfwZ4uNge0/K6tRHz\nhcCMYntfYH3Za/Fcy8+k7Oe7FbAUGFK8jitJvz9bFLFPK/s53Ft2nkFAv2L708DdZbH9BzAQeD/w\nOnB28dhU4Pzc/78a9cvDR3UsIt4o3ul+EvgUcKekiyPiR8Uu9xT/LgROKraPAf5G0kXF7QHALsCf\ngO9LGkn6Q/2RslP9NiL+2E4Yp0s6m/RHa0dgb+D3mzn/4S3bETFH0qp2jrsB+Gmx/WPgZ5K2AT4B\nzJLUUmFsWfac/1cc92lJLRXBJ4E7ivv/JOmRds63LiLmlMV7VLH9ceCEYvsnwLXtPH9lRDxVbC8j\nJS9If0h3LbYPIyUpIuLRomoaVDz2QERslLQUUEQ81Or5ewL7AA8X33s/4L/Kzj+7LPbh7cRY7nBS\ngiYilkr6Xdlj5dXbP0k6sdjemfR7MQxojojXASTN4t2/L7PKtgcDPyoqhODdQ9aPRsSbwJvF78H9\nZd/zvp34HqwKnBTqXKS3Vo8Djxd/UL4EtCSFdcW/G9j0sxbwtxHxbPlxlIZ+Xo6I/YrhirfKHn6j\nrXNL2hWYCHwsIlZLmknZMEQ753/PYTb7DW4SpD+EqyJiVDv7rCvb7uxxW6wv2y6Pt3xuY3PHLD/3\nxrLbG+nc/7N1kH6ekspjaXm+gN9HxKEdnH9zr/XmvOd7k3QE6c3GwRGxTtKjbPr5bu61KP99uQp4\nJCI+L2k4qappHTOk17mrr5lVgecU6pikPSTtXnbXSOD5Dp72C+D8smOMLDa3J1ULkBLLFp0IYTtg\nLbCmGN/uzJUujwNnFOf+DOmdZFu2AE4uts8A5kbEGmClpJb7kbRfO89v+aP1OHCapH6ShpGGbTa3\nf2vzy+I4vZ19Nvf8cv8OnAkgqYk0H7S2k8daDnxAm+Z6+kvau4NY1pB+Rm0p/znsQxq2am17UhJe\np3SV1iHF/QuAwyVtL6k/8LftnIPi/C8V22M3s5/VCCeF+jYIuFVpMnYxaSx9cvFYe1fvXAVsWUxi\nLiVNRgJMB86S9CSwB+1UB+UiYgmwGHiaNMQzt/zhdp72TdIflKXAiUB7w1JrgYOK/ZrK4jwDGK80\nIfx70nh7W+eLIsZ7gP8kDencAvyqnRjbi/dCYELx+u5GGvtuS2eONRn4WDFUcw0p+XZ0rHRHxHpS\ncvpOEcuTpKGttvZvuf0osHdbE83AD4FBkpYVcT3RxvMfJP2uLCvi/XURy38Vt39LSnQr2fS6tI7l\nWuDbkhay+b83Xq65RiiNPphZWyRtHRFvFdunkSa/T+rgaX2epG2KOa0tSHNHN0XEz3PHZT3ncTuz\nzfuYpO+ThmRWAeMyx1MrJks6Cngf8JATQt/hSsHMzEo8p2BmZiVOCmZmVuKkYGZmJU4KZmZW4qRg\nZmYlTgpmZlbipGBmZiU1kRSKdWkWSbo3dyxmZo2sJpICcAHwVId7mZlZVWVPCpJ2JjVbmZE7FjOz\nRpc9KQDfAy7CqySamWWXNSlIOg74c0QsJi041tXGKGZmVkFZF8STdA2p6cg7pD7B25L62X6p1X6u\nIszMuiEiuvRmO2ulEBGXRMQuEfFhUlerR1onhLJ9G/tr8mTiy1/miiuuyB9LjXz5taix1+JPfyJ2\n2IH4zW/8WtTIV3fUwpyCdeStt2D6dJgwIXckZu3bcUeYNg3GjEm/s1aXaiYpRMRjEXF8x3s2oB//\nGEaPho9+NHckZpt36qmwzz5w2WW5I7FuqpmkYO3YuBGmToWJEwFoamrKG08N8WuxSc28FlKqam+/\nHebO7Xj/KqiZ16JO1UXnNUlRD3FWxf33w+WXw8KF6T+cWT245x742tdg8WLYZpvc0TQsSUQXJ5qd\nFGrdkUfCl78MZ5yROxKzrjnzTBg6NM0zWBZOCn3NokVwwgnw3HOw5Za5ozHrmtdeg333TXNiRx6Z\nO5qG1J2k4DmFWjZlClxwgROC1aehQ+GGG2DcOFizJnc01kmuFGrVCy/AyJGpSth++9zRmHXfuHHp\njc311+eOpOF4+KgvmTRp05VHZvXs9dfTMNKMGXDMMbmjaShOCn3F6tXwoQ+lOYXhw3NHY9ZzDz8M\n48fDkiUweHDuaBqG5xT6ihkz4OijnRCs7zj6aDjuOLjwwtyRWAdcKdSad96B3XaDn/0MDjwwdzRm\nlbNmDey/f7pE9XOfyx1NQ3Cl0BfcfTfsuqsTgvU9224LN98M55wDr76aOxprhyuFWhKR1ji6/HI4\n3stAWR91wQXwyitpKQyrKlcK9e7xx1OJ7dLa+rJvfQsWLIDZs3NHYm1wUqglU6akibh+/rFYHzZw\nINxyC5x3HvzlL7mjsVY8fFQrli+Hww+HlSvTfxqzvu6ii9Lv+6xZXuyxSjx8VM++9z0491wnBGsc\nV10FTz0Fd96ZOxIr40qhFvzlL7DHHqla2GGH3NGY9Z4FC9Ic2uLFMGxY7mj6HFcK9Wr6dDj5ZCcE\nazyjR8PZZ6fLVPvyG7864koht7feSktaPPqo221aY3r77ZQcJkxI/Z2tYlwp1KMf/zh9UM0JwRrV\ngAFw661pEcgXX8wdTcNzpZDTxo0wYkQaPnITEmt0V14J8+bBgw/6aqQKcaVQb+bMga23BjcaN4Ov\nfz0tfzFjRu5IGporhZzcf9ns3ZYtS2+SFixIa4BZj7hSqCeLFsGKFXDqqbkjMasdI0akuYVx49Lw\nqvU6J4VcpkyB8893/2Wz1iZNSlflTZ+eO5KG5OGjHNx/2Wzzli+HQw+F+fNh991zR1O3PHxUL667\nLl2P7YRg1rY994RLL4WzzoING3JH01BcKfQ2918265yNG9Ok84knpg+2WZd1p1LImhQkvQ94HBhQ\nfP08Ii5pY7++kxSmTk1XVtxxR+5IzGrfihVw8MEwdy7stVfuaOpO3SUFAEkDI+JNSVsA84CJETGv\n1T59Iym4/7JZ102fnj7xPG8e9O+fO5q6UpdzChHxZrH5PlI8qzKGU13uv2zWdeeeC4MGwbXX5o6k\nIWRPCpL6SXoSeBlojoincsdUFRHwL/8CEyfmjsSsvvTrBzffnIZely7NHU2flz0pRMTGiDgA2Bk4\nXNIRuWOqCvdfNuu+4cNTb+cxY2D9+tzR9Gk1M0AXEasl/StwIPBY68cnT55c2m5qaqKp3tYLmjIl\nXUHh/stm3TN+PMyeDddcA1dckTuamtTc3Exzc3OPjpH76qP3A+sj4nVJWwO/AL4ZEf/War/6nmhu\n6b/8hz+kBfDMrHteegkOOCCtpDpqVO5oal49TjQPAx4t5hTmA/e2Tgh9Qkv/ZScEs57Zaac0Nzdm\nDKxblzuaPin7JamdUdeVgvsvm1VWRPpA2z77wNVX546mptXl5xQ6o66Twje/mbpJ3Xhj7kjM+o6X\nX4b994f77oODDsodTc1yUqg17r9sVj133QWTJ6clYzw026Z6nFPo29x/2ax6TjsN9t0XLrssdyR9\niiuFanH/ZbPq+8tfYL/9YNYsOOyw3NHUHFcKtcT9l82q7wMfSG+8xo6FN97IHU2f4EqhWtx/2az3\nnHkmDB0K06bljqSmeKK5VixalC6ZW7HC7TbNesOqVWl+4bbbPFxbxsNHtcL9l81615AhcMMNMG5c\nWmPMus2VQqW5/7JZPuPHp54L11+fO5Ka4OGjWjBpUrryaOrU3JGYNZ7XX0/DSDNmwDHH5I4mOyeF\n3Nx/2Sy/hx9OFcOSJTB4cO5osvKcQm4t706cEMzyOfpoOO44uPDC3JHUJVcKleL+y2a1Y+3a9KG2\nadMaurGVK4Wc3H/ZrHYMGgQzZ8I558Crr+aOpq64UqiECBg9Gi6/HI4/Pnc0ZtbiggvglVfg9ttz\nR5KFK4Vc3H/ZrDZ961uwYEFq42md4qRQCe6/bFabBg6EW26B885Li+dZhzx81FPuv2xW+772tfSB\n0lmzQF0aTalrHj7KYepU9182q3VXXglPPQV33pk7kprnSqEn3H/ZrH4sWJDm/RYvhmHDckfTK1wp\n9Lbp0+Hkk50QzOrB6NFw9tnpMtVafJNZI1wpdJf7L5vVn7ffTslhwgQYMyZ3NFXnSqE3uf+yWf0Z\nMABuvRUuughefDF3NDXJlUJ3bNwIe+8NP/yhG3qY1aOrroK5c+HBB/v01UiuFHrLnDnp+mf3Xzar\nTxdfnJa/mDEjdyQ1x5VCdxx5ZJqw+sIXckdiZt21bFl6Y7dgQVq3rA9ypdAbFi1KvZdPOSV3JGbW\nEyNGpKZY48alIWEDnBS6zv2XzfqOSZPSlYTTp+eOpGZ4+Kgr/vjH1H955Ur3XzbrK5Yvh0MPhfnz\nYffdc0dTUXU3fCRpZ0mPSFomaamk83PG06Fp0+Css5wQzPqSPfeESy9N/7c3bMgdTXZZKwVJOwI7\nRsRiSYOAhcAJEfFMq/3yVwruv2zWd23cmCadTzwxfbCtj6i7SiEiXo6IxcX2WuBpYKecMbXL/ZfN\n+q5+/VKntmuugWee6Xj/Pqxm5hQk7Qo0A/sUCaL8sbyVwvr1aazR/ZfN+rbp09MnnufNg/79c0fT\nY92pFGriuy6Gju4GLmidEDbtM7nsVlPx1TtO527OZVeaRjsh2LsNGQKvvZY7CquYc89NXdquvRa+\n/vXc0XRZc3Mzzc3NPTpG9kpBUn/gfuCBiLiunX3yVQruv2ybIXnBzT7n+efTiMAjj8C+++aOpkfq\nbk6hcDPwVHsJITv3XzZrLMOHp97OY8akoeMGk/uS1EOBM4BPSXpS0iJJx+aM6T3cf9ms8YwfDzvu\nmCaeG0z24aPOyDZ85P7L1gEPH/VhL70EBxyQVlIdNSp3NN1Sr8NHtcv9l80a1047pZGCMWNg3brc\n0fQaVwrtcf9l6wRXCn1cBJx0Ulo87+qrc0fTZd2pFJwU2vPNb6by8YYbeve8VlecFBrAyy/D/vvD\nfffBQQfljqZLnBQqpaX/cnMz7LVX753X6o6TQoO46y6YPDktc1NHw8meU6iUlv7LTghmBnDaaekz\nC5ddljuSqnOl0Jr7L1sXuFJoIK+8AvvtBz/9KRx2WO5oOsWVQiW4/7KZteX974cf/ADGjoU33sgd\nTdW4UmjN/ZetC1wpNKAzz4ShQ1N/lRrnieaeWrQorae+YoXbbVqnOCk0oFWr0vzCbbfV/BCzh496\nyv2XzawjQ4akS9XHjUvrovUxrhRauP+ydYMrhQY2fnzquXD99bkjaZeHj3pi0qR05dHUqdU9j/Up\nTgoN7PXX09VIN96YujLWICeF7nL/ZesmJ4UG9/DDqWJYsgQGD84dzXt4TqG73H/ZzLrj6KPhuOPg\nwgtzR1IxrhTcf9l6wJWCsXZtGkaaNq3mmnG5UuiOu++GXXd1QjCz7hk0CGbOhHPOgVdfzR1NjzV2\nUohIl6FOnJg7EjOrZ0ccAaecki5pr3ONnRTcf9nMKuWaa2DBApg9O3ckPdLYScH9l82sUgYOhFtu\ngfPOS0266lSHfw0lnSJp22L7G5JmS6rPhqXlli+H3/wGvvSl3JGYWV/xiU/AF78IX/1q3V6B0Jm3\nyJdFxBpJhwFHATcBP6xuWL3A/ZfNrBquvBKefhruvDN3JN3S4SWpkp6MiAMkfQtYGhE/abmvd0Ks\nwiWp7r9sFeJLUq1NTzyRPr+weDEMG5YtjGpdkvqSpOuB04A5kt7XyefVrunT05UCTghmVg0HHghf\n+Uq6TLXO3jV0plIYCBxLqhKelTQM2DciHuqNAIsYKlcpuP+yVZArBWvX22/D6NHpYpYxY7KEUNG1\njyRtFxGrJQ1t6/GIeK0bMXZLRZPCjTfCz38O999fmeNZQ3NSsM1avDgtobNoEey8c6+fvtJJ4f6I\n+JyklUAA5QeOiPhw90PtmoolBfdftgpzUrAOXXUVzJ0LDz6YfmF6kVdJ7cj998Pll8PChb3+w7G+\nyUnBOrR+PXz842l+4eyze/XUVZloljS+1e0tJF3R1eBqwpQpqW+CE4KZ9ZYtt4Rbb4VLLoE//CF3\nNB3qzFVEn5Y0R9IwSfsA84FtKxWApJsk/VnSkkods02LFqXey6ecUtXTmJm9x4gR6Q3puHFpGLuG\ndZgUIuILwK3AUuBfgX+KiEkVjGEm8NcVPF7b3H/ZzHKaNCld/Th9eu5INqszl6R+hE1J4aPAU8CE\niHizYkFIw4H7ImK/dh7v2ZyC+y9blXhOwbpk+XI49FCYPz/1camyan147T7SUhfnAEcAzwILuhFf\nPtOmwdixTghmlteee8I3vgFnnQUbNuSOpk39O7HPQRGxGtJ1qMAUSfdVN6z3mjx5cmm7qamJpqam\nzj1x9erUAOPJJ6sSl5lZl5x/flpe+7rr0gfbKqi5uZnm5uYeHaNTl6QWE8x7A1u13BcRP+rRmd99\n/OoNH02dmtY4v+OOHkRo1jYPH1m3rFgBBx+cPr9QxZUVujN81GGlUFx+2kRKCnOAzwBzgYolBdIH\n4yp/nej69Skb/+xnFT+0mVm37bZbWk11zBiYNw/6d2bQpnd0Zk7hZODTwMsRMRbYH6jY4LyknwC/\nAvaQ9EdJYyt1bPdfNrOade65sO22cO21uSN5l86kp7ciYqOkdyRtB/w38L8rFUBxyWvltfRfvqI+\nP2dnZn1cv35w883wsY+llsD77ps7IqBzlcITkgYDNwILgUXAr6saVSU8/jisXZvWNDczq0W77ALf\n/nYaRlq/Pnc0QBfXPpK0K7BdRFT308fvPW/XJ5qPPz4lhHPOqU5QZnii2SogIv2tOvjgio9seEG8\nFs88A0cckdYZcbtNqyInBauIl16CAw5IK6mOGlWxw1brw2v153vfc/9lM6sfO+2U5kDHjIF167KG\nsrl+CnOAv4+IP/RqRG3H0vlKwf2XrRe5UrCKiYCTTkqL5119dUUOWelKYSbwkKRLJdXPKnLuv2xm\n9UiC66+Hm26C3/42XxibewcuaRBwGalH821Aac3XiJha9eg2xdG5SuGtt9LnEh57zP2XrVe4UrCK\nu+sumDw5LfffwyHwaswpvA28AbyP1EOh/Kv23HZbapTthGBm9eq009JnFi67LMvpNzencCwwFbgX\nuLKSS2V3VacqBfdftgxcKVhVvPIK7Lcf/PSncNhh3T5MpSuFS4FTIuLinAmh0+bMgW22gc6unmpm\nVqve//40Pzp2LLzxRq+euu98TuHII1NT7C9UZ9UMs7a4UrCq+uIXYciQ1BOmGxr3w2sLF6ZLuVas\ncLtN61VOClZVq1al+YXbbuvWsHjjfnjN/ZfNrC8aMgRuuAHGjYM1a3rllPVfKbj/smXkSsF6xfjx\nqefC9dd36WmNOXw0adKmZbLNepmTgvWK119PVyPdeCMcc0ynn9Z4SWH1avjQh1L/5V126f3ArOE5\nKViv+eUv0zDSkiUweHCnntJ4cwozZqSs6YRgZn3dUUelZjwXXljV09RvpbB+fepzOnu2221aNq4U\nrFetXZuGkaZNSwmiA41VKdx9dxo6ckIws0YxaBDMnJmah736alVOUZ9JoWViedKk3JGYmfWuI45I\nK0Gff35VDl+fScH9l82skV1zDTzxRBo+r7D6TApTpqTJln71Gb6ZWY8MHAi33ALnnZcai1VQ/U00\nu/+y1RBPNFtWX/saPPcczJqVfhlbaYyJZvdfNjNLrrwSnn4a7ryzYoesr0rB/ZetxrhSsOyeeCLN\nry5eDMOGveuhvl8puP+ymdm7HXggfOUr6TLVCrxDqZ9K4c033X/Zao4rBasJb7+dWhFPmABjxpTu\n7tuVgvsvm5m1bcAAuPVWuOgiePHFHh0qe1KQdKykZyT9h6R/bnfHqVNh4sRejMzMrI6MHAn/+I9p\nme0elK9Zk4KkfsD3gb8GRgB/J6ntUsD9l83MNu/ii9PyFzNmdPsQ/SsYTnccBDwbEc8DSLoTOAF4\n5j17TpzY5nW4ZmZW2HLLNIzU1ARHH92tQ+QePtoJeKHs9ovFfe91yim9EY+ZWX0bMSLNLYwb162n\n564UOm3y1VeXtpuammjyUJKZ2bs0NzfT3NwMGzfCihXdOkbWS1IlHQJMjohji9sXAxER32m1X/vt\nOM0y8iWpVrM2bED9+9fdJakLgN0lDZc0ADgduDdzTGZm9W+LLbr1tKzDRxGxQdI/AA+REtRNEfF0\nzpjMzBpZ/XyiuQ7itMbj4SOrZX37E81mZlZ1TgpmZlbipGBmZiVOCmZmVuKkYGZmJU4KZmZW4qRg\nZmYlTgpmZlbipGBmZiVOCmZmVuKkYGZmJU4KZmZW4qRgZmYlTgpmZlbipGBmZiVOCmZmVuKkYGZm\nJU4KZmZW4qRgZmYlTgpmZlbipGBmZiVOCmZmVuKkYGZmJU4KZmZW4qRgZmYlTgpmZlbipGBmZiVO\nCmZmVpItKUg6WdLvJW2QNCpXHGZmtknOSmEpcBLwWMYYzMysTP9cJ46I5QCSlCsGMzN7N88pmJlZ\nSVUrBUkPAx8svwsI4NKIuK+a5zYzs66ralKIiKMrdazJkyeXtpuammhqaqrUoc3M+oTm5maam5t7\ndAxFRGWi6W4A0qPApIhYuJl9InecZm2RwL+aVqskERFdmrfNeUnqiZJeAA4B7pf0QK5YzMwsyV4p\ndIYrBatVrhSsltVVpWBmZrXHScHMzEqcFMzMrMRJwczMSpwUzMysxEnBzMxKnBTMzKzEScHMzEqc\nFMzMrMRJwczMSpwUzMysxEnBzMxKnBTMzKzEScHMzEqcFMzMrMRJwczMSpwUzMysxEnBzMxKnBTM\nzKzEScHMzEqcFMzMrMRJwczMSpwUzMysxEnBzMxKnBTMzKzEScHMzEqcFMzMrMRJwczMSrIlBUnf\nlfS0pMWSfiZpu1yxmJlZkrNSeAgYEREjgWeBr2eMpW40NzfnDqFm+LXYxK/FJn4teiZbUoiIX0bE\nxuLmfGDnXLHUE//Cb+LXYhO/Fpv4teiZWplTGAc8kDsIM7NG17+aB5f0MPDB8ruAAC6NiPuKfS4F\n1kfET6oZi5mZdUwRke/k0lnA2cCnImLdZvbLF6SZWR2LCHVl/6pWCpsj6VjgIuDwzSUE6Po3ZWZm\n3ZOtUpD0LDAAeLW4a35E/H2WYMzMDMg8fGRmZrWlVq4+apOkYyU9I+k/JP1z7nhykbSzpEckLZO0\nVNL5uWPKTVI/SYsk3Zs7lpwkbS9pVvFB0GWSDs4dUy6Svl68Bksk3S5pQO6YepOkmyT9WdKSsvuG\nSHpI0nJJv5C0fUfHqdmkIKkf8H3gr4ERwN9J2itvVNm8A0yIiBHAx4HzGvi1aHEB8FTuIGrAdcCc\niPgosD/wdOZ4spA0nHTRygERsR9pvvT0vFH1upmkv5flLgZ+GRF7Ao/QiQ8J12xSAA4Cno2I5yNi\nPXAncELmmLKIiJcjYnGxvZb0H3+nvFHlI2ln4LPAjNyx5FQsDfPJiJgJEBHvRMTqzGHlshp4G9hG\nUn9gIPBfeUPqXRExF1jV6u4TgFuL7VuBEzs6Ti0nhZ2AF8puv0gD/yFsIWlXYCTwm7yRZPU90pVr\njT4h9iHgFUkzi6G0GyRtnTuoHCJiFTAF+CPwEvA/EfHLvFHVhB0i4s+Q3lwCO3T0hFpOCtaKpEHA\n3cAFRcXQcCQdB/y5qJxUfDWq/sAo4AcRMQp4kzRc0HAkfRi4EBgO/C9gkKQv5I2qJnX4RqqWk8JL\nwC5lt3cu7mtIRUl8N3BbRPw8dzwZHQocL+k54A7gSEk/yhxTLi8CL0TEE8Xtu0lJohEdCMyLiNci\nYgMwG/hE5phqwZ8lfRBA0o7Af3f0hFpOCguA3SUNL64iOB1o5CtNbgaeiojrcgeSU0RcEhG7RMSH\nSb8Tj0TEl3LHlUMxLPCCpD2Kuz5N406+LwcOkbSVJJFei0acdG9dPd8LnFVsjwE6fEOZ7RPNHYmI\nDZL+gbQF6bYCAAACP0lEQVTEdj/gpohoxB8ykg4FzgCWSnqSVAJeEhEP5o3MasD5wO2StgSeA8Zm\njieLiPhdUTEuBDYATwI35I2qd0n6CdAE/JWkPwJXAN8GZkkaBzwPnNrhcfzhNTMza1HLw0dmZtbL\nnBTMzKzEScHMzEqcFMzMrMRJwczMSpwUzMysxEnBGl6xNPlzkgYXt4cUt3fp6LmdOPbcnkdo1nv8\nOQUzQNIk4CMRcY6k64EVEfHd3HGZ9TZXCmbJ/wUOlnQBac2cKW3tJOkeSQuKZkdfLu7bpWgENVTJ\n45KOKh5bU/y7o6THitVMlxSfUjerOa4UzAqSjgEeBI6KiEfa2WdwRPyPpK1I63MdHhGrimUEjgV+\nC+wWEV8t9l8dEdtJmgC8LyK+VazNMzAi3uiVb8ysC1wpmG3yWVJjln03s88/SVoMzCet3PsRgIi4\nGdgOOAeY1MbzFgBjJV0O7OeEYLXKScEMkDSStLLmIcCEluWGW+1zBPAp4OCIGAksBrYqHtualCQA\nBrV+bkT8O3A4afn3WySdWY3vw6ynnBTMkumk5kUvAt+l7TmF7YFVEbGu6JF9SNlj3wF+DFzOu9uE\nCtK8A/DfEXFT8Xij9j2wGuekYA1P0tnA82XzCD8E9pL0yVa7PghsKWkZcA3w6+L5h5OavHwnIu4A\n1kkaUzynZdKuCfidpEWk5Ysbui+G1S5PNJuZWYkrBTMzK3FSMDOzEicFMzMrcVIwM7MSJwUzMytx\nUjAzsxInBTMzK3FSMDOzkv8PlVM9sSzz1iEAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x8cd4f60>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#Given \n",
    "#Lets divide the section into two sections \n",
    "l_ac = 10 # ft -The total length of the rod\n",
    "R = 5     #k - The applies force at c\n",
    "tan = 4/3 # The tan of the angle of the force \n",
    "l_ab = 5  #ft - The distance of applied force from A\n",
    "R_y = 4 #k,downwards X- component of the force\n",
    "R_X = 3 #k Y- component of the force , lets consider only Y direction since we are concentrating on the Shears \n",
    "\n",
    "#F_Y = 0 forces in Y directions\n",
    "#R_A +R_B =  R_y\n",
    "#M_c = 0 making the moment zero at point c \n",
    "#Caliculations \n",
    "# R_A= R_B*(l_ac - l_ab)/(l_ab) so R_A = R_B\n",
    "\n",
    "R_A =  R_y/2 #F_Y = 0\n",
    "R_B =  R_y/2\n",
    "#considering section x--x\n",
    "l_x = 2       #ft - length of section from A\n",
    "v_x = R_A     #k ,F_X = 0 \n",
    "M_x = R_A*l_x #k-ft M_c = 0\n",
    "\n",
    "#considering section at midpoint t--t\n",
    "l_t =  2        #ft - length of section from A\n",
    "v_t = 0         #k ,F_X = 0 \n",
    "M_t = (R_A)*l_t #k-ft M_c = 0\n",
    "\n",
    "##considering section y---y\n",
    "l_y = 2       #ft - length of section from B\n",
    "v_y = - R_B   #k ,F_X = 0 \n",
    "M_y = R_B*l_y #k-ft M_c = 0\n",
    "\n",
    "#Graph\n",
    "%matplotlib inline\n",
    "import math \n",
    "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
    "#Drawing of shear and bending moment diagram\n",
    "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
    "X = [0,2,4.9999999999999,5,5.00000000000000001,7,10] # For graph precision \n",
    "\n",
    "V = [R_A,v_x,v_x,v_t,v_y,v_y,-R_B];\t\t\t#Shear matrix\n",
    "M = [0,M_x,M_t,M_t,M_t,M_y,0];\t\t\t#Bending moment matrix\n",
    "plot(X,V);\t\t\t#Shear diagram\n",
    "plot(X,M,'r');\t\t\t#Bending moment diagram\n",
    "suptitle( 'Shear and bending moment diagram')\n",
    "xlabel('X axis')\n",
    "ylabel( 'Y axis') ;"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.6 pagenumber 243 "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEhCAYAAABRKfYcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGchJREFUeJzt3Xu0ZGV9p/HnC4ioKIhxlBHBiDAEFVmoSKLCIRoFogE7\nireIGnUxOo4mmhmdGQ09cYyiKy5lMWogjJcx4CVqQASFid0iCoJcWwIK0raKlywVtEVDEH7zR72H\nLtpzqbP7VNWpOs9nrbN6V9Wuvd/afbqe3nvXJVWFJElLtd24ByBJmkwGRJLUiQGRJHViQCRJnRgQ\nSVInBkSS1IkBWQWS/I8kX09yVZLLkzy+Xb8xyW7jHt9i5htnks1DWt8Hkqxp06cm2W8Y61kJkjwm\nyZEDzrsuyUFt+uwk9xvu6LTS7TDuAWi4khwCHAUcWFW/bk/EO7abl/1NQEm2r6o7lnmx841z6G9i\nqqpXDHsdY3Yg8Djg3KXcqaqesRwrH9Lvi0bEPZDptzvw46r6NUBV/bSqfthuC/CaJJe1vZN9AZLc\nO8lpSS5utz2zXb9XkguSfK39HNKuP6xdfyZwzdYDSPLeJJck2ZDkhL7rNyZZO8f6d0vy+Tb/qW2c\nc0mSd7W9q/OTPKBd+fAk5ya5NMkX+5b7gSTvSfLlJDfM7mW0205Ocm2S84B/13d9//+6Nyf5X0mu\nTPKVJA/sW99F7TG8Za49o7btrm1j+EaSv0/yB20s30jyuDbf/ZN8ui3rK0ke1a4/IckH23bemGRN\nkncmuTrJOUm2b/MdlGR9e+znJnlQ3+N4e5KvJrkuyROT3AP4K+DYtmf6nK3GvFOSM5Jck+RTwE5b\n/d3t1qY/3da3IcnL++Z5WXtsFyc5JclJfX8P70tyMXBikse3x3pZkguT7NPme3Fb9nlJbkzy6iSv\nb2P9SpJd5/m90KhUlT9T/APcB7gCuA7438ChfbdtBF7Vpl8JnNKm3wq8oE3vAnwDuBe9J5Ad2/WP\nAC5t04cBm4E95xnDru3P7YB1wKMWWf97gDe16aOAO4Dd5ljuncDz2vSbgZPa9P8D9m7TBwP/1KY/\nAHysTf8OcH2bXgN8vk3vDtwMrGmX1wEH9a3vqDZ9IvDf2/RngGPb9PHAz+cY617AvwH7t8tfA05r\n038EfKpNnwS8uU0fDlzRpk8ALmjb8ADgl8DT2m2fasvYAfgy8IB2/bF961gHvLNNHwmc36ZfPLvd\n5hjznwN/16YfDdzety1unP076fv73QnYANy/bceN9H5/tm9jP6nv7+GsvvXsDGzXpp8C/EPf2L4J\n3Bv4LeBnwCvabe8CXjPuf1+r/cdDWFOuqm5t/4N+MvD7wEeTvLGqPtxm+XT78zLgWW36acAzk/yX\ndnlHYE/gB8DJSQ6k96S+T9+qLqmq78wzjOcleQW9J7gHA/sDX19g/YfOTlfVOUlunme5dwAfb9Mf\nAT6Z5D7A7wGfSDK753KPvvv8Y1vutUlm9zSeDJzRrv9Bki/Ms77bquqcvvE+tU3/LnB0mz4deOc8\n999YVf/cpq+hFzroPek+rE0/iV7QqKp1bW9s53bbuVV1Z5INQKrqvK3u/x+ARwHnt8e+HfD9vvV/\nqm/se80zxn6H0os5VbUhyVV9t/XvFf5ZkmPa9B70fi92B9ZX1c8AknyCu/++fKJvelfgw23Po7j7\nofV1VfVL4Jft9+Dsvsf86AEeg4bIgKwC1fsv2wXABe3J5zhgNiC3tT/vYMvvQ4A/rqrr+5eT3uGn\nH1bVAe2Qya/6br51rnUneRjweuCxVfXzJB+g71DIPOv/jcUs+AC3KHpPmjdX1UHzzHNb3/Sgy511\ne990/3j7z8UstMz+dd/Zd/lOBvu3eBv0/j6T9I9l9v4Bvl5VT1xk/Qtt64X8xmNLchi9/5g8oapu\nS7KOLX+/C22L/t+XtwBfqKo1Sfait7e09Ziht52Xus00RJ4DmXJJ9k3yiL6rDgQ2LXK3zwOv6VvG\ngW1yF3p7IdCL0PYDDOF+wC+Aze14/CCv+LkAeGFb95H0/oc6l+2BZ7fpFwIXVtVmYGOS2etJcsA8\n9599grsAeG6S7ZLsTu/Q0ULzb+3ivnE8b555Frp/vy8BfwKQZIbe+atfDLisbwAPzJZzUzsk2X+R\nsWym93c0l/6/h0fRO3S2tV3oBfu29F6tdki7/lLg0CS7JNkB+ON51kFb/01t+qULzKcVxoBMv52B\nD6V3ovlKesf+17bb5nsV01uAe7QTtBvonWgFeC/wkiRXAPsyz15Hv6q6GrgSuJbeYaYL+2+e527/\nk96TzwbgGGC+Q2O/AA5u8830jfOFwMvSO9n9dXrnB+ZaX7Uxfhq4gd5hpQ8CX5lnjPON98+B17Xt\nuze9Y/VzGWRZa4HHtsNFf00v1Istq3dF1e30QnZiG8sV9A6vzTX/7OV1wP5znUQH3gfsnOSaNq6v\nzXH/z9H7XbmmjfeiNpbvt8uX0IviRrZsl63H8k7g7UkuY+HnJD86fIVJ7+iGpK6S3KuqftWmn0vv\nxP6zFrnb1Etyn3YObnt657pOq6ozxz0uLR+PIUrb7rFJTqZ3WOhm4E/HPJ6VYm2SpwL3BM4zHtPH\nPRBJUieeA5EkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnRgQSVInYw9Iet878aMkVy8wz0lJrm8f\nTXHgfPNJkkZn7AGh990AT5/vxvZhentX1T70vmvh/aMamCRpfmMPSFVdSO/jH+ZzNO2jx6vqq8Au\ns9+yJkkan7EHZAAPAb7bd/mmdp0kaYwmISCSpBVoEj6N9ybgoX2X92DLl8/cTRI/GVKSlqiqlvrt\nnMDK2QMJ839b21m0L9Vp37R2S1X9aL4FjftL5lfKzwknnDD2MayEH7eD28JtsfDPthj7HkiS0+l9\nm9wDknwHOAHYkd5XP59SVeckOSrJDfS+Ac+vvJSkFWDsAamqFwwwz6tHMRZJ0uBWyiEsLbOZmZlx\nD2FFcDts4bbYwm2xPKbqGwmT1DQ9HkkatiTUhJ9ElyRNGAMiSerEgEiSOjEgkqRODIgkqRMDIknq\nxIBIkjoxIJKkTgyIJKkTAyJJ6sSASJI6MSCSpE4MiCSpEwMiSerEgEiSOjEgkqRODIgkqRMDIknq\nxIBIkjoxIJKkTgyIJKkTAyJJ6sSASJI6MSCSpE4MiCSpEwMiSerEgEiSOjEgkqRODIgkqRMDIknq\nxIBIkjoxIJKkTgyIJKkTAyJJ6sSASJI6MSCSpE4MiCSpEwMiSerEgEiSOjEgkqRODIgkqRMDIknq\nxIBIkjoxIJKkTgyIJKmTsQckyRFJrkvyzSRvmOP2w5LckuTy9vOmcYxTknR3O4xz5Um2A04GngJ8\nH7g0yZlVdd1Ws15QVX808gFKkuY17j2Qg4Hrq2pTVd0OfBQ4eo75MtphSZIWM+6APAT4bt/l77Xr\ntva7Sa5M8tkk+49maJKkhYz1ENaALgP2rKpfJjkS+Edg3/lmXrt27V3TMzMzzMzMDHt8kjQx1q9f\nz/r165dlWamqZVlQp5UnhwBrq+qIdvmNQFXViQvcZyPw2Kr66Ry31TgfjyRNmiRUVafTBOM+hHUp\n8IgkeyXZEXgecFb/DEke1Dd9ML3o/UY8JEmjNdZDWFV1R5JXA+fRi9lpVXVtkuN7N9cpwLOTvBK4\nHfgV8NzxjViSNGush7CWm4ewJGlpJvkQliRpQhkQSVInBkSS1IkBkSR1YkAkSZ0YEElSJwZEktSJ\nAZEkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElSJwZEktSJ\nAZEkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElSJwZEktSJ\nAZEkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnRgQSVIniwYkyXOS3LdNvynJp5IcNPyhSZJWskH2\nQN5cVZuTPAl4KnAa8L7hDkuStNINEpA72p9/CJxSVZ8FdhzekCRJk2CQgNyU5G+B5wLnJLnngPeT\nJE2xVNXCMyT3Bo4ANlTV9Ul2Bx5dVeeNYoBLkaQWezySpC2SUFXpdN/5nnCT3K+qfp5kt7lur6qf\ndlnhMBkQSVqaYQXk7Kp6RpKNQAH9K6iqeniXFQ6TAZGkpRlKQCaRAZGkpdmWgAzyPpCXbXV5+yQn\ndFmZJGl6DPJqqqckOSfJ7kkeBVwM3He5BpDkiCTXJflmkjfMM89JSa5PcmWSA5dr3ZKk7nZYbIaq\nekGS5wIbgFuBF1TVl5dj5Um2A04GngJ8H7g0yZlVdV3fPEcCe1fVPkmeALwfOGQ51i9J6m6QQ1j7\nAK8FPglsAl7UXtq7HA4Grq+qTVV1O/BR4Oit5jka+DBAVX0V2CXJg5Zp/ZKkjgY5hPUZeh9ncjxw\nGHA9cOkyrf8hwHf7Ln+vXbfQPDfNMY8kacQWPYQFHFxVP4fea3eBv0nymeEOq7u1++0Hj3wk7Lsv\nM09/OjMzM+MekiStGOvXr2f9+vXLsqyBXsbbTp7vD+w0e11VfXibV54cAqytqiPa5Tf2Fl0n9s3z\nfmBdVX2sXb4OOKyqfjTH8qo+9CH4xCfgggvg8MPh2GPhmc+E+y7beX9JmhpDfR9Ie8nuDL2AnAMc\nCVxYVc/ussKtlr098A16J9F/AFwCPL+qru2b5yjgP1XVH7bgvLuq5jyJfrf3gdxyC5x1ljGRpAUM\nOyAbgMcAV1TVY9oJ7I9U1R90WeEcyz8CeA+98zGnVdXbkxxPb0/klDbPyfQ+j+tW4KVVdfk8y5r7\njYTGRJLmNOyAXFJVBye5DDgc2AxcW1X7dVnhMA30TnRjIkl3Geo70YGvJdkVOBW4DLgcuKjLylaE\nXXeF446Dz3wGNm2CNWvgjDNgjz3gmGPg9NNh8+Zxj1KSVrwlfRZWkocB96uqq4c1oG2xTZ+F5Z6J\npFXID1Nslu3DFI2JpFXCgDRD+TReYyJpig3r+0DOAV5VVd/ehrGN1NA/zt2YSJoywwrIc4C3Ah8C\n3tE+q2pFG+n3gRgTSVNgaIewkuwMvJneezD+L3Dn7G1V9a4uKxymsX2hlDGRNKGG+TLef6P35r17\n0vsOkP4fzfKlwZJWoYUOYR0BvAs4C/irqvrlKAfWxYr7Slv3TCStcMM6B/Il4D9W1TXbMrhRWnEB\n6WdMJK1Avoy3WdEB6WdMJK0QBqSZmID0MyaSxsiANBMZkH7GRNKIGZBm4gPSz5hIGgED0kxVQPoZ\nE0lDYkCaqQ1IP2MiaRkZkGZVBKSfMZG0jQxIs+oC0s+YSOrAgDSrOiD9jImkARmQxoDMwZhIWoAB\naQzIIoyJpK0YkMaALIExkYQBuYsB6ciYSKuWAWkMyDIwJtKqYkAaA7LMjIk09QxIY0CGyJhIU8mA\nNAZkRIyJNDUMSGNAxsCYSBPNgDQGZMyMiTRxDEhjQFYQYyJNBAPSGJAVyphIK5YBaQzIBDAm0opi\nQBoDMmGMiTR2BqQxIBPMmEhjYUAaAzIljIk0MgakMSBTyJhIQ2VAGgMy5YyJtOwMSGNAVhFjIi0L\nA9IYkFXKmEidGZDGgMiYSEtjQBoDorsxJtKiDEhjQDQvYyLNyYA0BkQDMSbSXQxIY0C0ZMZEq5wB\naQyItokx0SpkQBoDomVjTLRKGJDGgGgojImm2EQGJMn9gY8BewHfBo6tqp/NMd+3gZ8BdwK3V9XB\nCyzTgGi4jImmzKQG5ETgJ1X1jiRvAO5fVW+cY74bgcdW1c0DLNOAaHSMiabApAbkOuCwqvpRkgcD\n66tqvznm2wg8rqp+MsAyDYjGw5hoQk1qQH5aVbvNd7nv+huBW4A7gFOq6tQFlmlANH7GRBNkWwKy\nw3IPpl+S84EH9V8FFPCmOWaf75n/iVX1gyQPBM5Pcm1VXTjfOteuXXvX9MzMDDMzM0sdtrRtdt0V\njjuu9zMbkzPOgFe+0pho7NavX8/69euXZVnj3AO5FpjpO4S1rqp+Z5H7nABsrqp3zXO7eyBauWZj\n8vGPw5e+ZEy0ImzLHsh2yz2YJTgLeEmbfjFw5tYzJLl3kp3b9H2ApwFfH9UApWU1u2dy9tmwaROs\nWQOnnw577AHHHNOb3rx53KOUBjbOPZDdgI8DDwU20XsZ7y1JdgdOrapnJPlt4NP0Dm/tAPx9Vb19\ngWW6B6LJ456JxmgiT6IPgwHRxDMmGjED0hgQTRVjohEwII0B0dQyJhoSA9IYEK0KxkTLyIA0BkSr\njjHRNjIgjQHRqmZM1IEBaQyI1BgTDciANAZEmoMx0QIMSGNApEUYE23FgDQGRFoCYyIMyF0MiNSR\nMVm1DEhjQKRlYExWFQPSGBBpmRmTqWdAGgMiDZExmUoGpDEg0ogYk6lhQBoDIo2BMZloBqQxINKY\nGZOJY0AaAyKtIMZkIhiQxoBIK5QxWbEMSGNApAlgTFYUA9IYEGnCGJOxMyCNAZEmmDEZCwPSGBBp\nShiTkTEgjQGRppAxGSoD0hgQacoZk2VnQBoDIq0ixmRZGJDGgEirlDHpzIA0BkSSMVkaA9IYEEl3\nY0wWZUAaAyJpXsZkTgakMSCSBmJM7mJAGgMiaclWeUwMSGNAJG2TVRgTA9IYEEnLZpXExIA0BkTS\nUExxTAxIY0AkDd2UxcSANAZE0khNQUwMSGNAJI3NhMbEgDQGRNKKMEExMSCNAZG04qzwmBiQxoBI\nWtFWYEwMSGNAJE2MFRITA9IYEEkTaYwxMSCNAZE08UYcEwPSGBBJU2UEMTEgjQGRNLWGFBMD0hgQ\nSavCMsZkWwKyXZc7LYckz07y9SR3JDlogfmOSHJdkm8mecMoxyhJK9Kuu8Jxx8HZZ8OmTbBmDZx+\nOuyxBxxzTG968+ahD2NsAQE2AM8CvjjfDEm2A04Gng48Enh+kv1GM7zJtn79+nEPYUVwO2zhtthi\nqrbFGGMytoBU1Teq6npgoV2ng4Hrq2pTVd0OfBQ4eiQDnHBT9Q9kG7gdtnBbbDG122LEMRnnHsgg\nHgJ8t+/y99p1kqSFjCAmQw1IkvOTXN33s6H9+cxhrleS1GehmGyDsb8KK8k64PVVdfkctx0CrK2q\nI9rlNwJVVSfOsyxfgiVJS9T1VVg7LPdAOppv8JcCj0iyF/AD4HnA8+dbSNeNIElaunG+jPeYJN8F\nDgHOTnJuu373JGcDVNUdwKuB84BrgI9W1bXjGrMkaYuxH8KSJE2mlf4qrN8wyBsLk5yU5PokVyY5\ncNRjHJXFtkWSFyS5qv1cmOTR4xjnKAz6htMkj09ye5I1oxzfKA34b2QmyRXtzbzrRj3GURng38gD\nkpzbnis2JHnJGIY5EklOS/KjJFcvMM/SnjuramJ+6AXvBmAv4B7AlcB+W81zJPDZNv0E4OJxj3uM\n2+IQYJc2fcRq3hZ98/0TcDawZtzjHuPvxS70Dgk/pF3+rXGPe4zb4gTgbbPbAfgJsMO4xz6k7fEk\n4EDg6nluX/Jz56TtgQzyxsKjgQ8DVNVXgV2SPGi0wxyJRbdFVV1cVT9rFy9met9DM+gbTv8z8A/A\nv4xycCM2yLZ4AfDJqroJoKp+POIxjsog2+KHwOyHR90X+ElV/XqEYxyZqroQuHmBWZb83DlpARnk\njYVbz3PTHPNMg6W+yfLlwLlDHdH4LLotkvx74Jiqeh8Lf/rBpBvk92JfYLck65JcmuRFIxvdaA2y\nLU4FHpnk+8BVwGtHNLaVaMnPnSvlZbwaoiSHAy+ltwu7Wr0b6D8GPs0RWcwOwEHA7wP3AS5KclFV\n3TDeYY3FfwOuqqrDk+wNnJ/kgKr6xbgHNgkmLSA3AXv2Xd6jXbf1PA9dZJ5pMMi2IMkBwCnAEVW1\n0O7rJBtkWzwO+GiS0DvWfWSS26vqrBGNcVQG2RbfA35cVf8K/GuSC4DH0DtfME0G2RZPBN4KUFXf\nSrIR2A/42khGuLIs+blz0g5h3fXGwiQ70ntj4dZPAGcBx8Fd72S/pap+NNphjsSi2yLJnsAngRdV\n1bfGMMZRWXRbVNXD289v0zsP8qopjAcM9m/kTOBJSbZPcm96J0yn8f1Vg2yLa4GnArTj/fsCN450\nlKMV5t/7XvJz50TtgVTVHUlm31i4HXBaVV2b5PjezXVKVZ2T5KgkNwC30jt0M3UG2RbAm4HdgPe2\n/3nfXlUHj2/UwzHgtrjbXUY+yBEZ8N/IdUk+D1wN3AGcUlX/PMZhD8WAvxdvAz6Q5Cp6T6z/tap+\nOr5RD0+S04EZ4AFJvkPvFWg7sg3Pnb6RUJLUyaQdwpIkrRAGRJLUiQGRJHViQCRJnRgQSVInBkSS\n1IkBkQaUZI8kNybZtV2+f7u852L3HWDZF277CKXR8n0g0hIk+Qtgn6o6PsnfAt+qqneMe1zSOLgH\nIi3Nu4EnJHkt8HvA38w1U5JPt0+63ZDk5e26PdsXG+2WnguSzH6Mxub254OTfDHJ5UmuTvLEET0u\nacncA5GWKMnTgM8BT62qL8wzz65VdUuSneh9JtOhVXVzkj+l9+VelwB7V9Ur2/w/r6r7JXkdcM+q\nelv7+Jl7V9WtI3lg0hK5ByIt3VHA94GFviL4z5JcSe+LvPYA9gGoqv8D3A84HviLOe53KfDSJH8J\nHGA8tJIZEGkJ2vdEP4Xe1wW/bq5vbEtyGL3v2nhCVR1I76tUd2q33YteUAB23vq+VfUl4FB6H6P9\nwSR/MozHIS0HAyItzXuB11bV94B3MPc5kF2Am6vqtiT70YvNrBOBjwB/Cfxd3/WBuz6C/1+q6rR2\n+0HL/xCk5WFApAEleQWwqe+8x/uA/ZI8eatZPwfcI8k1wF8DF7X7H0rvi61OrKozgNuSvLjdZ/Zk\n5AxwVZLLgWOB9wzr8UjbypPokqRO3AORJHViQCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElSJwZE\nktTJ/we9KQxTSP9nSgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x8cc3710>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#Given\n",
    "l = 1                       #L - Length of the cantilever \n",
    "F_app = ((2**0.5))*2        #p - force applies \n",
    "tan = 1                     # The angle of force applied\n",
    "F_app_x = F_app/((2**0.5))  #p The horizantal component of the force , neglected \n",
    "F_app_y = F_app/((2**0.5))  #p  The Vertical component of the force \n",
    "#F_Y = 0 \n",
    "R_A = 1 #p\n",
    "\n",
    "#Considering  section 1-----1\n",
    "l_1 = 0.5       # The length of the section from one end\n",
    "v_1 = R_A       #F_Y = 0\n",
    "M_1 = -R_A*l_1  #MAking moment at section 1 = 0\n",
    "\n",
    "#considering end of cantilever\n",
    "l_2 = 1       # The length of the section from one end\n",
    "v_2 = R_A     #F_Y = 0\n",
    "M_2 = -R_A*l_2#MAking moment at section 1 = 0\n",
    "\n",
    "#Graph\n",
    "%matplotlib inline\n",
    "import math \n",
    "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
    "#Drawing of shear and bending moment diagram\n",
    "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
    "X = [0,0.5,1] # For graph precision \n",
    "\n",
    "V = [R_A,v_1,v_2 ];\t\t\t#Shear matrix\n",
    "M = [0,M_1,M_2];\t\t\t#Bending moment matrix\n",
    "plot(X,V);\t\t\t        #Shear diagram\n",
    "plot(X,M,'r');\t\t\t    #Bending moment diagram\n",
    "suptitle( 'Shear and bending moment diagram')\n",
    "xlabel('X axis')\n",
    "ylabel( 'Y axis') ;\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.7 page number 243"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEhCAYAAABRKfYcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGjZJREFUeJzt3XmUNXV95/H3BxARCWsUOSI4KgaJGoIGMRro4BJgjKAx\nippxiXoYZziaaHJ0ouZ5HGcc0RMXZNSwuKBxiYkLKihEnhZRWWSRBwR9HAkqKnNGQVE8hMB3/qh6\n5NL07b5d3Xft9+ucPk/de+ve+lVXP/3uqrpLqgpJklZqm3EPQJI0nQyIJKkTAyJJ6sSASJI6MSCS\npE4MiCSpEwOyDiR5TZIrk3wjyaVJfq+9/toku497fMvpN84kNw9pee9L8vR2+pQk+w9jOZMgye8k\nOXLAeTclOaid/mySnYc7Ok267cY9AA1XkkOAo4ADq+rf21/E27c3r/mLgJJsW1W3r/HD9hvn0F/E\nVFUvGfYyxuxA4NHAWSu5U1U9ZS0WPqSfF42IeyCzby/g/1XVvwNU1U+r6sftbQFeluSSdu/koQBJ\ndkxyWpIL2tv+uL1+3yTnJfl6+3VIe/1h7fWfBq5aOIAk70pyUZLNSTb0XH9tko2LLH/3JF9o5z+l\nHedikuSt7d7VOUn2aK98UJKzklyc5Es9j/u+JO9I8pUk39m6l9HedlKSq5OcDdy35/rev7pvTvI/\nklye5KtJ7tOzvK+16/CGxfaM2u/d1e0YvpXkH5I8qR3Lt5I8up1vtySfbB/rq0ke3l6/Icn72+/z\ntUmenuQtSa5IcmaSbdv5Dkoy3677WUn27FmPNyW5MMk1SR6X5B7Afwee2e6Z/umCMe+Q5CNJrkry\nCWCHBdtu93b6k+3yNid5cc88L2rX7YIkJyc5sWc7vDvJBcAJSX6vXddLkpyfZL92vue3j312ku8m\nOT7JK9uxfjXJrn1+LjQqVeXXDH8B9wYuA64B/jdwaM9t1wL/pZ1+KXByO/0/gee007sA3wLuRfML\nZPv2+ocAF7fThwE3A/v0GcOu7b/bAJuAhy+z/HcAr22njwJuB3Zf5HHvAI5tp18HnNhO/wvw4Hb6\nYOCL7fT7gI+10w8DtrTTTwe+0E7vBdwIPL29vAk4qGd5R7XTJwB/005/BnhmO30c8PNFxrov8G/A\nAe3lrwOntdNPBT7RTp8IvK6d/kPgsnZ6A3Be+z18JHAL8OT2tk+0j7Ed8BVgj/b6Z/YsYxPwlnb6\nSOCcdvr5W79vi4z5L4FT2+lHALf1fC++u3Wb9GzfHYDNwG7t9/Famp+fbduxn9izHc7oWc5OwDbt\n9BOAf+oZ27eBHYHfBH4GvKS97a3Ay8b9/2u9f3kIa8ZV1S/bv6D/ADgc+GiSV1fV6e0sn2z/vQR4\nWjv9ZOCPk/x1e3l7YB/gR8BJSQ6k+aW+X8+iLqqq7/UZxrFJXkLzC+5+wAHAlUss/9Ct01V1ZpIb\n+zzu7cA/ttMfAv45yb2B3wc+nmTrnss9eu7zqfZxr06ydU/jD4CPtNf/KMm5fZZ3a1Wd2TPeJ7bT\njwWObqc/DLylz/2vrapvttNX0YQOml+6D2ynH08TNKpqU7s3tlN721lVdUeSzUCq6uwF9/8t4OHA\nOe26bwP8sGf5n+gZ+759xtjrUJqYU1Wbk3yj57bevcK/SHJMO703zc/FXsB8Vf0MIMnHuevPy8d7\npncFTm/3PIq7HlrfVFW3ALe0Pwef7VnnRwywDhoiA7IOVPMn23nAee0vn+cBWwNya/vv7dz58xDg\nT6pqS+/jpDn89OOqemR7yORXPTf/crFlJ3kg8ErgUVX18yTvo+dQSJ/l3+1hllzBOxXNL80bq+qg\nPvPc2jM96ONudVvPdO94e8/FLPWYvcu+o+fyHQz2f/FWaLZnkt6xbL1/gCur6nHLLH+p7/VS7rZu\nSQ6j+cPkMVV1a5JN3Ll9l/pe9P68vAE4t6qenmRfmr2lhWOG5vu80u+ZhshzIDMuyUOTPKTnqgOB\n65a52xeAl/U8xoHt5C40eyHQRGjbAYawM/AL4Ob2ePwgz/g5D3huu+wjaf5CXcy2wDPa6ecC51fV\nzcC1SbZeT5JH9rn/1l9w5wHPSrJNkr1oDh0tNf9CF/SM49g+8yx1/15fBv4MIMkczfmrXwz4WN8C\n7pM7z01tl+SAZcZyM802Wkzvdng4zaGzhXahCfataZ6tdkh7/cXAoUl2SbId8Cd9lkG7/Ovb6Rcu\nMZ8mjAGZfTsBH0hzovlymmP/G9vb+j2L6Q3APdoTtJtpTrQCvAt4QZLLgIfSZ6+jV1VdAVwOXE1z\nmOn83pv73O31NL98NgPHAP0Ojf0COLidb65nnM8FXpTmZPeVNOcHFltetWP8JPAdmsNK7we+2meM\n/cb7l8Ar2u/vg2mO1S9mkMfaCDyqPVz0RppQL/dYzRVVt9GE7IR2LJfRHF5bbP6tlzcBByx2Eh14\nN7BTkqvacX19kft/nuZn5ap2vF9rx/LD9vJFNFG8lju/LwvH8hbgTUkuYenfSb51+IRJc3RDUldJ\n7lVVv2qnn0VzYv9py9xt5iW5d3sObluac12nVdWnxz0urR2PIUqr96gkJ9EcFroR+PMxj2dSbEzy\nROCewNnGY/a4ByJJ6sRzIJKkTgyIJKkTAyJJ6sSASJI6MSCSpE4MiCSpEwMiSepk7AFJ87kTNyS5\nYol5TkyypX1rigP7zSdJGp2xB4TmswH+qN+N7ZvpPbiq9qP5rIX3jGpgkqT+xh6Qqjqf5u0f+jma\n9q3Hq+pCYJetn7ImSRqfsQdkAPcHvt9z+fr2OknSGE1DQCRJE2ga3o33euABPZf35s4Pn7mLJL4z\npCStUFWt9NM5gcnZAwn9P63tDNoP1Wk/ae2mqrqh3wON+0Pmh/W1YcOGsY9hrb/e9rW38aB3PIjr\nbroOmL31m/Xt1/t1/F8fz95v3ZtTLjll7GNx+63sazXGvgeS5MM0nya3R5LvARuA7Wk++vnkqjoz\nyVFJvkPzCXh+5OUMePsFb+edF72TTc/fxD677DPu4WiV9thxD8593rkcfvrhALz4oBePeUQahbEH\npKqeM8A8x49iLBoN4zGb9ttjPyOyzow9IBrM3NzcuIewJvrHY25cQxqJWdl+/Wxdv1mNyKxvv65m\n6hMJk9Qsrc+sWWrPIwE33ezY8pMtHH764Ww4bMPMRGRWJaE6nkR3D0Qj4WGr9WVW90R0VwZEQ2c8\n1icjMvsMiIbKeKxvRmS2GRANjfEQGJFZZkA0FMZDvYzIbDIgWnPGQ4sxIrPHgGhNGQ8txYjMFgOi\nNWM8NAgjMjsMiNaE8dBKGJHZYEC0asZDXRiR6WdAtCrGQ6thRKabAVFnxkNrwYhMLwOiToyH1pIR\nmU4GRCtmPDQMRmT6GBCtiPHQMBmR6WJANDDjoVEwItPDgGggxkOjZESmgwHRsoyHxsGITD4DoiUZ\nD42TEZlsBkR9GQ9NAiMyuQyIFmU8NEmMyGQyILob46FJZEQmjwHRXRgPTTIjMlkMiH7NeGgaGJHJ\nYUAEGA9NFyMyGQyIjIemkhEZPwOyzhkPTTMjMl4GZB0zHpoFRmR8DMg6ZTw0S4zIeBiQdch4aBYZ\nkdEzIOuM8dAsMyKjZUDWEeOh9cCIjI4BWSeMh9YTIzIaBmQdMB5aj4zI8BmQGWc8tJ4ZkeEyIDPM\neEhGZJgMyIwyHtKdjMhwGJAZZDykuzMia8+AzBjjIfVnRNaWAZkhxkNanhFZOwZkRhgPaXBGZG0Y\nkBlgPKSVMyKrZ0CmnPGQujMiq2NAppjxkFbPiHRnQKaU8ZDWjhHpZptxDyDJEUmuSfLtJK9a5PbD\nktyU5NL267XjGOckMR7S2tsakdd/6fWceump4x7OVBjrHkiSbYCTgCcAPwQuTvLpqrpmwaznVdVT\nRz7ACWQ8pOFxT2Rlxn0I62BgS1VdB5Dko8DRwMKAZNQDm0TGQxo+IzK4cR/Cuj/w/Z7LP2ivW+ix\nSS5P8rkkB4xmaJPFeEij4+GswYx7D2QQlwD7VNUtSY4EPgU8tN/MGzdu/PX03Nwcc3Nzwx7f0L39\ngrdz4oUnMv+CeeMhjcis7onMz88zPz+/Jo+VqlqTB+q08OQQYGNVHdFefjVQVXXCEve5FnhUVf10\nkdtqnOszDOtlzyOBGdt0mhFbfrKFw08/nA2HbZiZiPRKQlV1Ok0w7j2Qi4GHJNkX+BFwLPDs3hmS\n7FlVN7TTB9NE727xmEXrJR7SJJvVPZG1MNaAVNXtSY4HzqY5H3NaVV2d5Ljm5joZeEaSlwK3Ab8C\nnjW+EY+O8ZAmhxFZ3FgPYa21WTmEtR7j4SEsTYNZPJw1zYewtMB6jIc0LdwTuSsDMkGMhzT5jMid\nDMiEMB7S9DAiDQMyAYyHNH2MiAEZO+MhTa/1HhEDMkbGQ5p+6zkiBmRMjIc0O9ZrRAzIGBgPafas\nx4gYkBEzHtLsWm8RMSAjZDyk2beeImJARsR4SOvHeomIARkB4yGtP+shIgZkyIyHtH7NekQMyBAZ\nD0mzHBEDMiTGQ9JWsxoRAzIExkPSQrMYEQOyxoyHpH5mLSIGZA0ZD0nLmaWIGJA1YjwkDWpWImJA\n1oDxkLRSsxARA7JKxkNSV9MeEQOyCsZD0mpNc0QMSEfGQ9JamdaIGJAOjIektTaNETEgK2Q8JA3L\ntEXEgKyA8ZA0bNMUEQMyIOMhaVSmJSIGZADGQ9KoTUNEDMgyjIekcZn0iBiQJRgPSeM2yRExIH0Y\nD0mTYlIjYkAWYTwkTZpJjIgBWcB4SJpUkxYRA9LDeEiadJMUEQPSMh6SpsWkRMSAYDwkTZ9JiMi6\nD4jxkDStxh2RdR0Q4yFp2o0zItssN0OSP03yG+30a5N8IslBwx/acBkPSbNia0Re/6XXc+qlp45s\nucsGBHhdVd2c5PHAE4HTgHcPd1jDZTwkzZpxRGSQgNze/vsfgZOr6nPA9sMb0nAZD0mzatQRGeQc\nyPVJ/h54EnBCknsyWHgmjvGQNOtGeU4kVbX0DMmOwBHA5qrakmQv4BFVdfbQRtVRkuq3PsZjsiWw\nzI+ipBXY8pMtHH764Ww4bMOSEUlCVaXLMvrugSTZuap+DuwAzLfX7Q7cCny9y8LGxXhIWm9GsSey\n1CGsDwNPAS4BCugtVAEPWvPRDIHxkLReDTsiyx7CmiYLD2EZj+nhISxpeJY6nLWaQ1iDvA7kRQsu\nb5tkQ5eFjZLxkKTGsJ6dNcizqZ6Q5MwkeyV5OHAB8BtrNYAkRyS5Jsm3k7yqzzwnJtmS5PIkBy73\nmMZDku5qGBFZ9mm8VfWcJM8CNgO/BJ5TVV9Zi4Un2QY4CXgC8EPg4iSfrqpreuY5EnhwVe2X5DHA\ne4BD+j2m8ZCkxa31OZFlA5JkP+DlwD8DDwP+U5LLquqWVS25cTCwpaqua5f1UeBo4JqeeY4GTgeo\nqguT7JJkz6q6YbEHNB6S1N/CiKzGIC8k/AzwX6vqi0kCvAK4GPjtVS8d7g98v+fyD2iistQ817fX\nLRoQ4yFJS1uriAwSkIPb14PQPsXp75J8ZlVLHaL3vu29v56em5tjbm5ufIPRwHbbrXkmlqbTbrvB\nT3867lFoEPPz88zPzwNwzC3HcBIndX6sgZ7G2548P4DmRYUAVNXpnZd65+MeAmysqiPay69uHrpO\n6JnnPcCmqvpYe/ka4LDFDmEt9Up0ScPj07Cn17CfxrsBeGf79YfAm4GndlnYIi4GHpJk3yTbA8cC\nZyyY5wzgee1YDgFu6nf+Q5I0OoMcwnoG8DvAZVX1wiR7Ah9ai4VX1e1JjgfOponZaVV1dZLjmpvr\n5Ko6M8lRSb5D8yywF67FsiVJqzPImyleVFUHJ7mEZg/kZuDqqtp/FANcCQ9hSePhIazpNZQ3U+zx\n9SS7AqfQvC/WL4CvdVmYJGl2rOi9sJI8ENi5qq4Y1oBWwz0QaTzcA5leq9kDmek3U5Q0GgZkeg31\nWViSJC2mb0DaN1B84OiGIkmaJkvtgbwPODvJa5LcY1QDkiRNhyXPgSTZCXgdzWeifxC4Y+ttVfXW\noY9uhTwHIo2H50Cm1zCfxvtvNC/euyfNZ4DcsfTskqT1om9AkhwBvJXmrUQOWqO3b5ckzYi+h7CS\nfBn4z1V11WiH1J2HsKTx8BDW9PJ1IC0DIo2HAZlevg5EkjRyBkSS1IkBkSR1YkAkSZ0YEElSJwZE\nktSJAZEkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElSJwZE\nktSJAZEkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElSJwZE\nktSJAZEkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnWw3rgUn2Q34GLAv8K/AM6vqZ4vM96/Az4A7\ngNuq6uARDlOS1Mc490BeDfxLVf0WcC7w3/rMdwcwV1W/azwkaXKMMyBHAx9opz8AHNNnvuChNkma\nOOP8xXzfqroBoKp+DNy3z3wFnJPk4iQvGdnoJElLGuo5kCTnAHv2XkUThNcuMnv1eZjHVdWPktyH\nJiRXV9X5/Za5cePGX0/Pzc0xNze30mFL0syan59nfn5+TR4rVf1+bw9Xkqtpzm3ckOR+wKaqetgy\n99kA3FxVb+1ze41rfaT1LAH/602nJFRVutx3nIewzgBe0E4/H/j0whmS7Jhkp3b63sCTgStHNUBJ\nUn/j3APZHfhH4AHAdTRP470pyV7AKVX1lCT/AfgkzeGt7YB/qKo3LfGY7oFIY+AeyPRazR7I2AIy\nDAZEGg8DMr2m9RCWJGmKGRBJUicGRJLUiQGRJHViQCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElS\nJwZEktSJAZEkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElS\nJwZEktSJAZEkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElS\nJwZEktSJAZEkdWJAJEmdGBBJUicGRJLUiQGRJHViQCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElS\nJ2MLSJJnJLkyye1JDlpiviOSXJPk20leNcoxSpL6G+ceyGbgacCX+s2QZBvgJOCPgN8Gnp1k/9EM\nb7LMz8+PewhD5fpNu/lxD2CoZn/7dTO2gFTVt6pqC5AlZjsY2FJV11XVbcBHgaNHMsAJM+s/wK7f\ntJsf9wCGava3XzeTfg7k/sD3ey7/oL1OkjRm2w3zwZOcA+zZexVQwGuq6jPDXLYkabhSVeMdQLIJ\neGVVXbrIbYcAG6vqiPbyq4GqqhP6PNZ4V0aSplBVLXUqoa+h7oGsQL/BXww8JMm+wI+AY4Fn93uQ\nrt8ESdLKjfNpvMck+T5wCPDZJGe11++V5LMAVXU7cDxwNnAV8NGqunpcY5Yk3Wnsh7AkSdNp0p+F\ndTeDvLAwyYlJtiS5PMmBox7jaiy3fkkOS3JTkkvbr9eOY5xdJDktyQ1Jrlhinmnedkuu3zRvO4Ak\neyc5N8lVSTYneVmf+aZuGw6ybtO8/ZLcM8mFSS5r1/GNfeZb2barqqn5ogned4B9gXsAlwP7L5jn\nSOBz7fRjgAvGPe41Xr/DgDPGPdaO6/d44EDgij63T+22G3D9pnbbteO/H3BgO70T8K1Z+f834LpN\n+/bbsf13W+AC4HGr3XbTtgcyyAsLjwZOB6iqC4FdkuzJdBj0hZNT+WSBqjofuHGJWaZ52w2yfjCl\n2w6gqn5cVZe3078Arubur8uaym044LrBdG+/W9rJe9L8sbrwZ3XF227aAjLICwsXznP9IvNMqkFf\nOPnYdhfzc0kOGM3QRmKat92gZmLbJXkgzd7WhQtumvptuMS6wRRvvyTbJLkM+DEwX1XfXDDLirfd\npDyNV4O7BNinqm5JciTwKeChYx6TBjMT2y7JTsA/AS9v/1qfGcus21Rvv6q6A/jdJDsDZyc5rKr6\nvhfhIKZtD+R6YJ+ey3u31y2c5wHLzDOpll2/qvrF1l3RqjoLuEeS3Uc3xKGa5m23rFnYdkm2o/kF\n+8Gq+vQis0ztNlxu3WZh+wFU1c+BzwGPXnDTirfdtAXk1y8sTLI9zQsLz1gwzxnA8+DXr2S/qapu\nGO0wO1t2/XqPSSY5mOap2D8d7TBXJfQ/jjzN226rvus3A9sO4L3AN6vqHX1un+ZtuOS6TfP2S/Kb\nSXZpp+8FPInmSTq9VrztpuoQVlXdnmTrCwu3AU6rqquTHNfcXCdX1ZlJjkryHeCXwAvHOeaVGGT9\ngGckeSlwG/Ar4FnjG/HKJPkwMAfskeR7wAZge2Zg28Hy68cUbzuAJI8Dngtsbo+lF/A3NM8anOpt\nOMi6Md3bby/gA0lC87vlg1X1xdX+7vSFhJKkTqbtEJYkaUIYEElSJwZEktSJAZEkdWJAJEmdGBBJ\nUicGRBpQ+5bf302ya3t5t/byPsvdd4DHPn/1I5RGy9eBSCuQ5K+A/arquCR/D/yfqnrzuMcljYN7\nINLKvB14TJKXA78P/N1iMyX5ZJKL2w8nenF73T5pPihs9zTOS/LE9rab23/vl+RL7QcWXdG+Qlqa\nSO6BSCuU5MnA54EnVtW5febZtapuSrIDzXucHVpVNyb5c+AI4CLgwVX10nb+n1fVzkleAdyzqv5X\n+7YTO1bVL0eyYtIKuQcirdxRwA+BRywxz18kuZzmk9/2BvYDqKr3AjsDxwF/tcj9LgZemORvgUca\nD00yAyKtQPs50U8ADgFesdgntiU5DDgceExVHUjzrqc7tLfdiyYo0Hx06l1U1ZeBQ2neRvv9Sf5s\nGOshrQUDIq3Mu2g+bOgHwJtZ/BzILsCNVXVrkv1pYrPVCcCHgL8FTu25PtCcJwH+b1Wd1t5+0Nqv\ngrQ2DIg0oCQvAa7rOe/xbmD/JH+wYNbP03zY0FXAG4Gvtfc/lOZDfE6oqo8AtyZ5fnufrScj54Bv\nJLkUeCbQ73M3pLHzJLokqRP3QCRJnRgQSVInBkSS1IkBkSR1YkAkSZ0YEElSJwZEktSJAZEkdfL/\nAXYdfyx3uhDkAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0xaaed668>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#Given\n",
    "l_ab = 3  #L - The total length lets say '3L'\n",
    "R_1 = 1   #p - The force applied at b\n",
    "R_2 = 1   #p - The force applied at c\n",
    "l_ab = 1  #L\n",
    "l_bc = 1  #L \n",
    "\n",
    "#Logical step \n",
    "#Since the system is in symmetry we can avoid moment M = 0 caliculations\n",
    "\n",
    "#F_Y = 0 \n",
    "R_A = (R_1 + R_2)/2\n",
    "R_B = (R_1 + R_2)/2\n",
    "\n",
    "#Lets take '3' sections \n",
    "#Considering section 1-----1 at 0.5L\n",
    "l_1 = 0.5     #L - distance of the section from the A\n",
    "v_1 = R_A     #F_Y = 0 \n",
    "M_1 = R_A*l_1 #MAking moment at section 1 = 0\n",
    "\n",
    "#Considering section 2-----2 at 1L\n",
    "l_2 = 1       #L - distance of the section from the A\n",
    "v_2 = R_A     #F_Y = 0 \n",
    "M_2 = R_A*l_2 #MAking moment at section 2 = 0\n",
    "\n",
    "#Considering section 3-----3 at 1.5L\n",
    "l_3 = 1.5       #L - distance of the section from the A\n",
    "v_3 = 0        #F_Y = 0 \n",
    "M_3 = R_A*l_2  #MAking moment at section 2 = 0 and symmetry \n",
    "\n",
    "#GRAPH\n",
    "#Since the symmetry exists the graphs are also symmetry\n",
    "%matplotlib inline\n",
    "import math \n",
    "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
    "#Drawing of shear and bending moment diagram\n",
    "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
    "X = [0,0.5,1,1.000000001,1.5,1.999999999999,2,2.5,3] # For graph precision \n",
    "\n",
    "V = [R_A,v_1,v_2,v_3,v_3,v_3,-v_2,-v_1,-R_B];\t\t\t#Shear matrix\n",
    "M = [0,M_1,M_2,1,1,1,M_2,M_1,0];\t\t\t#Bending moment matrix\n",
    "plot(X,V);\t\t\t#Shear diagram\n",
    "plot(X,M);\t\t\t#Bending moment diagram\n",
    "suptitle( 'Shear and bending moment diagram')\n",
    "xlabel('X axis')\n",
    "ylabel( 'Y axis') ;"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.8 page nmber 244"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.5\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFQBJREFUeJzt3W2wnGV9x/HvPyS0hUIKKiIHiSFAdNogT0VmpLgmUhMr\nxPFFJ0Ci2NGE6cA40zolzPRMQqmtWKaKolQoQXlRaSsyHClPsWbbcQSNCIkPeSIiIScSB62hYpkG\n+PfF2YTt4Tzsye7Z+969v5+ZHXb3XNz3xT0n+8tev72WyEwkSdU0o+gJSJKKYwhIUoUZApJUYYaA\nJFWYISBJFWYISFKFdSQEImJxRGyNiO0RcfU4Y2oR8VhE/CAiNnTivJKk9kS7+wQiYgawHVgE7AE2\nAssyc2vTmNnAt4A/zMzhiHhtZj7b1oklSW3rxDuBc4EdmflUZu4H7gSWjhpzKXBXZg4DGACSVA6d\nCIEB4Ommx7sbzzU7DTg2IjZExMaIWNGB80qS2jSzi+c5C1gIHAk8HBEPZ+YTXTq/JGkMnQiBYeCk\npscnNp5rtht4NjNfAF6IiP8E3gq8KgQiwi8zkqQpysw4lH+vE8tBG4FTImJORBwOLAOGRo25Bzg/\nIg6LiCOAtwFbxjtgZnrLZM2aNYXPoQw3r4PXwmsx8a0dbb8TyMyXIuJK4CFGQuW2zNwSEatGfpy3\nZObWiHgQ2Ay8BNySmT9q99ySpPZ0pBPIzAeA+aOe+8KoxzcAN3TifJKkznDHcInVarWip1AKXodX\neC1e4bXojLY3i3VaRGTZ5iRJZRYRZIHFsCSpRxkCklRhhoAkVZghIEkVZghIUoUZApJUYYaAJFWY\nISBJFWYISFKFlTIEli+/lieffKroaUhS3yvl10bAr5g3bw3r11/F3Llzip6SJJVaH35txJHs3Hkt\ng4NfLHoiktTXyhkC84eAI9iz5+WiZyJJfa2cIbDoGvjgO/iNuc8UPRNJ6mvlDIF/+Bav2/ubPDr/\nblbcvYJd+3YVPSNJ6kulDIHLLvk03/78rez86E7m/s5czvzCmVzz9WvY98K+oqcmSX2llJ8OGj2n\n4eeGGdwwyH077mPwgkFWnr2SWYfNKmiGklQu7Xw6qCdC4IDHn3mcjz30MXY/t5tPXvhJLjrtIiIO\n6b9bkvpGZUIAIDN54IkH+Nj6j3Hckcdxw4U3cPYJZ3dxhpJULpUKgQNefPlF1j22jjX1Nbzr5Hfx\n8YUf56TZJ3VhhpJULn24WWxyM2fMZOXZK9l+5XbLY0k6RD0bAgcc9RtH8Vfv/Cs2X7GZvc/vZf5N\n8/ncdz7H/pf2Fz01SSq9nl0OGo/lsaSqqWQnMBHLY0lVYgiMw/JYUhVUshhuheWxJE2sIyEQEYsj\nYmtEbI+IqycY9/sRsT8i3t+J87bK8liSxtb2clBEzAC2A4uAPcBGYFlmbh1j3Hrgf4B1mfnVcY7X\nseWg8VgeS+onRS8HnQvsyMynMnM/cCewdIxxVwFfAX7WgXO25Yzjz2D9ivV86t2f4pp/v4aFdyzk\n0T2PFj0tSeq6ToTAAPB00+PdjecOiogTgPdl5s1AKf7KHREsOXUJm67YxCW/dwnv/fJ7/dpqSZXT\nrWL400BzV1CKIADLY0nVNrMDxxgGmj93eWLjuWbnAHfGyML7a4ElEbE/M4fGOuDatWsP3q/VatRq\ntQ5Mc2IHyuNVZ69icMMg82+a79dWSyqler1OvV7vyLE6UQwfBmxjpBj+KfAd4JLM3DLO+NuBrxVZ\nDLfC8lhSryh8s1hELAZuZGR56bbM/ERErAIyM28ZNXYdcG/ZQwDceSypNxQeAp1UphA4wJ3Hksqs\n6I+I9j3LY0n9yhCYAnceS+o3Lge1wfJYUhnYCRTI8lhS0QyBErA8llQUi+ESsDyW1IsMgQ6zPJbU\nS1wOmmaWx5Kmm51AyVkeS5pOhkCPsDyWNB0shnuE5bGksjEECmB5LKksXA4qActjSe2wE+gDlseS\nDpUh0EcsjyVNlcVwH7E8ltRNhkBJWR5L6gaXg3qE5bGk8dgJVITlsaSxGAIVY3ksqZnFcMVYHkvq\nFEOgh1keS2qXy0F9xPJYqiY7AR1keSxVjyGgV7E8lqrDYlivYnksqRWGQJ+zPJY0EZeDKsbyWOo/\ndgKakuby+HVHvI4b/vAGzjnhnKKnJekQFd4JRMTiiNgaEdsj4uoxfn5pRGxq3L4ZEQs6cV4dmohg\nyalL2HTFJi5dcCkXffkiVty9gl37dhU9NUld1nYIRMQM4Cbg3cDvApdExJtHDfsxcEFmvhX4a+DW\nds+r9lkeS+rEO4FzgR2Z+VRm7gfuBJY2D8jMRzLzwCvLI8BAB86rDrE8lqqrEyEwADzd9Hg3E7/I\nfxi4vwPnVYcNHD3AuqXreGD5A9y99W4W3LyAoW1D2NFI/WtmN08WEe8EPgScP9G4tWvXHrxfq9Wo\n1WrTOi/9f2ccfwbrV6w/WB7//cN/b3kslUi9Xqder3fkWG1/OigizgPWZubixuPVQGbm9aPGnQ7c\nBSzOzJ0THM9PB5WIO4+l8iv600EbgVMiYk5EHA4sA4ZGTfAkRgJgxUQBoPKxPJb6W9shkJkvAVcC\nDwE/BO7MzC0RsSoiVjaGDQLHAp+PiMci4jvtnlfdZXks9Sc3i+mQuPNYKg93DKsQ7jyWysEQUKEs\nj6ViFV0Mq+Isj6XeZQioYyyPpd7jcpCmjeWx1B12Aioty2Np+hkCKj3LY2n6WAyr9CyPpXIyBNRV\nlsdSubgcpEJZHkvtsxNQT7M8ltpjCKgvWB5Lh8ZiWH3B8ljqPkNApWN5LHWPy0EqPctjaWJ2Aup7\nlsfS+AwBVYblsfRqFsOqDMtjqbMMAfUky2OpM1wOUl+wPFaV2QlIWB6rugwBqYnlsarGYlhqYnks\ntc4QUN+yPJYm53KQKsPyWP3KTkBqkeWx+pEhIE2R5bH6icWwNEWWx9KIjoRARCyOiK0RsT0irh5n\nzGciYkdEPB4RZ3TivFK7LI9VdW0vB0XEDGA7sAjYA2wElmXm1qYxS4ArM/OPIuJtwI2Zed44x3M5\nSIUZqzz+yU92MTj4RYaHX2ZgYAbXXXc5c+fOKXqq0kGFdgIRcR6wJjOXNB6vBjIzr28a8w/Ahsz8\n58bjLUAtM/eOcTxDQIVqLo+PmnEUu9edwvDGLwBHAs8zb94a1q+/yiBQaRTdCQwATzc93t14bqIx\nw2OMkUohIlhy6hI2XbGJ3Pw6hi/4Orx/FczeBRzJzp3XMjj4xaKnKXXEzKInMJa1a9cevF+r1ajV\naoXNRdU1c8ZMjthyFnzrn+Dtn4RVZ8KjK+Gbq9mz5+Wip6cKq9fr1Ov1jhyrEyEwDDR/tu7ExnOj\nx7xxkjEHNYeAVKSBgRnwvzNgw3Xw3Stg4SBcdRr//etz2P/SfmYdNqvoKaqCRv/l+Nprrz3kY3Vi\nOWgjcEpEzImIw4FlwNCoMUPAB+Bgh/DLsfoAqWyuu+5y5s1bAzwP/z0A93yWE+vv5vDT97Hg5gUM\nbRvCDku9rCObxSJiMXAjI6FyW2Z+IiJWMVIQ39IYcxOwGHge+FBmfm+cY1kMq1SefPIpBge/yJ49\nL3PCCSOfDnrTm05y57FKwx3DUkGadx4vmruIv1n0N+48VtcV/ekgqbKadx6ffMzJ7jxWzzEEpA5w\n57F6lctB0jTwa6vVTXYCUgn5tdXqFkNAKjHLY003i2GpxCyPVWaGgNQllscqI5eDpIJYHqtT7ASk\nHmV5rE4wBKQeZ3msdlgMSz3O8lhFMQSkErE8Vre5HCSVmOWxWmEnIPUxy2NNxhCQKsDyWOOxGJYq\nwPJY08EQkHqM5bE6yeUgqcdZHstOQKo4y+NqMwQkAZbHVWUxLAmwPNbUGQJSH7I8VqtcDpIqwPK4\nv9kJSJqU5XH/MgQktczyuP9YDEtqmeWxmhkCUkVZHgtcDpLUYHncuwrrBCLiGOCfgTnAT4A/zsx9\no8acCNwBvB54Gbg1Mz8zwTENAakglse9qcgQuB74eWZ+MiKuBo7JzNWjxhwPHJ+Zj0fEbwOPAksz\nc+s4xzQEpIJZHveWIovhpcCXGve/BLxv9IDMfCYzH2/c/xWwBRho87ySppHlcXW0GwLHZeZeGHmx\nB46baHBEvAk4A/h2m+eV1AWWx/1v5mQDImI9I+v5B58CEvjLMYaPu47TWAr6CvDRxjuCca1du/bg\n/VqtRq1Wm2yakqbRwNEDrFu67mB5/NnvfNbyuED1ep16vd6RY7XbCWwBapm5t7H2vyEz3zLGuJnA\nvcD9mXnjJMe0E5BKzPK4fIrsBIaAyxv3PwjcM864dcCPJgsASeUXESw5dQmbrtjEpQsu5aIvX8Ty\nry5n175dRU9Nh6DdELgeuDAitgGLgE8ARMQbIuLexv23A5cBCyPisYj4XkQsbvO8kgpmedwf3Cwm\nqSOGnxtmcMMg9+24j8ELBll59kpmHTar6GlVgl8gJ6k03HncfYaApFKxPO4uQ0BSKbnzuDv8KmlJ\npWR5XH6GgKRp587j8nI5SFLXWR53lp2ApJ5jedw5hoCknvXiyy9y+2O3s6a+hoVzF1oeHwKLYUk9\na+aMmXzk7I+w7cptlscFMAQklYLlcTFcDpJUSpbHrbMTkNSXLI9bYwhI6muWxxOzGJbU1yyPp48h\nIKlnWB53nstBknqW5fEIOwFJlWV5bAhIUqXLY4thSZVneXxoDAFJfcXyeGpcDpLU16pQHtsJSNIE\n+r08NgQkqQX9Wh5bDEtSCyyPX80QkFQ5lsevcDlIUuX1enlsJyBJberl8tgQkKQO6cXyuLBiOCKO\niYiHImJbRDwYEbMnGDsjIr4XEUPtnFOSplPVyuN2i+HVwNczcz7wDeCaCcZ+FPhRm+eTpK6oSnnc\n1nJQRGwF3pGZeyPieKCemW8eY9yJwO3Ax4E/y8yLJzimy0GSSqfM5XFhnUBE/CIzjx3vcdPz/8pI\nAMwG/twQkNSLyloeT2snEBHrI2Jz0+37jX+O9UL+qlfviPgjYG9mPg5E4yZJPSciWHLqEjZdsYnL\nFlzGxV++mOVfXc6ufbuKntohmznZgMy8cLyfRcTeiHh903LQz8YY9nbg4oh4D/BbwFERcUdmfmC8\n465du/bg/VqtRq1Wm2yaktQ1B8rjZb+3jL/71t9x5hfOZOVZK1l9/mpm/+a4n4/pmHq9Tr1e78ix\n2l0Ouh74RWZeHxFXA8dk5uoJxr8Dl4Mk9Znh54YZ3DDIfTvuY/CCQVaevZJZh83q2vmL/O6g64EL\nI2IbsAj4RGNCb4iIe9s8tiT1hIGjB1i3dB0PLH+Au7fezYKbFzC0bYhe+Autm8UkqYOKKI/dMSxJ\nJdPNncd+lbQklUyv7Dw2BCRpGpV957HLQZLURdOx89hOQJJ6SKfLY0NAknpQp8pji2FJ6kFlKI8N\nAUkqWJHlsctBklQyUy2P7QQkqc9MpTw2BCSpT7VSHlsMS1Kfmqg8fvLJp1i+/Nq2ju87AUnqIQe+\ntvprW78G/3E6zz54F7x8jMtBklQl7/mTK7j/pW1w9E/hpm0uB0lSlfzPk6+HO74BD3yqreMYApLU\ngwYGZgC/hieWtHUcQ0CSetB1113OvHlrgOfbOo4hIEk9aO7cOaxffxWXXXZDW8exGJakHuc+AUnS\nITEEJKnCDAFJqjBDQJIqzBCQpAozBCSpwgwBSaowQ0CSKswQkKQKaysEIuKYiHgoIrZFxIMRMXuc\ncbMj4l8jYktE/DAi3tbOeSVJndHuO4HVwNczcz7wDeCaccbdCNyXmW8B3gpsafO8lVCv14ueQil4\nHV7htXiF16Iz2g2BpcCXGve/BLxv9ICIOBr4g8y8HSAzX8zM59o8byX4Sz7C6/AKr8UrvBad0W4I\nHJeZewEy8xnguDHGzAWejYjbI+J7EXFLRPxWm+eVJHXApCEQEesjYnPT7fuNf148xvCxvv5zJnAW\n8LnMPAv4NSPLSJKkgrX1VdIRsQWoZebeiDge2NBY928e83rg4cw8ufH4fODqzLxonGP6PdKSNEWH\n+lXSM9s87xBwOXA98EHgntEDGgHxdESclpnbgUXAj8Y74KH+h0iSpq7ddwLHAv8CvBF4CvjjzPxl\nRLwBuDUz39sY91bgH4FZwI+BD2XmvnYnL0lqT+n+z2KSpO4pZMdwRCyOiK0RsT0irh5nzGciYkdE\nPB4RZ3R7jt0y2bWIiEsjYlPj9s2IWFDEPLuhld+Lxrjfj4j9EfH+bs6vm1r8M1KLiMci4gcRsaHb\nc+yWFv6MvCYi7m+8Vnw/Ii4vYJpdERG3RcTeiNg8wZipvXZmZldvjATPE8AcRpaHHgfePGrMEuDf\nGvffBjzS7XmW6FqcB8xu3F9c5WvRNO7fgXuB9xc97wJ/L2YDPwQGGo9fW/S8C7wWa4C/PXAdgJ8D\nM4ue+zRdj/OBM4DN4/x8yq+dRbwTOBfYkZlPZeZ+4E5GNp01WwrcAZCZ3wZmNz5l1G8mvRaZ+Ui+\n0p88Agx0eY7d0srvBcBVwFeAn3Vzcl3WyrW4FLgrM4cBMvPZLs+xW1q5Fs8ARzXuHwX8PDNf7OIc\nuyYzvwn81wRDpvzaWUQIDABPNz3ezatf2EaPGR5jTD9o5Vo0+zBw/7TOqDiTXouIOAF4X2beDPTz\np8ha+b04DTg2IjZExMaIWNG12XVXK9fiVuB3I2IPsAn4aJfmVkZTfu1s9yOi6pKIeCfwIUbeDlbV\np4HmNeF+DoLJHNiEuRA4Eng4Ih7OzCeKnVYhrgE2ZeY7I2IesD4iTs/MXxU9sV5QRAgMAyc1PT6x\n8dzoMW+cZEw/aOVaEBGnA7cAizNzoreCvayVa3EOcGdEBCNrv0siYn9mDnVpjt3SyrXYDTybmS8A\nL0TEfzLy5Yz9FgKtXIu3Ax8HyMydEfEk8Gbgu12ZYblM+bWziOWgjcApETEnIg4HljGy6azZEPAB\ngIg4D/hlNr6jqM9Mei0i4iTgLmBFZu4sYI7dMum1yMyTG7e5jPQCf9qHAQCt/Rm5Bzg/Ig6LiCMY\nKQH78dt5W7kWW4B3wcFvKDiNkf1I/SoY/13wlF87u/5OIDNfiogrgYcYCaHbMnNLRKwa+XHekpn3\nRcR7IuIJ4HlGlkH6TivXAhgEjgU+3/gb8P7MPLe4WU+PFq/F//tXuj7JLmnxz8jWiHgQ2Ay8BNyS\nmePuxO9VLf5e/C1we0RsYuTF8S8y8xfFzXr6RMQ/ATXgNRGxi5FPRh1OG6+dbhaTpArzfy8pSRVm\nCEhShRkCklRhhoAkVZghIEkVZghIUoUZApJUYYaAJFXY/wFYiQK5Fc41VwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x8f56978>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEACAYAAABYq7oeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucTfX+x/HXZ8g1l5LEiORSUkiRTmgSGkWU04lc0o2S\n6lzquPxMBoU61XHrHCqZTKI7k1IumeRILsctkUtzlJlQiEwuY+b7+2M2TTODuezZa8/e7+fjMY/H\nrL2/a+23ZWZ95ru+a32XOecQERHJKsLrACIiEnxUHEREJAcVBxERyUHFQUREclBxEBGRHFQcREQk\nB78UBzOLNrPNZrbFzAbl8v4lZrbMzI6Y2V9zeT/CzP5rZgn+yCMiIoVT6OJgZhHAJOAmoBHQw8wu\nzdZsL/AI8I9TbOYx4OvCZhEREf/wR8+hBbDVObfDOZcGzAK6ZG3gnPvJObcaOJ59ZTOrCdwMvOKH\nLCIi4gf+KA6RwPdZlnf6XsurfwJPALpVW0QkSHg6IG1mtwC7nXNrAfN9iYiIx0r6YRvJQK0syzV9\nr+XFdcCtZnYzUBaoYGbTnXN9sjc0M/UsREQKwDmX7z+8/dFzWAnUM7PaZlYK6A6c7qqjkyGdc0Od\nc7Wccxf71vs0t8KQpb2+nGP48OGeZwiWL+0L7Qvti9N/FVShew7OuXQzGwjMJ7PYTHXObTKz/plv\nu5fMrBqwCqgAZJjZY8BlzrlDhf18ERHxP3+cVsI59zFwSbbXpmT5fjdw4Rm28RnwmT/yiIhI4egO\n6WIoKirK6whBQ/viN9oXv9G+KDwrzDmpQDIzV1yyiogECzPDeTQgLSIiIUbFQUREclBxEBGRHFQc\nREQkBxUHERHJQcVBRERyUHEQEZEcVBxERCQHFQcREclBxUFERHJQcRARkRxUHEREJAe/TNktEo6S\nknYQExNHcnIGkZERjBrVlzp1ansdS8QvNCurSAEkJe2gffuJbN8+AigPpFK37nAWLHhEBUKCSkFn\nZVVxEMmHtPQ0Nv64kQdHPsmXO6tA5Bqo9B3sbgzJTWl1cQrxY5+ldqXamOX791HE71QcRPzMOce2\nfdtYkbyClSkrWZmykrW71lK7Um32fXUWu//7ACS3gAO1oNp6qLGS85pMp+RFB0nPSKd5ZHOa12hO\ni8gWNK/RnKrlq3r9T5IwpOIgUkjJB5Mzi0DySlakrGBVyioqlq74uwP8VTWuomLpivTqNYIZMx4n\n85TSCan07Pkc8fFPkvxLMiuTMwvKiuTMbVUuU/nkdppHNueq6ldRoXQFr/65EiY8LQ5mFg2MI/Pq\np6nOuWeyvX8JMA1oBgx1zr3ge70mMB2oBmQALzvnJpziM1QcxG/2H97PqpRVv+sVHD1+9HcH7+Y1\nmlPt7Gq5rp/fMYcMl/FbL8RXNNbtXsdFlS/6XfFpXK0xpUuWLtp/vIQVz4qDmUUAW4AbgRRgJdDd\nObc5S5vzgNpAV2B/luJwAXCBc26tmZ0NrAa6ZF03yzZUHKRADqcdZs2uNb8VguSV/HDoB5pVb/a7\nA/NFlS/K1zjBiauVUlIyqFEj/1crpaWn8dWer072LlamrGTbvm00qtroZIFqEdmCS6pcQomIEgX4\nl4t4WxxaAsOdcx19y4MBl7334HtvOPDLieKQy/uzgYnOuUW5vKfiICed6jLS4xnHMw+4WU7pbNm7\nhcuqXva7XkHD8xoG5QE39Vgqa3atOXlqa2XySvak7qFZ9Wa/y591wFuX1MrpeFkcugE3Oef6+ZZ7\nAS2cc4/m0vaUxcHMLgISgcudc4dyeV/FQYCsp3Ri4dwfIHIplS6bRL02xuafN1OrUq3fDQY3rtaY\nMiXLeB27wPb+updVKatOnv5akbzi5IB3vbL1eeuf37Fr9Qvw60XoklrJrqDFIShugvOdUnoHeCy3\nwiCSVUxMHNuPt4eHW0CpQ5DcggM7b6Pymm2kTPqUiqUreh3Rr6qUq8JN9W7ipno3AZlXUZ0Y8B42\n+QV21SkJ1zWFb9vBvPFs3z6CmJjneP314R4nl+LMH8UhGaiVZbmm77U8MbOSZBaGeOfcnNO1jY2N\nPfl9VFQUUVFR+ckpIWDvr3tZdPZs6PYyzJsAm24DMv8oyig1POQKQ27MjJoVa1KzYk0mrF/L14kj\noOQRaD0aHmoCibEkpxz3OqZ4JDExkcTExEJvxx/FYSVQz8xqAz8A3YEep2mfvXvzKvC1c278mT4o\na3GQ8OKc4/X1r/PEgieoXLY2u15cCUerZ2mRSo0a4TdVWGRkBJAKx8vD4pGwoQd0vp8N1f7H2l3d\naHpBU68jSoBl/8N5xIgRBdqOPy9lHc9vl7KONbP+ZA5Mv2Rm1YBVQAUyL1k9BFwGNAGWABsA5/sa\n6pz7OJfP0JhDmNq6dysPfvgg+w/vZ0qnKZx37HxNXeGT2yW1F9d9kn7/uoDn1/2DPk36EBsVy9ml\nzvY6qnhEN8FJyDl6/CjP/udZxn85nqGth/LoNY9SMiKzs1vYy0hDyan2xZ7UPTw+/3GW7FjCpJsn\n0alBJ6+jigdUHCSkLNmxhP5z+1P/3PpM7DiR2pXD88DvDwu/XchDHz5Ek2pNGB89nsiKkV5HkgAq\naHEIv5O0EtT2/rqX++bcx13v3sXTbZ9mTvc5KgyF1O7idmx4aAOXVb2MJpObMGnFJNIz0r2OJUFO\nPQcJClkHnP/U6E881fapsLjyKNA2/biJ/nP7c+T4EV7q/JIGrMOATitJsZV9wLl5ZHOvI4W0DJdB\n3No4Bi8crAHrMKDTSlLsHD1+lFGfjeLaqddyS/1bWPHAChWGAIiwCO698l6+GvAVe1L3cPm/Lmfu\nlrlex5Igo56DeEIDzsFDA9ahTT0HKRZODDj3fK8no9uO1oBzEMg6YN10SlMNWAugnoMESNYB5zsb\n3cmotqM04ByENGAdejQgLUFLA87FiwasQ4tOK0nQ0YBz8aQBawH1HKSIaMA5dGjAunhTz0GCggac\nQ48GrMOTeg7iFxpwDg8asC5+NCAtAZHb84qPVzymAecwktuA9Y/Je/Uc6yCl4iBFLsezA0rs45zO\nneGaTQy7ftjvptSW0HdiSvBPt39K+gfN2bXkdcL9+RrBSMVBilyvXiOYMeNxoDzUXgKd+sO+i+lS\nqgGz4/7pdTzxyI0P9OHTsstgd1OYNx5+iQRS6dlTz7EOBhqQliKXnJwBlIcrX4U/dodPn4aZczn4\nncYWwlnGtjrw76/gx4bQ72qo+jVQnpSUDK+jSSHoHIDkWWRkBFw+DW6IgbhE2NuAcH12s/wmMjIC\njqfD4lGZPxO9O0DcR/q5KOb0vyd51uqBCyhxy0B4/f2ThaFu3eGMGtXX42TipVGj+lK37nAgFdb3\nhs8GUfLe1jw4qJ3X0aQQ/DLmYGbRwDgyi81U59wz2d6/BJgGNAOGOudeyOu6WdppzMFD87bOo++c\nvrwS9SpvjlulZzfL72R/jnWdHunM3P4GS+5ZQo0KNbyOF9Y8G5A2swhgC3AjkAKsBLo75zZnaXMe\nUBvoCuw/URzysm6Wbag4eGRx0mLufOdOEnok0LJmS6/jSDEx5vMxxK+P57O+n1G1fFWv44QtLwek\nWwBbnXM7nHNpwCygS9YGzrmfnHOrgeP5XVe8tez7Zdz5zp28fcfbKgySL0NaD+H2hrfTPr49+w/v\n9zqO5JM/ikMk8H2W5Z2+14p6XSliq1NW03VWV+Jvi+f6i673Oo4UQ6NuGEXbOm2JnhHNwaMHvY4j\n+VCsrlaKjY09+X1UVBRRUVGeZQl1G3Zv4JY3buHlzi9zU72bvI4jxZSZ8XyH5xnw4QA6vdGJeT3n\nUb5Uea9jhbTExEQSExMLvR1/jDm0BGKdc9G+5cGAy21g2cyGA79kGXPIz7oacwiQb376hrbT2/JC\nhxe48/I7vY4jISDDZXDPnHv44ZcfSOiRQJmSZbyOFDa8HHNYCdQzs9pmVgroDiScpn3WkPldV4pY\n0v4k2se35+m2T6swiN9EWARTb53KOWXP4Y637+BY+jGvI8kZ+PNS1vH8djnqWDPrT2Yv4CUzqwas\nAioAGcAh4DLn3KHc1j3FZ6jnUMR2HtxJm2ltePwPjzOg+QCv40gISktPo9tb3ShTsgxvdHtDc3EF\ngOZWkkLZfWg3beLa0K9ZP/72h795HUdC2JHjR7h15q1ccPYFxHWNI8J0L25R0txKUmB7f91Lu/h2\n9LqilwqDFLkyJcswu/tsdhzYwYAPB6A/+oKTikOY+/nIz3R4vQO31L+FYW2GeR1HwkS5s8oxt8dc\n1u5ay18/+asKRBBScQhjh44d4uYZN3Pdhdcx5sYxmOW75ylSYBVKV2Bez3kk7kgkZnGM13EkGxWH\nMHU47TCdZ3amUdVGjIsep8Ignjin7DnM7zWf9za9x9NLnvY6jmSh4hCGjh4/yu1v3U6NCjWY3Gmy\nBgTFU1XLV2VRn0XErYtj3PJxXscRH11HFmbS0tPo8W4Pyp1Vjte6vkaJiBJeRxKheoXqLOqziDbT\n2lC2ZFn6X93f60hhT8UhjKRnpHP37Ls5mn6U9+98X9eYS1CpVakWi/os4vq46yl7Vln6NOnjdaSw\npqNDmMhwGTzwwQPsTt3N3B5zKVWilNeRRHKoe25dFvReQNvpbSlbsix3NLrD60hhS8UhDDjneHTe\no3yz9xs+6fUJZc8q63UkkVNqWLUhH/f8mA6vd6BMyTJ0vqSz15HCkkYiQ5xzjkELB7F853I+uusj\nzi51tteRRM6oyQVN+KDHB9yXcB8Lti/wOk5YUnEIcSM/G8nH2z7mk16fUKlMJa/jiORZi8gWvHfn\ne9z13l0s2bHE6zhhR8UhhD37n2eZ+dVMFvReQJVyVbyOI5JvrWq1Yma3mfzxrT/y5c4vvY4TVlQc\nQtSkFZOYsnoKi/osotrZ1byOI1Jg7S5ux6tdXuXWWbeydtdar+OEDRWHEPTqmld59j/PsrD3QiIr\n6qmrUvx1atCJF29+kY4zOvL1j197HScs6GqlEDNzw0xiFsew+O7F1DmnjtdxRPzmj5f9kSPHj9Ah\nvgOJfROpd249ryOFNBWHEPL+pvf5yyd/YWGfhTSo0sDrOCJ+16txL35N+5V209vxWd/PqF25tteR\nQpaKQ4iYt3Ue/ef25+NeH3P5+Zd7HUekyPS7qh+/pv3KjdNvZMk9S6hRoYbXkUKSikMIWJy0mLtn\n382c7nNoVr2Z13FEityfW/6Zw2mHT/Ygqpav6nWkkKMB6WJu2ffLuPOdO3nrjre49sJrvY4jEjBD\nWg+hW8NutI9vz/7D+72OE3L8UhzMLNrMNpvZFjMbdIo2E8xsq5mtNbOmWV4fYmYbzWy9mc0wM036\nk0erU1bTdVZX4m+LJ+qiKK/jiATcyBtGcmOdG4meEc3Bowe9jhNSrLCP5zOzCGALcCOQAqwEujvn\nNmdp0xEY6Jy7xcyuAcY751qaWW1gMXCpc+6Ymb0JfOicm57L57hwf5RgUtIOYmLiSE7OoFydH1lx\nydu80uUVulzaxetoIp5xzjHgwwFs/HEj/75uCmNGvkVycgaRkRGMGtWXOnXCe9DazHDO5ftpXv4Y\nc2gBbHXO7fAFmQV0ATZnadMFmA7gnPvSzCqZWTXgIHAMKG9mGUA5MguMZJOUtIP27SeyffsIqLIT\nmt3A+QuuofGfmp55ZZEQZma8eMuL3PH6HTR/viOH31wNx6sAqSxfPpwFCx4J+wJREP44rRQJfJ9l\neafvtdO1SQYinXP7geeB73yv/eycW+iHTCEnJiYuszBU3gN92sOnT7Nn0ZvExMR5HU3EcxEWQelP\nGnF431VwR18ocQwoz/btI/Q7UkCeXq1kZhcDfwFqAweAd8zsLufcG7m1j42NPfl9VFQUUVFRAUgZ\nHJKTM6BESejeFZb9DdbeA0BKSobHyUSCww/JBktmQY9b4YYYWPgMUD7sfkcSExNJTEws9Hb8URyS\ngVpZlmv6Xsve5sJc2lwP/Mc5tw/AzN4D/gCcsTiEm8jICIgaBgdqw5eP+l5NpUYNXXAmAr7fkYxj\n8P50eKgxbOkM310Zdr8j2f9wHjFiRIG244+9thKoZ2a1fVcadQcSsrVJAPoAmFlLMk8f7Qa+AVqa\nWRkzMzIHtTf5IVPI6frIFZS4+l+QMA4wIJW6dYczalRfb4OJBIlRo/pSt+5w+LUczJ0MXftQ55Ih\n+h0poEL3HJxz6WY2EJhPZrGZ6pzbZGb9M992LznnPjKzm81sG5AK3ONbd52ZTQdWA+nAGuClwmYK\nNanHUhmyYhATop9n2c54UlIyqFEjglGjNNAmckKdOrVZsOARYmKeIyUlgx0lK9Jy+D79jhRQoS9l\nDZRwvpT14Q8f5uCxg8TfFu91FJFi48CRAzSe3JgpnaYQXS/a6zieKeilrOF1Mq4Ymr99PglbEpjY\ncaLXUUSKlUplKjGtyzTuT7iffYf3eR2n2FFxCGL7D+/nvoT7ePXWV6lcprLXcUSKnbZ12tKtYTcG\nfjTQ6yjFjopDEHv040e5tcGttK/b3usoIsXWmHZjWP3Dat7a+JbXUYoVzcoapN79+l2W71zO2v56\nLKJIYZQ7qxzxt8XTeWZnWtdqTfUK1b2OVCyo5xCEdh3axcMfPcz0rtMpX6q813FEir0WkS3of1V/\n7v/gfsL1wpb8UnEIMs45+n3Qj3uvvFdTcIv40bA2w/jhlx+Yumaq11GKBRWHIBO3No7vDnxHbFSs\n11FEQkqpEqWIvy2eIYuGkLQ/yes4QU/FIYj87+f/8feFf2f6bdMpVUKPtRDxt0bnN2LQdYO4e/bd\npGekex0nqKk4BIkMl8E9c+7h8Wsfp3G1xl7HEQlZf2n5FwDGLR/ncZLgpuIQJCZ8OYFj6cd4/A+P\nex1FJKSViChBXNc4xv5nLBv3bPQ6TtBScQgCm37cxFNLnuK1rq9RIqKE13FEQt7F51zM6Laj6TO7\nD2npaV7HCUoqDh5LS0+jz+w+jLphFPXOred1HJGwcX+z+6lWvhpPLXnK6yhBScXBY2OWjqFK2So8\nePWDXkcRCStmxtRbpzJ59WRWJq/0Ok7QUXHw0KqUVUxaMYmpt04l83EWIhJI1StUZ0L0BHq/35vD\naYe9jhNUVBw8cjjtMH3e78O46HFEVsz+yG0RCZQ7L7+TK6tfyZBFQ7yOElRUHDwy7NNhNDq/ET0u\n7+F1FJGw9+LNL/LO1++wOGmx11GChoqDBz7732fM/Gom/77l3zqdJBIEzi17Li93fpm+c/py4MgB\nr+MEBRWHADt49CB95/Tlpc4vcV6587yOIyI+Het3pGO9jvz5kz97HSUo6DGhAXZ/wv0AvHLrKx4n\nEZHsDh07RJPJTXihwwt0ubSL13H8wtPHhJpZtJltNrMtZjboFG0mmNlWM1trZk2zvF7JzN42s01m\nttHMrvFHpmA0d8tcFiUt4oWbXvA6iojk4uxSZ/Na19d48MMH+TH1R6/jeKrQxcHMIoBJwE1AI6CH\nmV2arU1HoK5zrj7QH5ic5e3xwEfOuYZAE2BTYTMFo59+/Yl+H/QjrkscFUtX9DqOiJxCq1qt6N24\nN/3n9g/rZz/4o+fQAtjqnNvhnEsDZgHZ+2NdgOkAzrkvgUpmVs3MKgKtnXPTfO8dd84d9EOmoOKc\n46EPH6LH5T24/qLrvY4jImcw8oaRbN23ldfXv+51FM/4ozhEAt9nWd7pe+10bZJ9r9UBfjKzaWb2\nXzN7yczK+iFTUJn51Uw27tnI0zc+7XUUEcmDMiXLML3rdP42/298f+D7M68Qgrx+hnRJoBnwsHNu\nlZmNAwYDw3NrHBsbe/L7qKgooqKiAhCxcJIPJvPnj//MvJ7zKFOyjNdxRCSPrqx+JY9d8xj3JtzL\nJ70+IcKKx8WdiYmJJCYmFno7hb5aycxaArHOuWjf8mDAOeeeydJmMrDYOfemb3kzcOL8yhfOuYt9\nr7cCBjnnOufyOcXuaiXnHB1ndOTamtcyPCrXeiciQex4xnFavZo5BvFwi4e9jlMgXl6ttBKoZ2a1\nzawU0B1IyNYmAegDJ4vJz8653c653cD3ZtbA1+5G4Gs/ZAoKU1ZPYe/hvQxtPdTrKCJSACUjSvJa\n19cYnjicLXu3eB0noPxyn4OZRZN51VEEMNU5N9bM+pPZg3jJ12YSEA2kAvc45/7re70J8ApwFvCt\n770ctygWt57Dtn3baPlKSz6/53MaVm3odRwRKYSJX07kja/e4PN7PqdkhNdn4/OnoD0H3QRXBNIz\n0mkT14Y7LruDP7fU3ZYixV2Gy6BDfAfa1mlb7M4EeHoTnPzec8ueo1SJUjx6zaNeRxERP4iwCKZ1\nmca45eNYu2ut13ECQsXBz9bvXs9zXzxHXJe4YnN1g4ic2YWVLuS5Ds/R+/3eHD1+1Os4RU5HLz86\nln6MPu/34dl2z1K7cm2v44iIn/Vu3Jv659ZneGLoX32o4uBHIxJHUKtSLfo27et1FBEpAmbGlE5T\neG3dayz9bqnXcYqUioOffPH9F0xdM5WXO7+sZzSIhLCq5asy+ZbJ3D37bg4dO+R1nCKj4uAHqcdS\nuXv23bx484tUO7ua13FEpIh1ubQLrWu15on5T3gdpcjoUlY/GPjRQA4cPUD8bfFeRxGRADlw5ACN\nJzdmSqcpRNeL9jrOKelSVo8s2L6AOd/MYWLHiV5HEZEAqlSmEtO6TOP+hPvZd3if13H8TsWhEH4+\n8jP3JdzHq7e+SuUylb2OIyIB1rZOW7o17MbAjwZ6HcXvVBwK4dF5j9K5QWfa123vdRQR8ciYdmNY\n/cNq3tr4ltdR/Kp4TRISRN7b9B5f7PyCtf3D425JEcldubPKEX9bPJ1ndqZ1rdZUr1Dd60h+oZ5D\nAew+tJsBHw5getfplC9V3us4IuKxFpEt6NesHw988EDIPFpUxSGfnHP0m9uPe6+8l2svvNbrOCIS\nJGKujyHllxSmrpnqdRS/0KWseZCUtIOYmDiSkzM4cuk6DjTcwtqH11KqRClP8ohIcNq4ZyNtXm1D\n6829ObCjEpGREYwa1Zc6dbybTqegl7JqzOEMkpJ20L79RLZvHwGVfoLmV1Fz+i0kd/7B0/9wEQk+\n5VLPxpZdzpwqq+CzJeAOs3z5cBYseKTYHS90WukMYmLiMguDlYWu98CyJ9i5+l/ExMR5HU1EgkxM\nTBx7534AFgEtxwHl2b59RLE8Xqg4nEFycgZQHi57G0ofgGWPA+VJScnwOpqIBJnk5AxwFWH2NGg9\nGsrvobgeL1QcziAyMgIifoa2w2DhM+BKAKnUqKFdJyK/FxkZAaTC/rqwvie0eYrierzQgPQZJCXt\noMWA+/mpajrEfwqkUrdu8TyHKCJF63djlOVT4eGG1PrkdhLfH+bZ8cLTZ0ibWTQwjsyeyFTn3DO5\ntJkAdARSgb7OubVZ3osAVgE7nXO3nuIzPCkOqcdSuXjcxTT7pgtHk6pTo4b3Vx+ISPA6cXVjSkoG\nP13+GXWbn8v7vd/zLI9nxcF3YN8C3AikACuB7s65zVnadAQGOuduMbNrgPHOuZZZ3v8LcBVQMdiK\nw5jPx7Bm1xreuiO0bo0XkaL3y9FfqD+xPvN7z6dxtcaeZPByVtYWwFbn3A7nXBowC+iSrU0XYDqA\nc+5LoJKZVQMws5rAzcArfsjiV/sO7+P5L57nqbZPeR1FRIqhCqUrMKTVEIYuGup1lHzzR3GIBL7P\nsrzT99rp2iRnafNP4Akg6AY/xi4dS7eG3WhQpYHXUUSkmHrw6gf5as9XfL7jc6+j5IunN8GZ2S3A\nbufcWjOLAk7b9YmNjT35fVRUFFFRUUWWbefBnUxdM5X1D64vss8QkdBXumRpRt4wksGLBrP0nqVF\n/hjhxMREEhMTC70df4w5tARinXPRvuXBgMs6KG1mk4HFzrk3fcubgeuBx4BewHGgLFABeM851yeX\nzwnomMMDCQ9QpVwVxrYbG7DPFJHQlJ6RTtMpTRnddjSdL+kc0M/2csxhJVDPzGqbWSmgO5CQrU0C\n0AdOFpOfnXO7nXNDnXO1nHMX+9b7NLfCEGibf9rM7G9mM+i6QV5HEZEQUCKiBKPbjmbIoiGkZ6R7\nHSdPCl0cnHPpwEBgPrARmOWc22Rm/c2sn6/NR0CSmW0DpgADCvu5RWnYp8N4/NrHOafsOV5HEZEQ\n0alBJyqXqcyMDTO8jpInugkumxXJK7j9zdvZ8sgWyp1Vrsg/T0TCx9LvltLrvV58M/AbSpcsHZDP\n9PK0UshwzjF44WCevP5JFQYR8btWtVpxRbUrmLxqstdRzkjFIYsF3y4g+Zdk7r3yXq+jiEiIGt12\nNKOXjubg0YNeRzktFQefDJfBkEVDeOqGpygZocdciEjRuKLaFdxU9yaeX/a811FOS8XB5+2Nb2MY\nf7zsj15HEZEQN/KGkUxaOYk9qXu8jnJKKg5AWnoawxYPY2y7sUV+g4qIyEWVL6LXFb14aknwTs2j\n4gBMXTOViypfRLuL23kdRUTCxP+1+T9mbJhB0v4kr6PkKuwvZU09lkr9ifVJ6JHA1TWu9vv2RURO\nJTYxlu37txN/W3yRfYYuZS2gCV9OoFWtVioMIhJwf7v2byzYvoD1u4NvDrew7jnsO7yPBhMbsOy+\nZZp5VUQ8MX75eBZ8u4C5d80tku2r51AAmpJbRLwWrFN6h23PYefBnTSZ3IQND22gRoUaftuuiEh+\nTV83nSmrpxTJlN7qOeTTiMQRPNDsARUGEfFczyt6cvDoQeZuKZpTSwURlsVBU3KLSDAJxim9w7I4\naEpuEQk2wTald9gVhxXJK1i+czmPXPOI11FERE4yM8a2G8uTi5/k6PGjXscJr+KgKblFJJidmNL7\n36v+7XWU8CoOmpJbRILd6LajGbN0jOdTeodNcchwGQxeOFhTcotIUAuWKb3Dpji8vfFtIixCU3KL\nSNAbETXC8ym9/VIczCzazDab2RYzy/X6UDObYGZbzWytmTX1vVbTzD41s41mtsHMHvVHnuw0JbeI\nFCd1zqnj+ZTehS4OZhYBTAJuAhoBPczs0mxtOgJ1nXP1gf7AiQeoHgf+6pxrBFwLPJx9XX/QlNwi\nUtx4PaVwgdfZAAAKMUlEQVS3P3oOLYCtzrkdzrk0YBbQJVubLsB0AOfcl0AlM6vmnNvlnFvre/0Q\nsAmI9EOmk1KPpTLys5GMuXGMPzcrIlKkzi9/Po+0eIQnE5/05PP9URwige+zLO8k5wE+e5vk7G3M\n7CKgKfClHzKdpCm5RaS4+uu1f2X+9vmeTOkdFJftmNnZwDvAY74eRK5iY2NPfh8VFUVUVNRpt7vv\n8D6e/+J5lt23zD9BRUQCqGLpigxtNZShi4bmeUrvxMREEhMTC/3ZhZ6V1cxaArHOuWjf8mDAOeee\nydJmMrDYOfemb3kzcL1zbreZlQTmAvOcc+NP8zn5npX17wv+zoEjB5jSeUq+/10iIsHg6PGjXDLp\nEuJvi6d17db5Xt/LWVlXAvXMrLaZlQK6AwnZ2iQAfeBkMfnZObfb996rwNenKwwFsfPgTqaumcrw\nqOH+3KyISECVLlmakTeMZPCiwQTyEQuFLg7OuXRgIDAf2AjMcs5tMrP+ZtbP1+YjIMnMtgFTgIcA\nzOw6oCfQ1szWmNl/zSy6sJlAU3KLSOjwYkrvkHzYz+afNtN6Wmu2DNyimVdFJCR88M0HDFk0hHUP\nrqNERIk8r6eH/WShKblFJNScmNL79fWvB+TzQq44aEpuEQlFJ6b0Hp44PCBTeodUcdCU3CISygI5\npXdIFQdNyS0ioS5QU3qHTHHQlNwiEg4CNaV3yBQHTcktIuEiEFN6h0Rx0JTcIhJOAjGld0gUB03J\nLSLhpqin9C72N8GlHkul/sT6JPRI0MyrIhJWYhNj2b5/O/G3xZ+yTdjeBKcpuUUkXBXllN7Fuuew\n7/A+GkxswLL7ltGgSgOPkomIeGf88vEs+HbBKaf0Dsuew9ilY+nWsJsKg4iErQevfpCv9nzF5zs+\n9+t2i23PYefBnTSZ3IQND23QzKsiEtamr5vOlNVTWHrP0hxXbIZdz0FTcouIZDoxpfcHWz7w2zaL\nZXHY/NNmZn8zm0HXDfI6ioiI50pElGB029EMXTSU9Ix0v2yzWBYHTcktIvJ7/p7Su9gVB03JLSKS\nk7+n9C5WxUFTcouInFqrWq24/PzL/TKlt1+Kg5lFm9lmM9tiZrkOBJjZBDPbamZrzaxpftY9QVNy\ni4ic3ugb/TOld6GLg5lFAJOAm4BGQA8zuzRbm45AXedcfaA/MDmv62alKblFRE6vcbXGdKjbodBT\nevvjKNsC2Oqc2wFgZrOALsDmLG26ANMBnHNfmlklM6sG1MnDuift+N8urmrf3A+RRURC18iokTSb\n3IyNcb8WeBv+OK0UCXyfZXmn77W8tMnLuifte+slOnSYRFLSjkIFFhEJaT9H4NbV4d0fDxV4E14N\nSBfsoQvfdmL79hHExMT5N42ISAiJiYnjwNx34Yq3CrwNfxSHZKBWluWavteyt7kwlzZ5WTeLWOAf\n/Oc/n5KYmFjQvCIiISsxMZGlSz+F1NfglQ4F3o4/isNKoJ6Z1TazUkB3ICFbmwSgD4CZtQR+ds7t\nzuO6WcQCT3DddW2JioryQ3QRkdASFRVFq1ZtgSdg38wCb6fQxcE5lw4MBOYDG4FZzrlNZtbfzPr5\n2nwEJJnZNmAKMOB0657601KpW3c4o0b1LWxsEZGQNWpUX+rWHQ6kFngbxWpW1p49Yxk1qi916tT2\nOo6ISFBLStpBTEwcM2bEFmhW1mJVHIpLVhGRYBF2U3aLiEjRUXEQEZEcVBxERCQHFQcREclBxUFE\nRHJQcRARkRxUHEREJAcVBxERyUHFQUREclBxEBGRHFQcREQkBxUHERHJQcVBRERyUHEQEZEcVBxE\nRCQHFQcREclBxUFERHJQcRARkRwKVRzM7Bwzm29m35jZJ2ZW6RTtos1ss5ltMbNBWV5/1sw2mdla\nM3vXzCoWJo+IiPhHYXsOg4GFzrlLgE+BIdkbmFkEMAm4CWgE9DCzS31vzwcaOeeaAltzW19ySkxM\n9DpC0NC++I32xW+0LwqvsMWhC/Ca7/vXgK65tGkBbHXO7XDOpQGzfOvhnFvonMvwtVsO1CxknrCg\nH/zfaF/8RvviN9oXhVfY4nC+c243gHNuF3B+Lm0ige+zLO/0vZbdvcC8QuYRERE/KHmmBma2AKiW\n9SXAAcNyae4KEsLM/g9Ic869UZD1RUTEv8y5Ah3PM1c22wREOed2m9kFwGLnXMNsbVoCsc65aN/y\nYMA5557xLfcFHgDaOueOnuazCh5URCSMOecsv+ucsedwBglAX+AZ4G5gTi5tVgL1zKw28APQHegB\nmVcxAU8AbU5XGKBg/zgRESmYwvYczgXeAi4EdgB/cs79bGbVgZedc5187aKB8WSOcUx1zo31vb4V\nKAXs9W1yuXNuQIEDiYiIXxSqOIiISGgKujukT3XDXLY2E8xsq+/muaaBzhgoZ9oXZnaXma3zfS01\nsyu8yFnU8vIz4WvX3MzSzOz2QOYLpDz+fkSZ2Roz+8rMFgc6Y6Dk4fejipnN8x0nNvjGN0OSmU01\ns91mtv40bfJ33HTOBc0XmcVqG1AbOAtYC1yarU1H4EPf99eQeSrK8+we7YuWQCXf99GhuC/ysh+y\ntFsEzAVu9zq3hz8TlYCNQKRv+Tyvc3u4L4YDY07sBzJPX5f0OnsR7Y9WQFNg/Snez/dxM9h6Dqe8\nYS6LLsB0AOfcl0AlM6tG6DnjvnDOLXfOHfAtLif3+0eKu7z8TAA8ArwD7AlkuADLy764C3jXOZcM\n4Jz7KcAZAyUv+2IXUMH3fQVgr3PueAAzBoxzbimw/zRN8n3cDLbikJcb5rK3Sc6lTSjI682DJ9xP\naN5EeMb9YGY1gK7OuX+TeR9OqMrLz0QD4FwzW2xmK82sd8DSBVZe9sXLQCMzSwHWAY8FKFswyvdx\ns7CXskoQMLMbgHvI7FqGo3FA1nPOoVwgzqQk0AxoC5QHvjCzL5xz27yN5YkhwDrn3A1mVhdYYGaN\nnXOHvA5WHARbcUgGamVZrul7LXubC8/QJhTkZV9gZo2Bl4Bo59zpupXFVV72w9XALDMzMs8tdzSz\nNOdcQoAyBkpe9sVO4Cfn3BHgiJktAZqQeX4+lORlX1wHPA3gnNtuZknApcCqgCQMLvk+bgbbaaWT\nN8yZWSkyb5jL/gueAPSBk3df/+x88zuFmDPuCzOrBbwL9HbObfcgYyCccT845y72fdUhc9xhQAgW\nBsjb78ccoJWZlTCzcmQOPm4KcM5AyMu+2AS0A/CdX28AfBvQlIFlnLrXnO/jZlD1HJxz6WY2kMyp\nvE/cMLfJzPpnvu1ecs59ZGY3m9k2IJXM0ykhJy/7AogBzgX+5furOc0518K71P6Xx/3wu1UCHjJA\n8vj7sdnMPgHWA+nAS865rz2MXSTy+HMxBphmZuvIPGj+3Tm3z7vURcfM3gCigCpm9h2ZV2qVohDH\nTd0EJyIiOQTbaSUREQkCKg4iIpKDioOIiOSg4iAiIjmoOIiISA4qDiIikoOKg4iI5KDiICIiOfw/\n/vJBW0Moy/YAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x901ada0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#Given\n",
    "%matplotlib inline\n",
    "import numpy as np\n",
    "l_ab = 1.0   #L - The length of the beam\n",
    "F_D = 1.0    #W - The force distribution \n",
    "F = F_D*l_ab #WL - The force applied\n",
    "#Beause of symmetry the moment caliculations can be neglected\n",
    "#F_Y = 0\n",
    "R_A = F/2 #wl - The reactive force at A\n",
    "R_B = F/2 #wl - The reactive force at B\n",
    "\n",
    "#considering many sections \n",
    "\n",
    "#section 1--1\n",
    "l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
    "M_1 = [0,0,0,0,0,0,0,0,0,0,0]\n",
    "v = [0,0,0,0,0,0,0,0,0,0,0]\n",
    "for i in range(10):\n",
    "    v[i] = R_A - F_D*l_1[i]  \n",
    "    M_1[i] = R_A*l_1[i] - F_D*(l_1[i]**2)/2 #M = 0 in the section\n",
    "print R_A\n",
    "#Graphs\n",
    "import numpy as np\n",
    "values = [0.5,0,-0.5]\n",
    "y = np.array(values)\n",
    "t = np.linspace(0,1,3)\n",
    "poly_coeff = np.polyfit(t, y, 2)\n",
    "import matplotlib.pyplot as plt\n",
    "plt.plot(t, y, 'o')\n",
    "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
    "plt.show()\n",
    "\n",
    "import numpy as np\n",
    "values = M_1\n",
    "y = np.array(values)\n",
    "t = np.linspace(0,1,11)\n",
    "poly_coeff = np.polyfit(t, y, 2)\n",
    "import matplotlib.pyplot as plt\n",
    "plt.plot(t, y, 'o')\n",
    "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.9 page number 245"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The force and moment in section a--a are -2.33 KN , -13.644 KN-m\n"
     ]
    }
   ],
   "source": [
    "#Given   \n",
    "P_Max  = 10   #N - the maximum distribution in a triangular distribution\n",
    "L = 3         #mt the total length of force distribution \n",
    "L_X = 5       #mt - the horizantal length of the rod\n",
    "#caliculations \n",
    "\n",
    "F_y = P_Max*L*0.5 #N - The force due to triangular distribition \n",
    "L_com  = 2*L /3   #mt - the resultant force acting as a result of distribution acting position \n",
    "#F_X = 0 forces in x directions\n",
    "R_A_X = 0         # since there are no forces in X-direction\n",
    "R_B_X = 0\n",
    "#M_A = 0 momentum at point a is zero\n",
    "#F_y*L_com - R_B_Y*L_X = 0\n",
    "R_B_Y = F_y*L_com/L_X\n",
    "\n",
    "#M_B= 0 momentum at point b is zero\n",
    "#- R_A_Y*L_X = F_y*(L_X-L )\n",
    "\n",
    "R_A_Y = - F_y*L/L_X\n",
    "\n",
    "#caliculating for some random value\n",
    "#For a---a section \n",
    "l_a = 2 #mt - a---a section from a \n",
    "l_com_a = 2*l_a/3\n",
    "v_a = R_A_Y + 0.5*l_a*(10.0*2/3) #*(10*2/3) because the maximum moves\n",
    "\n",
    "M_a =  (10.0*0.66)*l_a*(0.33) + R_A_Y*l_a\n",
    "\n",
    "print \"The force and moment in section a--a are\",round(v_a,2),\"KN ,\",M_a,\"KN-m\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.13 page number 254"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEhCAYAAABRKfYcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG8lJREFUeJzt3X+0HHV9//HXK4QfQkogFpBjTKgSSinaNKYhNpBckUoA\na5QiRPBHqSXUHo5UrUei0KTS8jVyyrdQqjU2BYFiLBYkQqJgyTWgApEkEmKA8DVFgsK33wOYAJ4Y\nkvf3j/ncZLnZ3bt37u7O7O7zcc49md2dnXnv527mdWfeOzuOCAEAMFyjii4AANCZCBAAQC4ECAAg\nFwIEAJALAQIAyIUAAQDkQoD0ANuftf2I7R/bXmP7D9L9m22PK7q+odSq0/a2Fq3vOttnpumv2D62\nFespA9u/Z/u0BuddaXtKmr7D9sGtrQ5lN7roAtBatqdLOl3S5Ih4JW2I90sPN/0kINv7RMTOJi+2\nVp0tP4kpIi5o9ToKNlnSVEkrhvOkiHhXM1beovcL2oQ9kO53pKT/FxGvSFJEPBcRz6THLOljth9K\neyfHSJLtA20vsX1/euyP0/0Tba+y/aP0Mz3dPyvdf7ukDYMLsP1F2w/aXm97QcX9m20vrLL+cba/\nk+b/SqqzGtu+Ku1d3W37tenON9peYXu17e9VLPc621fb/r7tJwb2MtJj19reaPsuSYdX3F/5V/c2\n239ne53tH9g+rGJ9P0yv4fJqe0Zp7DamGh6z/e+2/yjV8pjtqWm+Q23flpb1A9vHp/sX2L4+jfNm\n22favtL2w7aX294nzTfFdn967StsH1HxOj5v+wHbj9qeYXtfSZ+TdHbaM33foJoPsP012xts3yrp\ngEG/u3Fp+ra0vvW2/7xino+k13a/7cW2r6n4PXzJ9v2SFtn+g/RaH7J9n+1Jab4Pp2XfZfunti+y\n/clU6w9sH1LjfYF2iQh+uvhH0kGS1kp6VNI/S5pZ8dhmSX+Zpj8qaXGa/ntJ56bpsZIek/QaZRuQ\n/dL9R0tanaZnSdomaUKNGg5J/46StFLS8UOs/2pJl6bp0yXtlDSuynJ3SZqbpi+TdE2a/q6kN6Xp\naZL+K01fJ+nrafp3JG1K02dK+k6aPlLS85LOTLdXSppSsb7T0/QiSZ9J09+SdHaavlDS1iq1TpT0\na0nHpds/krQkTb9b0q1p+hpJl6Xpt0tam6YXSFqVxvAtkl6W9M702K1pGaMlfV/Sa9P9Z1esY6Wk\nK9P0aZLuTtMfHhi3KjV/XNK/puk3S9pRMRY/HfidVPx+D5C0XtKhaRw3K3v/7JNqv6bi97CsYj1j\nJI1K0++Q9I2K2h6XdKCk35T0S0kXpMeukvSxov9/9foPh7C6XES8lP6CPknSyZKW2r4kIm5Is9yW\n/n1I0nvT9Dsl/bHtT6Xb+0maIOkXkq61PVnZRn1SxaoejIif1Shjru0LlG3gXifpOEmP1Fn/zIHp\niFhu+/kay90p6T/S9E2S/tP2QZL+UNIttgf2XPateM4303I32h7Y0zhJ0tfS/b+wfU+N9W2PiOUV\n9Z6Spt8maU6avlnSlTWevzkifpKmNygLOinb6B6Vpk9UFmiKiJVpb2xMemxFROyyvV6SI+KuQc//\nbUnHS7o7vfZRkn5esf5bK2qfWKPGSjOVhbkiYr3tH1c8VrlX+Fe235Omxyt7XxwpqT8ifilJtm/R\nq98vt1RMHyLphrTnEXr1ofWVEfGypJfT++COitf85gZeA1qIAOkBkf3JtkrSqrTx+ZCkgQDZnv7d\nqT3vB0v6k4jYVLkcZ4efnomIt6RDJr+qePilauu2fZSkT0p6a0RstX2dKg6F1Fj/Xoup+wL3CGUb\nzecjYkqNebZXTDe63AE7KqYr663sxdRbZuW6d1Xc3qXG/i9ul7Lfp+3KWgaeb0mPRMSMIdZfb6zr\n2eu12Z6l7A+TEyJiu+2V2vP7rTcWle+XyyXdExFn2p6obG9pcM1SNs7DHTO0ED2QLmf7GNtHV9w1\nWdKTQzztO5I+VrGMyWlyrLK9ECkLoX0aKOFgSS9K2paOxzfyiZ9Vks5L6z5N2V+o1ewj6aw0fZ6k\n+yJim6TNtgful+231Hj+wAZulaRzbI+yfaSyQ0f15h/s/oo65taYp97zK90r6QOSZLtPWf/qxQaX\n9Zikw7ynNzXa9nFD1LJN2e+omsrfw/HKDp0NNlZZYG939mm16en+1ZJm2h5re7SkP6mxDqX1P52m\nz68zH0qGAOl+YyR91VmjeZ2yY/8L02O1PsV0uaR9U4N2vbJGqyR9UdKf2l4r6RjV2OuoFBEPS1on\naaOyw0z3VT5c42l/q2zjs17SeyTVOjT2oqRpab6+ijrPk/QRZ83uR5T1B6qtL1KNt0l6Qtlhpesl\n/aBGjbXq/bikT6TxfZOyY/XVNLKshZLemg4XXaEsqIdaVnZHxA5lQbYo1bJW2eG1avMP3F4p6bhq\nTXRJX5I0xvaGVNePqjz/28reKxtSvT9Mtfw83X5QWShu1p5xGVzLlZI+b/sh1d8m8dXhJePs6AaA\nvGy/JiJ+labPUdbYf+8QT+t6tg9KPbh9lPW6lkTE7UXXhebhGCIwcm+1fa2yw0LPS/qzguspi4W2\nT5G0v6S7CI/uwx4IACAXeiAAgFwIEABALgQIACAXAgQAkAsBAgDIhQABAORCgAAAcik8QJxdd+JZ\n2w/Xmeca25vSV1NMrjUfAKB9Cg8QZdcGOLXWg+nL9N4UEZOUXWvhX9pVGACgtsIDJCLuU/b1D7XM\nUfrq8Yh4QNLYgausAQCKU3iANOD1kp6quP10ug8AUKBOCBAAQAl1wrfxPi3pDRW3x2vPxWdexTbf\nDAkAwxQRw706p6Ty7IFYta/WtkzpojrpSmsvRMSztRZU9EXmh/pZsGBB4TXU+tmxc4dmLJmhK1Zd\nIam8dXbKeFJn635mfHCGTr3xVO3ctbPwWjp9PEei8ACxfbOyK8AdY/tnts+3faHteZIUEcuVXaL0\nCUlflvSXBZbb1S675zKN2W+MPn3ip4suBajr5N86WS/++kUtum9R0aX0tMIPYUXEuQ3Mc1E7aull\nKzat0E3rb9KaeWs0yoX/XQHUNcqjtPSspZq6eKpOnHCiTpp4UtEl9SS2FG3W19dXdAl72bJ1i86/\n/XzdfObNOuygw9K9fUWW1LAyjmc11NlcfX19Gn/weF035zqde+u5+p+X/qfokqrqlPHMq6uuSGg7\nuun1tMMru15R3/V9OmPSGZp/0vzd99sSQ4lOMP+787X2mbVaft5y9p5zsK3o8CY6CkLfA53u8pMv\npx9SEAKkhw30PW5874385YaONXrUaC09a6mufuBq3fvkvUWX01PYavSo6n0PoDN1Qj+kGxEgPeiV\nXa9o7jfm6uITLubTK+gap006TR948wf0wds+qF2xq+hyegIB0oPoe6Bb0Q9pLwKkx9D3QDejH9Je\nbEF6CH0P9AL6Ie1DgPQI+h7oJfRD2oMA6RH0PdBr6Ie0HgHSA+h7oBfRD2k9tiZdjr4Hehn9kNYi\nQLoYfQ+AfkgrESBdjL4HkKEf0hoESJei7wHsQT+kNdiydCH6HsDe6Ic0HwHSZeh7ALXRD2kuAqTL\n0PcA6qMf0jwESBeh7wEMjX5I87CV6RL0PYDG0Q9pDgKkC9D3AIaPfsjIESBdgL4HkA/9kJEhQDoc\nfQ8gP/ohI8MWp4PR9wBGjn5IfgRIh6LvATQP/ZB8CJAORd8DaC76IcNHgHQg+h5A89EPGT62Ph2G\nvgfQOvRDhocA6SD0PYDWox/SOAKkg9D3ANqDfkhjCJAOQd8DaB/6IY1hS9QB6HsA7Uc/ZGgESMnR\n9wCKQz+kPgKk5Oh7AMWiH1IbAVJi9D2A4tEPqY2tUknR9wDKg35IdQRICdH3AMqHfsjeCJASou8B\nlBP9kFcjQEqGvgdQXvRDXo0tVInQ9wDKj37IHgRISdD3ADoH/ZAMAVIS9D2AzkI/hAApBfoeQOeh\nH0KAFI6+B9C5er0fQoAUiL4H0Pl6uR9CgBSIvgfQHXq1H1J4gNiebftR24/b3mtLanuW7Rdsr0k/\nlxZRZ7PR9wC6R6/2QwrdctkeJelaSadK+l1J77d9bJVZV0XElPTzd20tsgXoewDdpxf7IUX/6TtN\n0qaIeDIidkhaKmlOlfnc3rJah74H0L16rR9SdIC8XtJTFbe3pPsGe5vtdbbvtH1ce0prDfoeQHfr\npX7I6KILaMBDkiZExMu2T5P0TUnH1Jp54cKFu6f7+vrU19fX6voaNtD3WDNvDX0PoEsN9EOmLp6q\nGRNmaObEmUWX9Cr9/f3q7+9vyrIcEU1ZUK6V29MlLYyI2en2JZIiImpGt+3Nkt4aEc9VeSyKfD31\nbNm6RVMXT9Ut77ulIw5d2VJJhxLoCCs2rdC8O+Zpzbw1pe512lZE5GoTFP1n8GpJR9ueaHs/SXMl\nLaucwfYRFdPTlIXeXuFRZvQ9gN7TC/2QQgMkInZKukjSXZI2SFoaERttX2h7XprtLNuP2F4r6R8l\nnVNQubnR9wB6U7f3Qwo9hNVsZTyE1Sm7sYNxCAtojrIfvu7kQ1hdjfM9AHTz+SEESIvQ9wAwoFv7\nIQRIi9D3AFCpG/shBEgL8D1XAAbrxu/LYuvWZPQ9ANTSbf0QAqSJ6HsAGEo39UMIkCai7wGgEd3S\nDyFAmoS+B4BGdUs/hC1dE9D3ADBc3dAPIUBGiL4HgLw6vR9CgIwQfQ8AI9HJ/RACZAToewAYqU7u\nh7DVy4m+B4Bm6dR+CAGSA30PAM3Wif0QAiQH+h4AWqHT+iEEyDDR9wDQKp3WD2ELOAz0PQC0Wif1\nQwiQBtH3ANAundIPIUAaRN8DQDt1Qj+EAGkAfQ8A7dYJ/RC2hkOg7wGgKGXvhxAgddD3AFC0MvdD\nCJA66HsAKIOy9kMIkBroewAoi7L2Q9gyVkHfA0DZlLEfQoAMQt8DQFmVrR9CgAxC3wNAmZWpH0KA\nVKDvAaDsytQPYSuZ0PcA0CnK0g8hQETfA0DnKUM/hAARfQ8AnanofkjPBwh9DwCdquh+SE9vMel7\nAOh0RfZDejZA6HsA6BZF9UN6NkDoewDoJkX0Q3oyQOh7AOg2RfRDem7rSd8DQLdqdz+kpwKEvgeA\nbtfOfsiQAWL7fbZ/I01favtW21NaWlWL0PcA0Ava1Q9pZA/ksojYZvtESadIWiLpSy2tqgXoewDo\nFe3qhzSyJd2Z/j1D0uKIuFPSfi2rqAXoewDoNe3ohzQSIE/b/rKkcyQtt71/g88rBfoeAHpVq/sh\njQTB2ZK+I+nUiHhB0jhJn2p6JS1C3wNAL2tlP8QRUf0B++CI2Gp7XLXHI+K5plczQraj8vWs2LRC\n8+6YpzXz1nDoaphsqcZbA0CH2bJ1i6Yunqpb3nfLXkdibCsinGe59QLkjoh4l+3NkkJS5QoiIt6Y\nZ4WtVBkg9QYMQyNAgO5S6w/qlgRIJxoIkFd2vaK+6/t0xqQzNP+k+UWX1ZEIEKD7zP/ufK19Zq2W\nn7d896dRRxIgjZwH8pFBt/exvSDPytqFvgcA7K3Z/ZBGmujvsL3c9pG2j5d0v6TfaMraJdmebftR\n24/brrrFt32N7U2219meXG95nO8BANU1+/yQhg5h2T5H0j9LeknSuRHx/RGvOVvuKEmPS3qHpJ9L\nWi1pbkQ8WjHPaZIuiogzbJ8g6eqImF5jeXHElUfQ92gCDmEB3auyH3L4mMNbeghrkqSLJf2npCcl\nfdD2gXlWVsU0SZsi4smI2CFpqaQ5g+aZI+kGSYqIBySNtX1ErQVyvgcA1Fd5fshINHKM51vKvs7k\nQkmzJG1StqfQDK+X9FTF7S3pvnrzPF1lnt3oewDA0Ab6ISMxuoF5pkXEVin77K6kf7D9rRGttYU+\n97ef2z3d19envr6+4orpYIcemh3GAsro0EOl50p3Jlpn6O/vV39/vyRp2vZp+r7ydyQa7YEcL+k4\nSQcM3BcRN+Re657lTpe0MCJmp9uXZIuORRXz/IuklRHx9XT7UUmzIuLZKsuLbvpYMoDq6NE1T6s/\nxrtA0j+ln7dL+oKkd+dZWRWrJR1te6Lt/STNlbRs0DzLJH0o1TJd0gvVwgMA0F6NHMI6S9LvSVob\nEeenBvZNzVh5ROy0fZGku5SF2ZKI2Gj7wuzhWBwRy22fbvsJZZ8CO78Z6wYAjMyQh7BsPxgR02w/\npGwPZJukjRFxbDsKHA4OYQG9gUNYzTOSQ1iN7IH8yPYhkr4i6SFJL0r6YZ6VAQC6x7C+C8v2UZIO\njoiHW1XQSLAHAvQG9kCahy9TTAgQoDcQIM3T0k9hAQBQTc0ASV+geFT7SgEAdJJ6eyDXSbrL9mdt\n79uuggAAnaFuD8T2GEmXSZot6UZJu6/KHhFXtby6YaIHAvQGeiDN08qP8f5a2cl7+yu7Bsiu+rMD\nAHpFzQCxPVvSVcq+SmRKRLzctqoAAKVX8xCW7Xsl/UVEbGhvSflxCAvoDRzCah7OA0kIEKA3ECDN\nw3kgAIC2I0AAALkQIACAXAgQAEAuBAgAIBcCBACQCwECAMiFAAEA5EKAAAByIUAAALkQIACAXAgQ\nAEAuBAgAIBcCBACQCwECAMiFAAEA5EKAAAByIUAAALkQIACAXAgQAEAuBAgAIBcCBACQCwECAMiF\nAAEA5EKAAAByIUAAALkQIACAXAgQAEAuBAgAIBcCBACQCwECAMiFAAEA5EKAAAByIUAAALkQIACA\nXAgQAEAuo4tase1DJX1d0kRJ/y3p7Ij4ZZX5/lvSLyXtkrQjIqa1sUwAQA1F7oFcIum7EfHbku6R\nNL/GfLsk9UXE7xMeAFAeRQbIHElfTdNflfSeGvNZHGoDgNIpcsN8eEQ8K0kR8Yykw2vMF5Lutr3a\n9gVtqw4AUFdLeyC275Z0ROVdygLh0iqzR43FzIiIX9g+TFmQbIyI+2qtc+HChbun+/r61NfXN9yy\nAaBr9ff3q7+/vynLckSt7XZr2d6orLfxrO3XSVoZEb8zxHMWSNoWEVfVeDyKej0A2seW+K/eHLYV\nEc7z3CIPYS2T9Kdp+sOSbh88g+0DbY9J0wdJeqekR9pVIACgtiL3QMZJ+g9Jb5D0pLKP8b5g+0hJ\nX4mId9n+LUm3KTu8NVrSv0fE5+sskz0QoAewB9I8I9kDKSxAWoEAAXoDAdI8nXoICwDQwQgQAEAu\nBAgAIBcCBACQCwECAMiFAAEA5EKAAAByIUAAALkQIACAXAgQAEAuBAgAIBcCBACQCwECAMiFAAEA\n5EKAAAByIUAAALkQIACAXAgQAEAuBAgAIBcCBACQCwECAMiFAAEA5EKAAAByIUAAALkQIACAXAgQ\nAEAuBAgAIBcCBACQCwECAMiFAAEA5EKAAAByIUAAALkQIACAXAgQAEAuBAgAIBcCBACQCwECAMiF\nAAEA5EKAAAByIUAAALkQIACAXAgQAEAuBAgAIBcCBACQCwECAMiFAAEA5FJYgNg+y/YjtnfanlJn\nvtm2H7X9uO1Pt7NGAEBtRe6BrJf0XknfqzWD7VGSrpV0qqTflfR+28e2p7zW6O/vL7qEhlBnc1Fn\ns/UXXUBDOmc88yksQCLisYjYJMl1ZpsmaVNEPBkROyQtlTSnLQW2SKe8oaizuaiz2fqLLqAhnTOe\n+ZS9B/J6SU9V3N6S7gMAFGx0Kxdu+25JR1TeJSkkfTYivtXKdQMAWssRUWwB9kpJn4yINVUemy5p\nYUTMTrcvkRQRsajGsop9MQDQgSKiXiuhppbugQxDreJXSzra9kRJv5A0V9L7ay0k7yAAAIavyI/x\nvsf2U5KmS7rD9op0/5G275CkiNgp6SJJd0naIGlpRGwsqmYAwB6FH8ICAHSmsn8Kay+NnFho+xrb\nm2yvsz253TWmGurWaXuW7Rdsr0k/lxZQ4xLbz9p+uM48ZRjLunWWYSxTHeNt32N7g+31tj9WY75C\nx7SROoseU9v7237A9tpU5xU15it6LIess+ixHFTLqFTDshqPD288I6JjfpQF3hOSJkraV9I6SccO\nmuc0SXem6RMk3V/SOmdJWlbweJ4oabKkh2s8XvhYNlhn4WOZ6nidpMlpeoykx0r6/mykzsLHVNKB\n6d99JN0vaUbZxrLBOgsfy4paPi7ppmr15BnPTtsDaeTEwjmSbpCkiHhA0ljbR6i9Gj0BstCmf0Tc\nJ+n5OrOUYSwbqVMqeCwlKSKeiYh1afpFSRu193lLhY9pg3VKxb8/X06T+yv7o2zwe6DwsUzrHqpO\nqQTvT9vjJZ0u6V9rzDLs8ey0AGnkxMLB8zxdZZ5Wa/QEyLelXcU7bR/XntKGpQxj2ahSjaXto5Tt\nNT0w6KFSjWmdOqWCxzQdblkr6RlJ/RHxk0GzlGIsG6hTKsf7839L+pSyc/GqGfZ4dlqAdJOHJE2I\niMnKvu/rmwXX08lKNZa2x0j6hqSL01/4pTREnYWPaUTsiojflzRe0kzbs9pdQyMaqLPwsbR9hqRn\n056n1aQ9ok4LkKclTai4PT7dN3ieNwwxT6sNWWdEvDiw6xsRKyTta3tc+0psSBnGckhlGkvbo5Vt\nlG+MiNurzFKKMR2qzjKNaURslXSnpKmDHirFWA6oVWdJxnKGpHfb/qmkr0l6u+0bBs0z7PHstADZ\nfWKh7f2UnVg4+NMEyyR9SNp9JvsLEfFse8scus7KY4u2pyn7SPVz7S0zW71q/zVShrEcULPOEo2l\nJP2bpJ9ExNU1Hi/LmNats+gxtf2btsem6ddI+iNlH0apVPhYNlJn0WMpSRHxmYiYEBFvVLY9uici\nPjRotmGPZ1nORG9IROy0PXBi4ShJSyJio+0Ls4djcUQst3267SckvSTp/DLWKeks2x+VtEPSrySd\n0+46bd8sqU/Sa23/TNICSfupRGPZSJ0qwVimOmdIOk/S+nRMPCR9Rtmn8Uozpo3UqeLH9EhJX7Vt\nZf+HboyI/yrb//VG6lTxY1nTSMeTEwkBALl02iEsAEBJECAAgFwIEABALgQIACAXAgQAkAsBAgDI\nhQABGuTsa9B/avuQdPvQdHvCUM9tYNn3jbxCoL04DwQYBtt/LWlSRFxo+8uS/k9EfKHouoAisAcC\nDM8/SjrB9sWS/lDSP1SbyfZttlc7u2DTn6f7Jji7wNg4Z1bZPiU9ti39+zrb33N20Z+H01njQCmx\nBwIMk+13Svq2pFMi4p4a8xwSES/YPkDZd6PNjIjnbf+ZpNmSHpT0poj4aJp/a0QcbPsTkvaPiP+V\nvh7jwIh4qS0vDBgm9kCA4Ttd0s8lvbnOPH9le52yK9SNlzRJkiLi3yQdLOlCSX9d5XmrJZ1v+28k\nvYXwQJkRIMAwOLtO9DskTZf0CVe5Ylu6HsTJkk5I14BYJ+mA9NhrlAWKlF1O9lUi4l5JM5V9jfb1\ntj/QitcBNAMBAgzPF5VdgGmLpC+oeg9krKTnI2K77WOVhc2ARcquSf03evWlRS1lfRJJ/zcilqTH\npzT/JQDNQYAADbJ9gaQnK/oeX5J0rO2TBs36bWUXDdog6QpJP0zPn6nsYkOLIuJrkrbb/nB6zkAz\nsk/Sj22vkXS2pFrXFQEKRxMdAJALeyAAgFwIEABALgQIACAXAgQAkAsBAgDIhQABAORCgAAAciFA\nAAC5/H/91y4DSEHt5wAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0xaaedeb8>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#Given\n",
    "l_ab = 4  #L - The total length lets say '3L'\n",
    "R_1 = 1   #p - The force applied at b\n",
    "R_2 = 1   #p - The force applied at c\n",
    "l_ab = 1  #L\n",
    "l_bc = 3 #L \n",
    "\n",
    "#Logical step \n",
    "#Since the system is in symmetry we can avoid moment M = 0 caliculations\n",
    "\n",
    "#F_Y = 0 \n",
    "R_A = (R_1 + R_2)/2\n",
    "R_B = (R_1 + R_2)/2\n",
    "\n",
    "#Lets take '3' sections \n",
    "#Considering section 1-----1 at 0.5L\n",
    "l_1 = 0.5    #L - distance of the section from the A\n",
    "v_1 = R_A     #F_Y = 0 \n",
    "M_1 = R_A*l_1 #MAking moment at section 1 = 0\n",
    "\n",
    "#Considering section 2-----2 at 1L\n",
    "l_2 = 1       #L - distance of the section from the A\n",
    "v_2 = R_A     #F_Y = 0 \n",
    "M_2 = R_A*l_2 #MAking moment at section 2 = 0\n",
    "\n",
    "#Considering section 3-----3 at 1.5L\n",
    "l_3 = 3       #L - distance of the section from the A\n",
    "v_3 = 0        #F_Y = 0 \n",
    "M_3 = R_A*l_2  #MAking moment at section 2 = 0 and symmetry \n",
    "\n",
    "#GRAPH\n",
    "#Since the symmetry exists the graphs are also symmetry\n",
    "%matplotlib inline\n",
    "import math \n",
    "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
    "#Drawing of shear and bending moment diagram\n",
    "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
    "X = [0,0.5,1,1.0000001,2,2.9999999999,3,3.5,4] # For graph precision \n",
    "\n",
    "V = [R_A,v_1,v_2,v_3,v_3,v_3,-v_2,-v_1,-R_B];\t\t\t#Shear matrix\n",
    "M = [0,M_1,M_2,M_3,M_3,M_3,M_2,M_1,0];\t\t\t#Bending moment matrix\n",
    "plot(X,V);\t\t\t#Shear diagram\n",
    "plot(X,M);\t\t\t#Bending moment diagram\n",
    "suptitle( 'Shear and bending moment diagram')\n",
    "xlabel('X axis')\n",
    "ylabel( 'Y axis') ;"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.14 page number 255"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEACAYAAABYq7oeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcjfX7x/HXZd9F9rEkClmSb7YixzJRymj9WUObilQS\nJb5DVFRakBbJkl2+2YsJQwkJITuNibEU2YVhrt8fczDNYsacM+c+58z1fDzm0Tn3+dz3/XY/pnPN\n/fncn/sWVcUYY4xJKIvTAYwxxvgfKw7GGGOSsOJgjDEmCSsOxhhjkrDiYIwxJgkrDsYYY5LwSnEQ\nkRYisk1EdohInxTaDBeRnSLyq4jUdC8rLSJLRGSziGwSkR7eyGOMMcYzHhcHEckCjASaA1WBtiJS\nOVGbe4AKqnoT0BX41P3RBaCnqlYF6gPdEq9rjDHG97xx5lAH2Kmq0aoaC0wFwhK1CQMmAKjqaqCg\niBRX1YOq+qt7+SlgKxDihUzGGGM84I3iEALsTfB+H0m/4BO3iUncRkRuAGoCq72QyRhjjAf8YkBa\nRPIBXwMvuM8gjDHGOCibF7YRA5RN8L60e1niNmWSayMi2YgvDF+p6uyUdiIidhMoY4xJB1WVa13H\nG2cOa4CKIlJORHIAbYA5idrMAR4DEJF6wDFVPeT+7Etgi6p+lNqOVNV+VAkPD3c8g7/82LGwY2HH\n4uo/6eXxmYOqXhSR7sAi4ovNGFXdKiJd4z/Wz1V1gYjcKyK7gNNAZwARuRNoD2wSkfWAAn1V9TtP\ncxljjEk/b3Qr4f4yr5Ro2WeJ3ndPZr0VQFZvZDDGGOM9fjEgba6Ny+VyOoLfsGNxhR2LK+xYeE48\n6ZPyJRHRQMlqjDH+QkRQhwakjTHGBBkrDsYYY5Kw4mCMMSYJKw7GGGOSsOJgjDEmiYAqDrEXY52O\nYIwxmUJAFYfxG8Y7HcEYYzKFgCoOg5cP5vzF807HMMaYoBdQxaFykcqMXT/W6RjGGBP0AmqG9Kq9\nq3hkxiPsfH4nObPldDqSMcb4vUwxQ7pu6bpUL16dL9Z94XQUY4wJagF15qCq/LL/F1pPbc2uHrvI\nlS2X07GMMcavZYozB4DbS91OrZK1+Hzt505HMcaYoBVwZw4A6w+sp+XkluzusZvc2XM7nMwYY/xX\npjlzALit5G3UK12PT3/51OkoxhgTlALyzAFg46GNNJ/YnF3P7yJvjrwOJjPGGP+Vqc4cAGoUr0GD\nsg345JdPnI5ijDFBxyvFQURaiMg2EdkhIn1SaDNcRHaKyK8iUvNa1k1JeKNw3v3pXU6dP+XpP8EY\nY0wCHhcHEckCjASaA1WBtiJSOVGbe4AKqnoT0BX4NK3rXk21YtVofENjPv75Y0//GcYYYxLwxplD\nHWCnqkaraiwwFQhL1CYMmACgqquBgiJSPI3rXtahw0CioqL/tSy8UTjDVg7jxLkTXvinGGNMcIiK\niqZDh4HpXt8bxSEE2Jvg/T73srS0Scu6l02a1IvQ0BH/KhBVilYhtEIoI1aPSF96Y4wJMlFR0YSG\njmDSpF7p3oZTA9LXPHIeLy+7dw+kf/9x/1r637v+y4erP+T42eOeJzPGmADXv/84du8eCKT/Sk5v\nFIcYoGyC96XdyxK3KZNMm7Ssm8AA4F1WrFhCZGTk5aWVilTi3pvu5aPVH11zeGOMCSaRkZH8+OMS\n4F3ivzPTxxvFYQ1QUUTKiUgOoA0wJ1GbOcBjACJSDzimqofSuG4CA4BXuPPOJrhcrn990v+u/gxf\nPZxjZ4954Z9kjDGByeVy0aBBE+AVHC0OqnoR6A4sAjYDU1V1q4h0FZGn3W0WAFEisgv4DHjuauum\nvLfTVKgQzqBBnZN8UrFwRVpVasUHKz/w9J9kjDEBbdCgzlSoEA6cTvc2AmqGdPv2Axg0qDPly5dL\nts3vR3+n9uja7Hx+J4VzF/ZtQGOM8SNRUdH07z+OSZMGpGuGdEAVh7RkfWrOUxTPV5zBTQb7IJUx\nxvi39N4+I+iKw55je/jP5/9he/ftFMlTxAfJjDHGf2W6eyul5IbrbuCRWx7hvZ/eczqKMcYErKA7\ncwD44/gf3PbZbWzttpVieYtlcDJjjPFfduaQQNmCZWlbrS3vrnjX6SjGGBOQgvLMASDmRAw1Pq3B\nlue2UDxf8QxMZowx/svOHBIJKRBCh+odGLpiqNNRjDEm4ATtmQPAgZMHqDqqKpuf20zJ/CUzKJkx\nxvgvO3NIRsn8JelcszNDfhzidBRjjAkoQX3mAHDo1CGqfFyFjc9upHSB0hmQzBhj/JedOaSgeL7i\nPHHbE7z9w9tORzHGmIAR9MUBoPedvZm6eSp/HP/D6SjGGOMz6w6sS/e6maI4FM1blKdqPcVbP7zl\ndBRjjPGJ42ePc++ke9O9fqYoDgC97ujFjC0z2HNsj9NRjDEmw735w5u0vKllutcP+gHphPot6ceh\nU4cY3Wq0l1IZY4z/ufT4gk3PbiKkQIjdlTU1f//zNzePuJmfn/qZGwvd6KVkxhjjXx6d8SjVi1Wn\nf6P+drVSWhTOXZhutbsxeLk968EYE5xW/LGCVftW8fIdL3u0nUxVHABeqv8Sc7bPYdffu5yOYowx\nXhWncby08CXeavoWebLn8Whbma44XJfrOnrU7cGg5YOcjmKMMV41ZdMUFKVd9XYeb8uj4iAihURk\nkYhsF5GFIlIwhXYtRGSbiOwQkT4Jlr8jIltF5FcRmSkiBTzJk1Yv1H2BBTsXsP3wdl/szhhjMtyZ\n2DO8tvg13r/7fbKI53/3e7qFV4HvVbUSsAR4LXEDEckCjASaA1WBtiJS2f3xIqCqqtYEdia3fkYo\nmKsgL9Z9kTeWv+GL3RljTIb7YOUH1C1dl4blGnple54WhzBgvPv1eKB1Mm3qADtVNVpVY4Gp7vVQ\n1e9VNc7dbhXgs5sf9ajbg4jdEWz9a6uvdmmMMRni4KmDvL/qfYY09d5NRj0tDsVU9RCAqh4Eknsm\nZwiwN8H7fe5liT0OfOthnjTLnzM/L9d/mYHLBvpql8YYkyH6LenH4zUfp0LhCl7bZrbUGohIBJDw\nUWoCKNAvmebpmoggIq8Dsao6+WrtBgwYcPm1y+XC5XKlZ3eXdavTjQrDK/Dbn79RrVg1j7ZljDFO\n2HBwA3N3zGV79/gx1MjISCIjIz3erkeT4ERkK+BS1UMiUgJYqqpVErWpBwxQ1Rbu968CqqpD3e87\nA08BTVT13FX25fEkuOS899N7rI5ZzYxHZnh928YYk5FUlWZfNePByg/SrU63ZNs4NQluDtDZ/boT\nMDuZNmuAiiJSTkRyAG3c6yEiLYBXgFZXKwwZ6bnaz/HjHz+y4eAGJ3ZvjDHpNn/nfA6cPEDX27t6\nfdueFoehQKiIbAeaAkMARKSkiMwDUNWLQHfir0zaDExV1UujwCOAfECEiKwTkVEe5rlmebLnofcd\nvW3swRgTUGIvxtJrUS/eu/s9smVJdYTgmmWqeyul5J/Yf6g4oiJz286lVslaGbIPY4zxphGrRzB3\nx1wWdliISMq9RuntVrLi4DZ89XC+//175rSdk2H7MMYYbzj6z1EqjazE4scWU7149au2tRvveejp\n/zzNugPr+GX/L05HMcaYqxq8fDCtK7dOtTB4ws4cEhi1ZhTzd85nfrv5GbofY4xJr11/76LeF/XY\n/Nxmiucrnmp7O3Pwgidue4JNhzaxet9qp6MYY0yyekf05uX6L6epMHjCikMCObPl5PWGrxMeGe50\nFGOMSWLZnmWsPbCWF+u9mOH7suKQSJfburDt8DZ+2vuT01GMMeayOI2j56KeDGk6hNzZc2f4/qw4\nJJIjaw763dXPzh6MMX5l4saJ5MiagzbV2vhkf1YcktHp1k7s/ns3y6OXOx3FGGM4ff40fRf35f27\n37/qnAZvsuKQjOxZs9P/rv529mCM8Qvv/fQeDco2oH6Z+j7bpxWHFHS8tSN7j+9ladRSp6MYYzKx\nmBMxDP95OEOaee9ZDWlhxSEF2bJkI7xROOGR4QTKXBBjTPDpt7QfT9V6ihuuu8Gn+7VJcFdxIe4C\nVUdVpX+tcL4btZOYmDhCQrIwaFBnypcv59MsxpjMZ92Bddw76V52PL+DAjkLpGsb6Z0E5/1b+QWR\nbFmy8WyVbjw16RXOTtpO/A1kT7NqVTgREc9bgTDGZBhVpefCngx0DUx3YfCEdSul4uexRzgr+aHC\nCveSvOzePZD+/cc5GcsYE+Rmb5/N4TOHeaLWE47s34pDKg7EAJEDoXE4V56Cmpf9++McTGWMCWbn\nL57nlYhXGHb3sAx5VkNaWHFIRUhIFthyL+Q4BTd96156mlKl7NAZYzLGqDWjuKnwTTSv2NyxDDYg\nnYqoqGhCQ0ewO2dNaPAhjF5KhRsH2piDMSZDHDlzhMofV2ZZ52XcUvQWj7dnD/vJQFFR0fTr/yXz\ni43lpnPVmd5rlBUGY0yGeOHbF4iNi2VUS+88NdmKgw9s/WsrDcc2ZH3X9ZQpWMbRLMaY4LP98Hbu\n/PJOtnTbQrG8xbyyTUee5yAihURkkYhsF5GFIlIwhXYtRGSbiOwQkT7JfP6yiMSJSGFP8mS0KkWr\n8ELdF3h2/rM2Mc4Y43W9v+9N7zt7e60weMLTUdVXge9VtRKwBHgtcQMRyQKMBJoDVYG2IlI5weel\ngVAg2sMsPtGnQR+ij0czbfM0p6MYY4LIkqglbDq0iR51ezgdBfC8OIQB492vxwOtk2lTB9ipqtGq\nGgtMda93yQfAKx7m8JkcWXPwxf1f8NLClzhy5ojTcYwxQeBi3EV6LuzJ0GZDyZUtl9NxAM+LQzFV\nPQSgqgeB5M6FQoC9Cd7vcy9DRFoBe1V1k4c5fKpu6br8X9X/o+eink5HMcYEgfEbxpM3R14evuVh\np6NclursChGJABI+rFSInw3WL5nmae6IF5HcQF/iu5QSbjtFAwYMuPza5XLhcrnSujuvG9xkMNVG\nVWPR7kXcXeFux3IYYwLbqfOn6LekH7PazPLKsxoiIyOJjIz0eDseXa0kIlsBl6oeEpESwFJVrZKo\nTT1ggKq2cL9/lfgiMh/4HjhDfFEoDcQAdVT1z2T25fjVSol9t+s7np3/LL89+xt5c+R1Oo4xJgD9\nd+l/+f3o70x8cGKGbN+RS1lFZCjwt6oOdV+FVEhVX03UJiuwHWgKHAB+Btqq6tZE7aKAWqp6NIV9\n+V1xAOj4TUeK5SnGsObDnI5ijAkwe4/vpeZnNVnfdT1lC5bNkH04cikrMBQIFZFLX/5D3GFKisg8\nAFW9CHQHFgGbgamJC4Obkkq3kj/6oPkHTNo0iTUxa5yOYowJMH2X9OXZ25/NsMLgCZsE5wWTNk5i\n6IqhrH16LdmzZnc6jjEmAKyJWUPY1DC2d99O/pz5M2w/Tp05GKBd9XaULlCad3961+koxpgAoKr0\nXNSTNxq/kaGFwRNWHLxARPik5Se8v/J9th/e7nQcY4yfm7l1JifOnaBLzS5OR0mRFQcvKXddOf7b\n6L88Nfcp4tSe9WCMSd65C+foHdGbYXcPI2uWrE7HSZEVBy/qVrsb5y+eZ/Ta0U5HMcb4qRE/j6Bq\nsao0u7GZ01GuygakvWzzn5txjXfxa9dfCSkQ4nQcY4wf+ev0X1T5uAo/Pv4jlYtUTn0FL7BbdvuR\n8KXhbDi0gW/+7xuvzHg0xgSHbvO7kUWyMOLeET7bp12t5Ef6NuzLjiM7mLl1ptNRjDF+YstfW5i+\nZToDXAOcjpImVhwyQM5sOfmi1Rf0+LYHR/9JdsK3MSaTeSXiFV5r8BrX57ne6ShpYsUhg9xR5g4e\nrPIgvRb1cjqKMcZhi3YvYvvh7XSr3c3pKGlmxSEDvdX0LSJ+j2Dx74udjmKMccjFuIu8vOhl3gl9\nh5zZcjodJ82sOGSgAjkLMKrlKLrO68qZ2DNOxzHGOGDM+jEUzl2YByo/4HSUa2JXK/lA25ltKVOg\nDO+EvuN0FGOMD504d4JKIysxr+08/lPqP45ksKuV/NhHLT5i/IbxrDuwzukoxhgfGvLjEO6ucLdj\nhcETVhx8oFjeYrzT7B2emPMEsRdjnY5jjPGB6GPRfLb2M95s8qbTUdLFioOPPHbrYxTNU5QPVn3g\ndBRjjA+8uvhVutfuTukCpZ2Oki425uBDUUejqD26NiufWMlN19/kdBxjTAaJ3BNJ+/+1Z0f3HY4/\nQtjGHAJA+ULl6duwL0/Pe5pAL3TGmOSt3bqell+Ecf0KF10ff4+oqGinI6WLFQcf61G3B6fOn+LL\n9V86HcUY42W//76Hu95/mDM/P86m/01i0qRehIaOCMgCYd1KDthwcAOhX4Wy4ZkNlMxf0uk4xhgv\n+U/3Fqw7dwTGroCLOdxLT9O+/XtMnBjuSCZHupVEpJCILBKR7SKyUEQKptCuhYhsE5EdItIn0WfP\ni8hWEdkkIkM8yRMobi1xK0/Veornv33e6SjGGC/5Zf8vbCr4A3w9PUFhAMjL/v2B9wAwT7uVXgW+\nV9VKwBLgtcQNRCQLMBJoDlQF2opIZfdnLuB+oLqqVgfe8zBPwOjfqD+b/tzEN1u/cTqKMcZDJ86d\noM3Xbah7pCUcK5bo09OUKhV4PfieJg4DxrtfjwdaJ9OmDrBTVaNVNRaY6l4P4FlgiKpeAFDVwx7m\nCRi5suVi9P2jef7b5zl29pjTcYwx6aSqdJ3XlablmzKhz7tUqBAOnHZ/epoKFcIZNKizcwHTyaMx\nBxH5W1ULp/TevewhoLmqPu1+3wGoo6o9RGQ9MBtoAfwDvKKqv6Swr6AZc0jomXnPoKp8dv9nTkcx\nxqTDmHVj+HD1h/z85M/kzp6bqKho+vcfx/79cZQqlYVBgzpTvnw5x/Kld8whWxo2HAEUT7gIUKBf\nMs2v9ds7G1BIVeuJSG1gOnBjSo0HDBhw+bXL5cLlcl3j7vzP0GZDqTqqKsv2LKPRDY2cjmOMuQZb\n/trCq4tfZVnnZeTOnhuA8uXLOTb4DBAZGUlkZKTH2/H0zGEr4FLVQyJSAliqqlUStakHDFDVFu73\nrwKqqkNF5Fviu5WWuT/bBdRV1SPJ7CsozxwAZm2bRe+I3mx8diO5suVyOo4xJg3+if2HOl/U4cW6\nL/JErSecjpMipybBzQE6u193Ir6LKLE1QEURKSciOYA27vUAZgFNAETkZiB7coUh2LWu3JpbS9zK\nG8vecDqKMSaNXlr4EtWKVePx2x53OkqG8PTMoTDxXUFlgGjgUVU9JiIlgdGqep+7XQvgI+KL0RhV\nHeJenh34EqgJnANevnQWkcy+gvbMAeDgqYPU+KQGER0juLXErcm2udSXGRMTR0iI832ZxmRWMzbP\n4LXFr7Gu6zoK5CzgdJyrSu+Zg02C8yNj1o3h07WfsvKJlWTL8u/hoKioaEJDR7B790AgL5eugoiI\neN4KhDE+FHU0irpf1GVB+wXcXup2p+Okyu6tFAQev+1xCuQswPDVw5N81r//uASFASAvu3cPpH//\ncb6MaEymFnsxljYz2/Bag9cCojB4woqDHxERPrvvM9764S1+P/r7vz6LiYnjSmG4JDBnXhoTqF5f\n8jpF8xTlxXovOh0lw1lx8DMVC1ek95296Tqv67/u3BoSkoUrE2suCcyZl8YEou92fceU36YwrvU4\nRK65lybg2DeLH+pZvydHzhxhwoYJl5cNGtQ5aGZeGhNo9p/cT5fZXZj4wESK5CnidByfsAFpP7Xu\nwDrumXQPG5/ZSPF88XMQ/W3mpTGZwcW4i9w98W7uKnsX4S7nJrell12tFIT6RPQh+ng0Ux+e6nQU\nYzKtwcsH8/3v37P4scVkzZLV6TjXzK5WCkLhrnB+2f8Lc7fPdTqKMZnSD9E/MPLnkUx6cFJAFgZP\nWHHwY3my52H0/aPptqAbJ86dcDqOMZnKkTNHaP+/9oxpNYaQAiFOx/E561YKAE/OeZKcWXPyccuP\nnY5iTKagqrSe1pqKhSoyrPkwp+N4xLqVgti7oe/yzbZvWPHHCqejGJMpjPx5JDEnYni72dtOR3GM\nFYcAUCh3IYbfM5wn5z7JuQvnnI5jTFBbd2Adbyx/g2kPTyNH1hyprxCkrDgEiIeqPETlIpV584c3\nnY5iTNA6ee4kbb5uw4h7RlChcAWn4zjKxhwCSMyJGGp+VpPFjy2mRvEaTscxJqioKo/NeoycWXPy\nRasvnI7jNTbmkAmEFAjhw+YfEjY1jIOnDjodx5igMmHDBNbuX8vwe5Le+DIzsuIQYNrXaE+Xml1o\nObklp86fcjqOMUFh2+Ft9IroxfRHppMnex6n4/gF61YKQKrKE3Oe4M/TfzKrzawkz34wxqTd2Qtn\nqftFXbrV7sbT/3na6TheZ91KmcilW3vHxsXSfUF3rGgak34vL3yZStdX4qlaTzkdxa9YcQhQ2bNm\nZ8YjM1i1bxVDVwx1Oo4xAel/W//Ht7u+ZfT9ozPFbbivhRWHAFYgZwHmt5vPqDWjmLxpstNxjAko\ne47t4Zl5zzD14akUzFXQ6Th+x6PiICKFRGSRiGwXkYUikuwRFpEWIrJNRHaISJ8Ey2uLyM8ist79\n3+B+7l4GCCkQwvx283nxuxdZtmeZ03GMCQixF2NpN7Mdve/sTZ2QOk7H8Uuenjm8CnyvqpWAJcBr\niRuISBZgJNAcqAq0FZHK7o/fAfqp6m1AOPCuh3kyperFqzPloSk8+vWjbPlri9NxjPF74ZHhXJfr\nOnrW7+l0FL/laXEIA8a7X48HWifTpg6wU1WjVTUWmOpeD+AAcOls4zogxsM8mVbTG5vyXuh73Dvp\nXg6cPOB0HGP8VsTuCCZsmMC41uPIItaznhJPr4EspqqHAFT1oIgUS6ZNCLA3wft9xBcMiD/zWCEi\nwwAB7vAwT6bW8daORB+PpuXklizvspx8OfI5HckYv3Lw1EE6zerExAcnUixvcl9X5pJUi4OIRADF\nEy4CFOiXTPNrvaZyDPC8qs4SkYeBL4HQlBoPGDDg8muXy4XL5brG3QW/1xu+zp5je3h0xqPMaTvH\n5kAY4xancTz2zWM8WetJmpRv4nScDBMZGUlkZKTH2/FoEpyIbAVcqnpIREoAS1W1SqI29YABqtrC\n/f5VQFV1qIicUNUCCdoeV9WUBrVtElwaxV6M5f4p91O2YFk+u+8zu0TPGGDIj0NYsHMBSzotyVR/\nNDk1CW4O0Nn9uhMwO5k2a4CKIlJORHIAbRK02ykijQBEpCmww8M8hitzINbsX8PbP2be+9Ebc8lP\ne3/ig1UfMOnBSZmqMHjC06M0FJguIo8D0cCjACJSEhitqvep6kUR6Q4sIr4YjVHVbe71uwIfu4vG\nWSD45q47JH/O/MxvN5/6Y+pTtmBZOtTo4HQkYxxx9J+jtJvZjtH3j6ZMwTJOxwkYdm+lILf5z800\nHt+YaQ9Po3H5xk7HMcanVJWHpj9EmQJl+Oiej5yO4wi7t5JJVtViVZn28DTazGzD5j83Ox3HGJ/6\n5JdP2HNsD++EvuN0lIBjxSETaFy+Me/f/T4tJ7dk/8n9Tscxxic2HNxAeGQ40x6eRs5sOZ2OE3Cs\nOGQS7Wu05+n/PE3LyS05ee6k03GMyVCnzp/i/77+Pz5s/iE3XX+T03ECko05ZCKqStd5Xfnj+B/M\nbTuX7FmzOx3JmAzRZXYXAMaGjXU4ifNszMGkSkQY1XIUWSQLz81/zp4DYYLSVxu+YuXelYy8Z6TT\nUQKaFYdMJluWbEx/ZDrrDq7jzR/edDqOMV417bdpvBLxCjMemUHeHHmdjhPQrDhkQvly5GNe23l8\nse4LJmyY4HQcY7xi9NrR9FzUk4iOEVQvXt3pOAHPpgpmUiXzl2RB+wW4xrkIyR9C0xubpmm9qKho\n+vcfR0xMHCEhWRg0qDPly5fL2LDGpGLYT8MYuWYkyzovo2Lhik7HCQo2IJ3JRe6J5NEZj7Kk0xKq\nFat21bZRUdGEho5g9+6BQF7gNBUqhBMR8bwVCOMIVSU8Mpzpm6cT0THCZkAnwwakTbq4bnDxYYsP\naTm5JTEnrv44jf79xyUoDAB52b17IP37j8vomMYkEadxvPjdi8zdMZflXZZbYfAy61YytKvejj+O\n/3H5ORAFchZItl1MTBxXCsMledm/Py7DMxqT0IW4Czw19yl2HNnB0k5LuS7XdU5HCjp25mAA6HNn\nH+qVrscjMx4h9mJssm1CQrIApxMtPU2pUvZrZHzn3IVztPm6DTEnYljUYZEVhgxi/1cbIL5fcuS9\nI8mWJRvPzHsm2TkQgwZ1pkKFcK4UiPgxh0GDOvsuqMnUzsSeIWxqGHEax9y2c+1y1QxkA9LmX06d\nP4VrnIuwSmH0b9Q/yeeXrlbavz+OUqXsaiXjO8fPHuf+Kfdzw3U38GXYl/ZchjRK74C0FQeTxMFT\nB6k/pj4DGg2gU81OTscxhsNnDtN8YnPql67P8HuGk0WS7/SwS62TsuJgvGrrX1txjXcx6cFJNLux\nmdNxTCYWcyKG0K9CeaDyAwxuMjjFx97apdbJs0tZjVdVKVqFGY/MoN3Mdmw8tNHpOCaT+v3o7zQc\n25DONTvzZtM3r/o8dLvU2rusOJgU3VXuLobfM5z7Jt/HvhP7nI5jMpnNf27mrrF30fvO3vS+s3eq\n7e1Sa++y4mCuqk21NnSv052Wk1ty4twJp+OYTGJNzBqaTmjKO6Hv8Mztz6RpHbvU2rs8OmoiUkhE\nFonIdhFZKCIFU2g3RkQOicjG9KxvnPXKHa9wZ5k7eWj6QynOgTDGW5ZHL6fl5JZ8fv/ntKveLs3r\n2aXW3uXRgLSIDAWOqOo7ItIHKKSqrybTrgFwCpigqjWudX13WxuQdtCFuAs8MO0BiuQpwpetvrxq\n368x6bVg5wI6z+rMlIempPlmkAnZpdZJOXK1kohsAxqp6iERKQFEqmrlFNqWA+YmKg7Xsr4VB4ed\nPn8a13gX9910H+GucKfjmCAzffN0nv/2eWa3mU290vWcjhM0nLpaqZiqHgJQ1YNAMR+vb3wob468\nzGs7j/EbxjN2vT1+0XjPmHVjeGnhS0R0jLDC4CdSnWIoIhFA8YSLAAX6JdPc0z/tr7r+gAEDLr92\nuVy4XC57Xs5MAAAO1klEQVQPd2euVfF8xVnQfgHNJjRj6+GtDG4ymBxZczgdywSwD1Z+wEerPyKy\nUyQ3XX+T03ECXmRkJJGRkR5vx9Nupa2AK0G30FJVrZJC2+S6la5lfetW8iN/nf6LLrO7cOj0IaY8\nNMUesGKumaoycNlApvw2hYiOEZQtWNbpSEHJqW6lOUBn9+tOwOyrtBX3T3rXN36kaN6izG07l8dq\nPEb9MfX5asNXTkcyAURV6bmwJ7O2zWJ55+VWGPyQp2cOhYHpQBkgGnhUVY+JSElgtKre5243GXAB\n1wOHgHBVHZvS+insy84c/NSGgxtoM7MNt5e6nY/v/TjF50EYA3Ax7iJPz32aLYe3sKDdAgrlLuR0\npKBm91YyjjoTe4aXvnuJxVGLmfLQFGqH1HY6kvFD5y+ep8P/OvD3P38zq80s8uXI53SkoGfFwfiF\nr7d8zXPzn6PXHb3odUevFO+eaTKfM7FneHj6w+TImoOpD08lV7ZcTkfKFKw4GL/xx/E/aP+/9uTK\nlosJrSdQMn9JpyMZh504d4L7p9xP2YJl+bLVl2TPmt3pSJmG3ZXV+I2yBcuytNNS7ixzJ7U+r8WC\nnQucjmQcdPjMYZpOaErVolUZ33q8FYYAYWcOJkP9EP0DHb7pwAOVH2Bos6HkzJbT6UjGh/af3E/o\nV6G0urkVbzV9y2674gA7czB+qWG5hqzvup69J/ZS94u6bDu8zelIxkcuPYuhY42OvN3sbSsMAcaK\ng8lwhXMX5utHvubZ25+l4diGjFk3BjsLDG5b/tpCo3GNeLn+y7zaINl7aRo/Z91Kxqc2/7mZtjPb\nUrlIZT6//3Ouy3Wd05GMl63dv5b7ptzHu6Hv0qFGB6fjZHrWrWQCQtViVVn95GqK5S1GzU9r8tPe\nn5yOZLzoh+gfuGfSPXzS8hMrDAHOzhyMY+Zsn8PTc5+mW+1u9G3Yl6xZsjodyaTT6fOnGfHzCN5f\n+T6TH5pMsxubOR3JuNk8BxOQYk7E0PGbjsRpHBMfnEjpAqXTtN6lh7rExMQREmIPdXHK+Yvn+Xzt\n57z1w1s0LNeQQY0HcfP1NzsdyyRgxcEErItxFxm6Yigfrf6Iz+77jNaVW1+1fVRUNKGhI9i9eyDx\nD5SPfxxkRMTzViB85GLcRSZunMiAZQOoUqQKbzZ5k9tK3uZ0LJMMKw4m4K3at4p2M9vRomILht09\njNzZcyfbrkOHgUya1Iv4wnDJadq3f4+JE+0JdRlJVflm2zf0W9KP6/Ncz1tN4s8YjP+yAWkT8OqV\nrsf6rus5evYotUfX5rc/f0u2XUxMHP8uDAB52b8/LsMzZlaqSsTuCOp8UYfBywcz7O5hLO+83ApD\nEEv1SXDG+FLBXAWZ/OBkxm8YT+PxjRnoGsiztz/7rwlUISFZgNMkPnMoVcr+1skIK/eupO+Svuw/\nuZ/BjQfz0C0P2Q0VMwHrVjJ+a8eRHbT5ug1lC5ZlTKsxXJ/nesDGHHxl46GN9FvSjw2HNhDeKJzH\nbn2MbFns78lAY2MOJiidu3COvov7Mn3LdL564CtcN7iAK1cr7d8fR6lSdrWSN+36exfhkeEs/n0x\nrzV4ja63d7XbawcwKw4mqH236zu6zO7Ck7c9Sbgr3P6CzQAxJ2J4Y9kbzNw6kxfrvcgLdV8gf878\nTscyHrLiYILewVMH6TSrEyfPnWTyQ5O54bobnI4UFA6fOcyQH4cw9texPHnbk/Rp0IfCuQs7Hct4\niSNXK4lIIRFZJCLbRWShiBRMod0YETkkIhsTLX9HRLaKyK8iMlNE7OHDJkUl8pXg2/bf8mCVB6kz\nug7TfpvmdKSAdvLcSQZGDqTyyMqciT3Dpmc3MTR0qBUGA3h45iAiQ4EjqvqOiPQBCqlqklswikgD\n4BQwQVVrJFjeDFiiqnEiMgRQVX0thX3ZmYO5bO3+tbSd2ZbCuQsTVimMsMphVClSxW4LnQb/xP7D\nJ798wtAVQ2leoTkDXAO4sdCNHm3TZqz7L0e6lURkG9BIVQ+JSAkgUlUrp9C2HDA3YXFI9Hlr4CFV\n7ZjC51YczL+cv3ieZXuWMXv7bGZvn02ubLniC0WlMO4oc4fdqymR2IuxjPt1HG8sf4PbS93OoMaD\nqFasmsfbtavH/JtTxeFvVS2c0vtEbVMrDnOAqao6OYXPrTiYFKkq6w+uZ/a2+EIRczKGlje1JKxS\nGHdXuJu8ORJPmss84jSOab9N47+R/6VcwXK82eRN6pau67Xt24x1/5be4pDqJR8iEgEUT7gIUKBf\nMs3T9e0tIq8DsSkVBmNSIyLUKlmLWiVrMbDxQPYc28Oc7XMYuWYknWZ1otENjQirFMb9N99P8XzF\nU99gEFBV5u+cz+tLXidXtlx82vJTmt7Y1Ov7sRnrwSnV4qCqoSl95h5kLp6gW+nPaw0gIp2Be4Em\nqbUdMGDA5dculwuXy3WtuzOZxA3X3UCPuj3oUbcHR/85yoKdC5izYw69FvXilqK3XB6nqFwk2V7Q\ngLdszzL6LunL8bPHebPJm7Sq1CrDxmNsxrp/iYyMJDIy0uPteGNA+m9VHXq1AWl32xuI71aqnmBZ\nC2AYcJeqHkllX9atZDx27sI5IvdEMnv7bOZsn0PeHHkvj1PUK10v4Mcp1u5fy+tLXmfHkR280fgN\n2lZrm+H/Jhtz8G9OjTkUBqYDZYBo4FFVPSYiJYHRqnqfu91kwAVcDxwCwlV1rIjsBHIAlwrDKlV9\nLoV9WXEwXqWqrD2w9vI4xaHTh7jvpvsIqxxGsxubkSd7HqcjpupC3AUOnDxA1LEohq8ezsp9K+nX\nsB9P1HqCHFlz+CyHzVj3XzYJzhgPRR2Nunzl09r9a2lSvglhlcK47+b7KJq3qM/znL1wlpgTMew7\nse/yT8zJmH+9/uv0XxTNW5SQ/CE8fMvDdK/TPSCKmvEdKw7GeNHf//zNgp0LmL19NhG7I6hevDph\nlcJoVanV5SedeXJt/4lzJ+K/4K/y5X/y/ElC8ocQUiCE0gVKUzp/6Suv3T8l8pWwW4mYq7LiYEwG\nOXvhLEujll4epyiYqyCNiruY995xYn7+DDQ/l/rZFy3qToES+f79hX8ihn0n//0+TuP+9SUfkv/K\nl/6lAlAkTxG7NbbxmBUHY3wgTuP4Zf8vPP5OLzZfOAx5/oa9d0DuI1BgL1mu+4Pr8hZM8oWf+H2B\nnAVsNrfxiQyb52CMuSKLZKFOSB2KbmwMkQOh0G4o9QucLg4nStPgti9Z9v1bTsc0xmNWHIxJh8vX\n9h+tEP8DwGnKlMjp8yx2XyOTEaxbyZh08Jdr+/0lh/FfNuZgjI/5w7X9dl8jkxobczDGx8qXL+f4\nF7Dd18hkFLtOzpgAduW+RgnZfY2M5+w3yJgANmhQZypUCOdKgYgfcxg0qLNjmUxwsDEHYwKcP4x9\nGP9lA9LGGGOSSG9xsG4lY4wxSVhxMMYYk4QVB2OMMUlYcTDGGJOEFQdjjDFJWHEwxhiThBUHY4wx\nSXhUHESkkIgsEpHtIrJQRAqm0G6MiBwSkY0pfP6yiMSJSGFP8hhjjPEOT88cXgW+V9VKwBLgtRTa\njQWaJ/eBiJQGQoFoD7NkGpGRkU5H8Bt2LK6wY3GFHQvPeVocwoDx7tfjgdbJNVLVH4GjKWzjA+AV\nD3NkKvaLf4UdiyvsWFxhx8JznhaHYqp6CEBVDwLFrmVlEWkF7FXVTR7mMMYY40WpPs9BRCKA4gkX\nAQr0S6Z5mm9+JCK5gb7Edykl3LYxxhiHeXTjPRHZCrhU9ZCIlACWqmqVFNqWA+aqag33+2rA98AZ\n4otCaSAGqKOqfyazvt11zxhj0sGJJ8HNAToDQ4FOwOyrtBUSnBmo6m9AicsfikQBtVQ12bGJ9Pzj\njDHGpI+nYw5DgVAR2Q40BYYAiEhJEZl3qZGITAZ+Am4WkT9EpEsy21KsW8kYY/xCwDzPwRhjjO/4\n3QxpEWkhIttEZIeI9EmhzXAR2Skiv4pITV9n9JXUjoWItBORDe6fH0WkuhM5M1pafifc7WqLSKyI\nPOjLfL6Uxv8/XCKyXkR+E5Glvs7oK2n4/+N6EfnW/T2xSUQ6OxDTJ1KbaOxuc23fm6rqNz/EF6td\nQDkgO/ArUDlRm3uA+e7XdYFVTud28FjUAwq6X7cIxmORluOQoN1iYB7woNO5HfydKAhsBkLc74s4\nndvBYxEOvH3pOABHgGxOZ8+g49EAqAlsTOHza/7e9LczhzrATlWNVtVYYCrxE+0SCgMmAKjqaqCg\niBQn+KR6LFR1laoed79dBYT4OKMvpOV3AuB54GsgyZVuQSQtx6IdMFNVYwBU9bCPM/pKWo7FQSC/\n+3V+4IiqXvBhRp/Rq080hnR8b/pbcQgB9iZ4v4+kX3iJ28Qk0yYYpOVYJPQk8G2GJnJGqsdBREoB\nrVX1E4L7ooa0/E7cDBQWkaUiskZEOvosnW+l5ViMBqqKyH5gA/CCj7L5o2v+3vT0UlbjB0SkMdCF\n+FPLzOhDIGGfczAXiNRkA2oBTYC8wEoRWamqu5yN5YjXgA2q2lhEKgARIlJDVU85HSwQ+FtxiAHK\nJnh/aWJc4jZlUmkTDNJyLBCRGsDnQAtNYY5IgEvLcbgdmCoiQnzf8j0iEquqc3yU0VfSciz2AYdV\n9SxwVkSWA7cS3z8fTNJyLO4E3gRQ1d3uuVSVgV98ktC/XPP3pr91K60BKopIORHJAbQhfqJdQnOA\nxwBEpB5wTN33dwoyqR4LESkLzAQ6qupuBzL6QqrHQVVvdP+UJ37c4bkgLAyQtv8/ZgMNRCSriOQh\nfvBxq49z+kJajsVWoBmAu3/9ZuB3n6b0rX9NNE7kmr83/erMQVUvikh3YBHxhWuMqm4Vka7xH+vn\nqrpARO4VkV3AaeK7U4JOWo4F0B8oDIxy/9Ucq6p1nEvtfWk8Dv9axechfSSN/39sE5GFwEbgIvC5\nqm5xMHaGSOPvxdvAWBHZQPyXZm9V/du51BnHPdHYBVwvIn8Qf6VWDjz43rRJcMYYY5Lwt24lY4wx\nfsCKgzHGmCSsOBhjjEnCioMxxpgkrDgYY4xJwoqDMcaYJKw4GGOMScKKgzHGmCT+H0QpvJnXJERk\nAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0xae282e8>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHz9JREFUeJzt3Xl4VdW9//H3l/mqgBMiCYoYKxZUQJBKoRoHCE6g1F5B\nQFGxoKLW/n4W9TYS5VqlvU+12qIyKCoqtgiIE4NCRLiKoIDKIFMaIUFAVIRIICTf+0cCxkhC4Oyc\nfYbP63ny9Azr7P11N6xP9l77rGXujoiIJKdaYRcgIiLhUQiIiCQxhYCISBJTCIiIJDGFgIhIElMI\niIgksUBCwMx6mNlKM1tlZsP28/4xZvaWmS0xs0/NbGAQ+xURkchYpN8TMLNawCrgQiAfWAj0cfeV\n5doMBxq4+z1mdizwOdDU3fdEtHMREYlIEGcCnYDV7p7r7kXARKBXhTZfAg3LHjcEtioARETCVyeA\nbaQC68s930BpMJQ3BnjHzPKBI4CrA9iviIhEKFoDw/cAS909BWgP/MPMjojSvkVEpBJBnAnkASeW\ne9687LXyugAPArj7WjPLAU4DFlXcmJlpMiMRkYPk7nYonwviTGAhcIqZtTCzekAfYFqFNiuAiwDM\nrClwKrCusg26u37cGT58eOg1xMKPjoOOhY5F1T+RiPhMwN2LzWwoMJPSUBnn7ivMbHDp2z4aeAh4\nxsyWAgb8wd2/jnTfIiISmSAuB+Hu04FWFV57qtzjr4DLg9iXiIgER98YjmHp6elhlxATdBx+oGPx\nAx2LYET8ZbGgmZnHWk0iIrHMzPAQB4ZFRCROKQRERJKYQkBEJIkpBEREkphCQEQkiSkERESSmEJA\nRCSJKQRERJKYQkBEJIkpBEREkphCQEQkiSkERESSmEJARCSJKQRERJKYQkBEJIkpBERE4lROTi79\n+98f0Ta0qIyISBzKycmlW7fHWbv2fuAILSojIpJMMjPHlwXA4RFtRyEgIhKH8vJKgMPh7FERbUch\nICISh1JTa0HbMdD1oYi2oxAQEYlDXQYdT+2MO+H5qRFtRyEgIhJnpq+ZTtai+5j6m5fpl/F6RNvS\n3UEiInFkbu5crvrnVUztM5VfnvBLAMxMdweJiCS6hXkLueqfV/HSr1/aFwCRUgiIiMSBzzZ/xuUv\nXc7YnmO58OQLA9uuQkBEJMat3rqajAkZPJLxCD1b9Qx024GEgJn1MLOVZrbKzIZV0ibdzBab2Wdm\nNieI/YqIJLr129bT7fluZJ2XRd8z+ga+/YgHhs2sFrAKuBDIBxYCfdx9Zbk2jYH/Bbq7e56ZHevu\nX1WyPQ0Mi4gAm3Zs4tzx5zKkwxDu7Hxnpe3CHhjuBKx291x3LwImAr0qtLkGeMXd8wAqCwARESn1\n9c6v6fZ8N645/ZoqAyBSQYRAKrC+3PMNZa+VdypwtJnNMbOFZjYggP2KiCSk7bu2c/ELF9M9rTv3\nnXdfje6rTo1u/cf7OQu4gNLZjt43s/fdfU2U9i8iEhd2Fu2k58SetGvajr90+wtmh3SVp9qCCIE8\n4MRyz5uXvVbeBuArdy8ECs1sLtAW2G8IZGVl7Xucnp5Oenp6AGWKiMS23cW7uepfV5HSMIVRl46q\nNACys7PJzs4OZJ9BDAzXBj6ndGB4I/Ah0NfdV5RrcxrwONADqA8sAK529+X72Z4GhkUk6RSXFNP3\nlb7sLt7Nv37zL+rWrlvtz0YyMBzxmYC7F5vZUGAmpWMM49x9hZkNLn3bR7v7SjObAXwCFAOj9xcA\nIiLJqMRLuOm1m/im8Bte6/vaQQVApDR3kIhIiNyd303/HYs2LmJm/5kcXu/gF4kJ9UxAREQOXeac\nTN774j1mXzf7kAIgUgoBEZGQjJw3kskrJvPuwHc5ssGRodSgEBARCcGohaMY/fFo5g6cS5PDm4RW\nh0JARCTKnlv6HA/Ne4i5A+eS2qjid2ujSyEgIhJFk1dMZtjbw5h97WxaHtUy7HIUAiIi0TJjzQxu\nfuNmpvebzs+b/DzscgCFgIhIVMzNncuAKQOY2mcq7Zu1D7ucfbSojIhIDVuUvyjwZSGDohAQEalB\nn23+jMtevCzwZSGDohAQEakhNbksZFAUAiIiNaCml4UMikJARCRgm3Zs4qLnL+KOX9zBTR1uCruc\nKikEREQCFK1lIYOiWURFRAKyfdd2Lnr+In514q+isirYXpHMIqoQEBEJwM6inVzy4iWcevSpPHnZ\nk1ELAFAIiIiEanfxbq58+UqObHAkz13xHLVr1Y7q/hUCIiJRlpOTS2bmeDbk7SGnw2RatU7ljeve\niOqqYHtFEgIaGBYROUg5Obl06/Y4L7z4e95tnMcXm5uy5uHWbPgiP+zSDppCQETkIGVmjmftuuFw\n8d1wzOcw8TVyVj9IZub4sEs7aJpATkTkIK3P3wO9hsJR6+CFN6GodFnI/PySkCs7eDoTEBE5CLv2\n7CKnwytwRB5MmAG7Gpe9U0BKSvx1qfFXsYhISL4v+p5eE3vRunULTl5wOhTtvYmlgLS04YwYMTDE\n6g6N7g4SEamGbYXbuOylyzj5qJMZ13Mc63PzyMwcT35+CSkptRgxYiAtW7YIpTbdIioiUoO++v4r\nMiZk0Ll5Zx67+DFqWWxdRNEtoiIiNSR/ez7njT+PjLQMHr/48ZgLgEgl1n+NiEiAcr7J4VfP/Ipr\nz7yWP134p6hOBREtukVURGQ/lm9ZTsaEDO7peg+3nH1L2OXUGIWAiEgFH2/8mEtfvJQ/X/RnBrQd\nEHY5NUohICJSzrwv5tH75d48ddlTXPnzK8Mup8YFMiZgZj3MbKWZrTKzYVW0O9vMisysdxD7FREJ\n0sy1M7ny5SuZ0HtCUgQABBACZlYL+DuQAbQB+prZaZW0exiYEek+RUSCNmXFFPpP7s+Uq6fQPa17\n2OVETRBnAp2A1e6e6+5FwESg137a3QZMAjYHsE8RkcA8v/R5bnnzFqb3n07XE7uGXU5UBRECqcD6\ncs83lL22j5mlAFe4+xNA4t1jJSJxa9TCUdw7+15mXzubs5qdFXY5URetgeFHgfJjBVUGQVZW1r7H\n6enppKen10hRIpLcHp73MGM+HsPcgXNpeVTLsMuptuzsbLKzswPZVsTTRpjZOUCWu/coe3434O4+\nslybdXsfAscCBcBv3X3afranaSNEpEa5O/81+7+YunIqswbMIrVR6oE/FMNCnTvIzGoDnwMXAhuB\nD4G+7r6ikvbPAK+5++RK3lcIiEiNKfESbn/rdt7f8D4z+s/g2MOODbukiEUSAhFfDnL3YjMbCsyk\ndIxhnLuvMLPBpW/76IofiXSfIiKHYk/JHm6cdiPrvlnH7Gtn07hB4wN/KMFpFlERSQq79uzimsnX\nULC7gMlXT+awuoeFXVJgNIuoiEgVCnYX0HNiTwzj1T6vJlQAREohICIJbVvhNjImZNDsiGZMvGoi\n9evUD7ukmKIQEJGEtaVgCxc8dwHtj2/P072epk4tTZdWkUJARBJS3nd5nDf+PHqk9YjJ1cBihY6K\niCScdd+s49zx53Jd2+t48MIHE3IxmKDo3EhEEkqyLAYTFIWAiCSMZFoMJigKARFJCMm2GExQFAIi\nEvdmrp1Jv8n9eKH3C0m1FkAQFAIiEldycnLJzBxPXl4Jqam16DLoeIYvzGTK1VOSbi2AIGjaCBGJ\nGzk5uXTr9jhr194PHA5tx1A7406m/OZlLu94adjlhUbTRohIUsjMHP9DAJz9D7jgAYqffpeXH10U\ndmlxSyEgInEjL68ErAFcNAw6PwLPzIWvOpCfXxJ2aXFLYwIiEjeOa14EfXpC/QIY+wF8X7pGVUqK\n/p49VDpyIhIX/v3tv1nacQoNa62H56fsC4C0tOGMGDEw5Oril84ERCTmzf9iPlf96yqGdRlGz8uv\n4D4eIz+/hJSUWowYcRstW7YIu8S4pbuDRCSmPbvkWe6adRfPXvEsF//s4rDLiUmhLi8pIlITikuK\nufede5m0YhLZA7Np3aR12CUlJIWAiMSc7bu2029yP77b9R0LBi1IiMXgY5UGhkUkpvz723/T5eku\nND28KTMHzFQA1DCFgIjEjPlfzKfzuM7c0P4GRl8+mnq164VdUsLT5SARiQkaAA6HQkBEQqUB4HAp\nBEQkNBoADp/GBEQkFBoAjg0KARGJOg0Axw5dDhKRqNIAcGxRCIhIVGgAODYFcjnIzHqY2UozW2Vm\nw/bz/jVmtrTsZ56ZnRHEfkUkPmzftZ3e/+zNgrwFLBi0QAEQQyIOATOrBfwdyADaAH3N7LQKzdYB\n57p7W+C/gTGR7ldE4kPut7l0eboLxx12nAaAY1AQZwKdgNXunuvuRcBEoFf5Bu7+gbtvK3v6AZAa\nwH5FJMbN/2I+54w7RwPAMSyIMYFUYH255xsoDYbKDALeCmC/IhLDNAAcH6I6MGxm5wPXA12rapeV\nlbXvcXp6Ounp6TVal4gERwPANS87O5vs7OxAthXxojJmdg6Q5e49yp7fDbi7j6zQ7kzgFaCHu6+t\nYntaVEYkTm3ftZ3+U/qzrXAbk/5zkq7/R0kki8oEMSawEDjFzFqYWT2gDzCtQoEnUhoAA6oKABGJ\nXxoAjk8Rh4C7FwNDgZnAMmCiu68ws8Fm9tuyZpnA0cAoM1tsZh9Gul8RiR0aAI5fWmNYRCKiAeDw\naY1hEYmKnJxcMjPHk5dXQrNUaHjFJt7On6UB4DimEBCRasnJyaVbt8dZu/Z+qFcCvfvS4J2lzLt9\nmgIgjmkWURGplszM8aUBcOQWuLELFDSjcMwnPPLgtAN/WGKWQkBEqiUvrwRavwU3dYLFN8Bro6H4\nKPLzS8IuTSKgy0EickAFuwvY0P51KH4eXnwd8vZOClBASor+loxn+n9PRKq05MsldBzTkdPbt6Dl\nzEshr03ZOwWkpQ1nxIiBIVYnkdItoiKyX+7O3xb8jQffe5BHMh6h/5n9990dlJ9fQkpKLUaMGEjL\nli3CLjXpRXKLqEJARH5ic8FmBk4dyNadW3mx94ukHZ0WdklShbCnjRCRBDJjzQzaPdmOdse3Y971\n8xQACU4DwyICwK49u7j3nXt5ednLTOg9gQtaXhB2SRIFCgERYdXWVfR9pS/NGzVnyZAlmvwtiehy\nkEgSc3eeWfwMXZ7uwo3tb2Tq1VMVAElGZwIiSerbwm8Z/Ppglm9Zzpzr5nD6caeHXZKEQGcCIklo\n/hfzaf9Ue5oc1oQPB32oAEhiOhMQSSLFJcU8+N6DjFo4itGXj6Znq55hlyQhUwiIJIkvtn1B/8n9\nqVu7Lh/99iNSG6WGXZLEAF0OEkkCk5ZPouPojlz6s0uZNWCWAkD20ZmASAIr2F3AnTPuZHbObF6/\n5nU6pXY68IckqehMQCRB7Z34rXBPIYsHL1YAyH7pTEAkwZSf+O3RjEfpd2a/sEuSGKYQEEkg5Sd+\nWzBoAScfdXLYJUmM0+UgkQQxc+1M2j/VnvbHt2fe9fMUAFItOhMQiXO7i3f/MPHblRM4v+X5YZck\ncUQhIBLH9k78dkKjE1gyeAnHHHZM2CVJnFEIiMSBvSt65eWVkJpaiwceuI53t83hD2//gQfSH2BI\nxyGYHdKaIpLkFAIiMS4nJ5du3R5n7dr7gcOhQR6v1r2QlHZo4jeJmAaGRWJcZub4HwLghP+FwV3Z\nsSmd9ouuUgBIxBQCIjEuL68E6hdDj9/B1b1h+t/grSfZnFc77NIkAQQSAmbWw8xWmtkqMxtWSZvH\nzGy1mS0xs3ZB7Fck0bk7Ra2Wwa2nQd0C+Mcy+LwnUEBKiv6Gk8hF/FtkZrWAvwMZQBugr5mdVqHN\nxUCau/8MGAw8Gel+RRLdqq2r6D6hO1+3Xk7q/HR47VHYeQxQQFracEaMGBhugZIQghgY7gSsdvdc\nADObCPQCVpZr0wt4DsDdF5hZYzNr6u6bAti/SELZWbSTP733J55Y9AR/PPePDO00lPWX55GZ+T/k\n55eQklKLESNuo2XLFmGXKgkgiBBIBdaXe76B0mCoqk1e2WsKAZFy3lz9JkPfHMrZqWezdMjSfVM+\nt2zZggkThodcnSSimLxFNCsra9/j9PR00tPTQ6tFJBrWb1vPHdPv4NPNn/LkZU/SPa172CVJDMvO\nziY7OzuQbZm7R7YBs3OALHfvUfb8bsDdfWS5Nk8Cc9z95bLnK4Hz9nc5yMw80ppE4kVRcRGPfvAo\nI+eP5LZOtzGs6zAa1GkQdlkSZ8wMdz+kbwsGcSawEDjFzFoAG4E+QN8KbaYBtwIvl4XGtxoPkGT3\nXu573PzGzTRv1JwPBn3AKUefEnZJkoQiDgF3LzazocBMSu82GufuK8xscOnbPtrd3zSzS8xsDVAA\nXB/pfkXi1ZaCLdw16y7eyXmHRzIe4dc//7WmfJDQRHw5KGi6HCSJqsRLGPPRGDLnZDLgzAFkpWfR\nsH7DsMuSBBD25SAROYDFGxcz5I0h1KlVh7evfZszm54ZdkkigEJApEZtK9zGfXPuY+KyiTx04UMM\nbDeQWqZv+krs0G+jSA1wdyZ+NpHWo1rzfdH3LL9lOTe0v0EBIDFHZwIiAVu1dRW3vnkrWwq2MOk3\nk+h8QuewSxKplP4sEQnIzqKdZM7O5Jfjfsklp1zCot8uUgBIzNOZgEgA9k730DGl44+mexCJdQoB\nkQiUn+7hiUufIOOUjLBLEjkouhwkcgiKiov4y/y/0P6p9rRt2pZPb/5UASBxSWcCIgdQcZH3y4e2\nZsTH92u6B0kI+sawSBV+tMj7Yd9D9zup/bNX+dslf+aW84ZougeJCZF8Y1iXg0SqkJk5nrW598Av\nxsGtbeD7phT/bTXvj92sAJCEoMtBIpUo3FPIAj6A20fDxg7w3NuwqXS6h/z8kpCrEwmGQkCkgsI9\nhYz5aAwPz38Ya3YEvPAybOxaroUWeZfEod9kkTKFewp5fMHjpD2Wxqx1s5jWZxrv3TKTtMOmUjoD\nOmiRd0k0GhiWpFf+L/8OzTow/LzhdEjpsO/9vXcH/bDI+0At8i4xJZKBYYWAJK0Ddf4i8ULrCYgc\nhIqd/7Q+09T5S9JSCEjSUOcv8lMKAUl46vxFKqcQkIRVuKeQsR+P5eF5D3NWs7PU+Yvsh0JAEk7F\nzv/VPq+q8xephEJAEoY6f5GDpxCQuKfOX+TQKQQkbqnzF4mcQkDijjp/keAoBCRmVVzM5Y9ZfXj7\n61nq/EUCpBCQmPSjxVzq1Iaz/sHE0R1Jb3WOOn+RAGkWUYlJmZnjWbv1ejj/Ybg9DdLepXjCWxw/\np6sCQCRAEYWAmR1lZjPN7HMzm2FmjffTprmZzTazZWb2qZndHsk+JbEV7inkpU9f4o1jn4Wb0qH+\ndpgwA16aBhu7ajEXkYBFeiZwN/C2u7cCZgP37KfNHuD37t4G6AzcamanRbhfSTCfbPqEO966g+Z/\nbc4zS56hTWEH+OvnMP1R2Hx6WSst5iIStIimkjazlcB57r7JzI4Hst29yg7ezKYCj7v7O5W8r6mk\nk8R3u77jpU9fYtzicWzcsZEb2t3A9e2v56QjT/rxmACHs3cxl1mzbtNc/iIVhLaegJl97e5HV/Z8\nP+1PArKB0919RyVtFAIJzN2Zv34+Yz8ey9SVU7no5IsYdNYgup3cjdq1av+orRZzEameGg0BM5sF\nNC3/EuDAH4HxFUJgq7sfU8l2jqA0AEa4+6tV7E8hkIA27djEc0ufY9zicZgZg9oPYkDbARx3+HFh\nlyYS92p0URl371bFjjeZWdNyl4M2V9KuDjAJeL6qANgrKytr3+P09HTS09MP9BGJQXtK9jBjzQzG\nLR7HnH/P4crTruTpXk/TuXlnzA7p91VEgOzsbLKzswPZVqSXg0YCX7v7SDMbBhzl7nfvp91zwFfu\n/vtqbFNnAnEu55scnl78NM8seYbmjZpzY/sbufr0q2lUv1HYpYkkpDDHBI4G/gmcAOQC/+nu35pZ\nM2CMu19mZl2AucCnlF5GcuBed59eyTYVAnGocE8hU1ZMYdzicSzdtJR+Z/TjxvY3ckbTM8IuTSTh\naaF5Cc0nmz5h7MdjefHTFzmr2VkMOmsQvVr1on6d+mGXJpI0tNC8RNW2wm1M/GwiYxeP5csdX3JD\nuxtY9NtFnHTkSWGXJiIHSWcCsl8VJ2974IHryKu9nnGLxx3w1k4RiS5dDpJA/eiLWofvgHZjqNvp\nr7Q48RiGdBqiWztFYoxCQALj7lx+41DeWHkCpM2B1A9h5ZXwcT+uOfc9XpiQFXKFIlKRxgQkIt/s\n/Ia3173NjLUzmLF2BluaboctV8NHg+Gfk2B3QwA25s8NuVIRCZpCIAkVlxTzYd6H+zr9ZZuX0fXE\nrvQ4pQd3/fIuHvjdS7z4+l2UztmzlyZvE0lEuhyUJDZ8t4EZa0o7/Xdy3iG1YSoZaRlknJJB1xO7\n0qBOg31tNXmbSHzRmID8xM6inczNnbvvr/1NOzbRLa0bGWkZdE/rTkrDlCo/r8nbROKHQkBwd1Z8\ntWLfX/vz18+nbdO2+/7a79Csg27lFElQCoEkVXFAt7bV3tfpX9DyAo5scGTYJYpIFCgEEkzFL2rt\nvRRTXFLMwvyF+/7a/2zzZ/sGdDPSMjj1mFM1O6dIElIIJJCfDMo2WkWTzrdxdp+6fLD5/SoHdEUk\nOSkEEsSO3Tu46uY7mfFxR2i6EtJmwRFfwtrzOadJEa/8edQBB3RFJPnoy2JxZsfuHSzfspzlW5az\nbPMylm1ZxvIty9ny/RZqHdUIWhaWLq7+6tOQ3wG8Nv9x/nAFgIgETiFQg6rq7Fsd04o2x7Wh9bGt\nGdJxCG2atOGkI0/iumv/mxem/H/0RS0RiQZdDgpAdTv7Nse12dfZV3a7pr6oJSIHS2MCAansrpy9\nguzsq1OHvqglItWRcCHQr19W1Du+H/0FXs+hyUc0af0QV9zUgg271/+ks2/TpA2tm7SOqLMXEQlC\nwoUA7DikSyDuzvdF3/Pdru/Ytmsb3+367kc/2worvLb7h9eWrVnNtzsbQP3tUHsXbG0Fm1vRLnUL\n9w+9XZ29iMSsxAuB1AVQfzO/uuh5rh/S46edeYUOfu/z7bu2U692PRo3aEyj+o32/TSu/+Pn+3vt\n97e+wKL5d8OuRlDYGLy0sz///OHMnn1/yEdFRKRyiXeL6CW3wq5GrKiXR3Zug30ddpPDm5B2dNpP\nOvC9nX7Deg2pW7vuIe2y1ZGzWfRtE3RXjogkk9g8E8CBAvr1+x8mTBgelf3qrhwRiVeJdznoEMcE\nIqW7ckQkHiVcCIRxd5CISLxKuBCItZpERGJZJCGgUU8RkSSmEBARSWIKARGRJBZRCJjZUWY208w+\nN7MZZta4ira1zOxjM5sWyT5FRCQ4kZ4J3A287e6tgNnAPVW0vQNYHuH+kkp2dnbYJcQEHYcf6Fj8\nQMciGJGGQC/g2bLHzwJX7K+RmTUHLgHGRri/pKJf8lI6Dj/QsfiBjkUwIg2B49x9E4C7fwkcV0m7\nR4C7KP0qsIiIxIgDzh1kZrOApuVforQz/+N+mv+kkzezS4FN7r7EzNLLPi8iIjEgoi+LmdkKIN3d\nN5nZ8cAcd/95hTZ/AvoDe4D/ABoCk9392kq2qbMFEZGDFMo3hs1sJPC1u480s2HAUe5+dxXtzwP+\nn7v3POSdiohIYCIdExgJdDOzz4ELgYcBzKyZmb0eaXEiIlKzYm7uIBERiZ5QvjFsZj3MbKWZrSq7\njLS/No+Z2WozW2Jm7aJdY7Qc6FiY2TVmtrTsZ56ZnRFGndFQnd+LsnZnm1mRmfWOZn3RVM1/I+lm\nttjMPjOzOdGuMVqq8W/kGDN7q6yv+NTMBoZQZlSY2Tgz22Rmn1TR5uD6TneP6g+lwbMGaAHUBZYA\np1VoczHwRtnjXwAfRLvOGDoW5wCNyx73SOZjUa7dO8DrQO+w6w7x96IxsAxILXt+bNh1h3gshgMP\n7T0OwFagTti119Dx6Aq0Az6p5P2D7jvDOBPoBKx291x3LwImUvqls/J6Ac8BuPsCoLGZNSXxHPBY\nuPsH7r6t7OkHQGqUa4yW6vxeANwGTAI2R7O4KKvOsbgGeMXd8wDc/aso1xgt1TkWX1J61yFl/7vV\n3fdEscaocfd5wDdVNDnovjOMEEgF1pd7voGfdmwV2+Ttp00iqM6xKG8Q8FaNVhSeAx4LM0sBrnD3\nJ0js75tU5/fiVOBoM5tjZgvNbEDUqouu6hyLMUAbM8sHllI6RU2yOui+MzYXmpefMLPzgespPR1M\nVo8C5a8JJ3IQHEgd4CzgAkoXxX7fzN539zXhlhWKe4Cl7n6+maUBs8zsTHffEXZh8SCMEMgDTiz3\nvHnZaxXbnHCANomgOscCMzsTGA30cPeqTgXjWXWORUdgopkZpdd+LzazIndPtJlpq3MsNgBfuXsh\nUGhmc4G2lF4/TyTVORZdgAcB3H2tmeUApwGLolJhbDnovjOMy0ELgVPMrIWZ1QP6ABX/EU8DrgUw\ns3OAb71sjqIEc8BjYWYnAq8AA9x9bQg1RssBj4W7n1z205LScYFbEjAAoHr/Rl4FuppZbTM7jNJB\nwBVRrjMaqnMsVgAXAZRd/z4VWBfVKqPLqPws+KD7zqifCbh7sZkNBWZSGkLj3H2FmQ0ufdtHu/ub\nZnaJma0BCii9DJJwqnMsgEzgaGBU2V/ARe7eKbyqa0Y1j8WPPhL1IqOkmv9GVprZDOAToBgY7e4J\nN1V7NX8vHgKeMbOllHaOf3D3r8OruuaY2YtAOnCMmX1B6Z1R9Yig79SXxUREkpiWlxQRSWIKARGR\nJKYQEBFJYgoBEZEkphAQEUliCgERkSSmEBARSWIKARGRJPZ/XAlOnyX6TbQAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0xb34cba8>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#Given\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "l = 1.0 #l - The length of the beam\n",
    "p = 1.0 #W - The total load applied\n",
    "#since it is triangular distribution \n",
    "l_com = 0.66*l#l - The distance of force of action from one end\n",
    "#F_Y = 0\n",
    "#R_A + R_B = p\n",
    "#M_a = 0 Implies that R_B = 2*R_A\n",
    "R_A = p/3.0\n",
    "R_B = 2.0*p/3\n",
    "\n",
    "#Taking Many sections \n",
    "\n",
    "#Section 1----1\n",
    "l = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
    "M = [0,0,0,0,0,0,0,0,0,0,0]\n",
    "v = [0,0,0,0,0,0,0,0,0,0,0]\n",
    "for i in range(10):\n",
    "    v[i] = p*(l[i]**2) - p/3.0\n",
    "    M[i] = p*(l[i]**3)/(3.0)- p*l[i]/3.0\n",
    "\n",
    "v[10] = R_B #again concluded Because the value is tearing of  \n",
    "\n",
    "\n",
    "#Graph\n",
    "values = M\n",
    "y = np.array(values)\n",
    "t = np.linspace(0,1,11)\n",
    "poly_coeff = np.polyfit(t, y, 2)\n",
    "\n",
    "plt.plot(t, y, 'o')\n",
    "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
    "plt.show()\n",
    "%matplotlib inline\n",
    "values = v\n",
    "y = np.array(values)\n",
    "t = np.linspace(0,1,11)\n",
    "poly_coeff = np.polyfit(t, y, 2)\n",
    "\n",
    "plt.plot(t, y, 'o')\n",
    "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
    "plt.show()\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5.16 page number 259"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.166666666667\n",
      "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEhCAYAAACOZ4wDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHddJREFUeJzt3Xu0HHWZ7vHvE8I9EsAx3IkidyGJkYszCLQCAQNDGGZE\nFBUBGdZoDqiEm8okDB4kZukMHJQxiFwUxYGBIXIJAZMtAwokQCDEEFAYhADxeLiDC0N4zx/129Bs\nunf1Trq7urqfz1q9dnX3r6ve2pd+dtXbVaWIwMzMbDDDii7AzMw6n8PCzMxyOSzMzCyXw8LMzHI5\nLMzMLJfDwszMcjkseoCkr0t6UNL9ku6VtHt6/DFJGxddX556dUp6qUXLu0TS4Wn6Ikk7tmI5nUDS\nWEkfb3DsPEnj0/T1kjZobXXWSYYXXYC1lqQPAxOBcRHxenrTXSs93fSDbCStERErmzzbenW2/CCh\niDi+1cso2DhgN+CmobwoIg5pxsJb9PtiLeAti+63GfCniHgdICKejYhn0nMCTpR0T9rq2B5A0nqS\nLpZ0Z3rub9PjoyXdJmlBun04Pb5vevw6YPHAAiR9X9LdkhZJmlr1+GOSptVY/saSbk7jL0p11iJJ\n301bTbdIend6cBtJN0maL+lXVfO9RNJ5ku6Q9Lv+rYf03AWSlkiaA4yqerz6v+mXJH1T0kJJv5b0\nnqrl/Satw9m1tnjS925JqmGppCskHZBqWSpptzRuI0nXpnn9WtIu6fGpki5N3+fHJB0uaYakByTd\nKGmNNG68pL607jdJ2qRqPc6VdJekhyTtJWlN4F+AI9IW5ycG1LyOpJ9JWizpGmCdAT+7jdP0tWl5\niyR9oWrMcWnd7pQ0U9L5VT+HCyXdCUyXtHta13sk3S5puzTu6DTvOZIelTRZ0smp1l9L2rDO74W1\nQkT41sU3YH3gPuAh4HvAPlXPPQZ8MU3/EzAzTf9v4NNpeiSwFFiX7M1irfT4tsD8NL0v8BKwdZ0a\nNkxfhwHzgF1yln8e8I00PRFYCWxcY75vAEem6TOB89P0rcD70/QewC/T9CXAz9P0TsAjafpw4OY0\nvRnwHHB4uj8PGF+1vIlpejrwtTT9C+CINH0C8GKNWkcDfwF2TvcXABen6UOBa9L0+cCZafqjwH1p\neipwW/oejgFeBSak565J8xgO3AG8Oz1+RNUy5gEz0vTHgVvS9NH937caNX8F+GGa3hVYUfW9eLT/\nZ1L1810HWARslL6Pj5H9/qyRaj+/6ucwq2o5I4BhaXo/4Oqq2h4G1gP+CngBOD49913gxKL/vnrp\n5t1QXS4iXkn/Ge8NfAy4UtLpEXF5GnJt+noP8HdpegLwt5JOSffXArYGngYukDSO7A18u6pF3R0R\nf6hTxpGSjid7M9sU2Bl4cJDl79M/HRE3SnquznxXAv+Rpn8C/Kek9YG/Aa6S1L9FsmbVa/4rzXeJ\npP4tiL2Bn6XHn5Y0t87yXouIG6vq3T9N/zUwKU3/FJhR5/WPRcRv0/RislCD7A32vWn6I2ThRUTM\nS1tZI9JzN0XEG5IWAYqIOQNevwOwC3BLWvdhwFNVy7+mqvbRdWqstg9ZcBMRiyTdX/Vc9dbelyUd\nlqa3JPu92Azoi4gXACRdxdt/X66qmt4QuDxtUQRv3z0+LyJeBV5NvwfXV63zrg2sgzWJw6IHRPav\n2G3AbemN5nNAf1i8lr6u5K3fBwF/HxGPVM9H2S6kZyJiTNrt8eeqp1+ptWxJ7wVOBj4UES9KuoSq\n3Rl1lv+O2Qy6gm8JsjfI5yJifJ0xr1VNNzrffiuqpqvrre6dDDbP6mW/UXX/DRr7W3wNsp+npOpa\n+l8v4MGI2Ctn+YN9rwfzjnWTtC/ZPyF7RsRrkubx1s93sO9F9e/L2cDciDhc0miyraCBNUP2fR7q\n98yaxD2LLidpe0nbVj00Dng852U3AydWzWNcmhxJtnUBWeCs0UAJGwAvAy+l/eeNfPLmNuCotOyP\nk/3nWcsawD+k6aOA2yPiJeAxSf2PI2lMndf3v5ndBnxS0jBJm5Ht/hls/EB3VtVxZJ0xg72+2n8D\nnwGQVCHrN73c4LyWAu/RW72k4ZJ2zqnlJbKfUS3VP4ddyHZ/DTSSLJxfU/apsQ+nx+cD+0gaKWk4\n8Pd1lkFa/rI0fcwg46xADovuNwK4TFkTeCHZvvpp6bl6nyY6G1gzNU8XkTVBAb4PfF7SfcD21Nma\nqBYRDwALgSVku4pur366zsvOInujWQQcBtTbvfUysEcaV6mq8yjgOGWN6AfJ9ufXWl6kGq8Ffke2\na+hS4Nd1aqxX71eAr6bv7/vJ9q3X0si8pgEfSrt8ziEL5bx5ZQ9ErCALremplvvIdpHVGt9/fx6w\nc60GN3AhMELS4lTXghqvn032u7I41fubVMtT6f7dZAH4GG99XwbWMgM4V9I9DP6e5FNkF0ipWWRm\nq0jSuhHx5zT9SbKm+9/lvKzrSVo/9czWIOtNXRwR1xVdl60a7/MzW30fknQB2a6d54BjC66nU0yT\ntD+wNjDHQVFu3rIwM7Nc7lmYmVkuh4WZmeVyWJiZWS6HhZmZ5XJYmJlZLoeFmZnlcliYmVmuwsNC\n0kHp/PoPSzptkHG7S1qhqmsQmJlZexQaFpKGARcABwIfAD6lGpewTOPOJTvBnZmZtVnRWxZ7kF2A\n5vF0ErQreeu6ANX+F3A18Md2FmdmZpmiw2IL4Imq+0+mx94kaXPgsIi4kKFff8DMzJqg6LBoxL8B\n1b0MB4aZWZsVfdbZZWSX6+y3JW9dBKXfbmSXAhXZdXg/LmlFRMwaODNJPiuimdkQRUTuP+FFb1nM\nB7aVNFrSWmRXGXtbCETENun2PrK+xRdrBUXV+K68TZ06tfAavH5eP69f990aVeiWRUSslDQZmEMW\nXBdHxBJJJ2RPx8yBL2l7kWZmVvhuKCJiNrDDgMd+UGesLypjZlaAondDWYMqlUrRJbSU16/cvH7d\nr6uulCcpuml9zMxaTRJRgga3mZmVgMPCzMxyOSzMzCyXw8LMzHI5LMzMLJfDwsxWyy9/CfffX3QV\n1moOCzNbLdOnwx57wLHHwrKBZ3azruGwMLPV9pOfwKhRMGYMTJ0KL79cdEXWbA4LM1ttI0fCuefC\nvffC738P228PF10EK1cWXZk1i8PCzJpm9OhsK2PWrOzruHEwezb4xArl57Aws6bbbTfo64NvfhNO\nOgkOPNBN8LJzWJhZS0gwaRI8+GD2dcIEN8HLzGFhZi215prwpS/Bww+7CV5mDgszaws3wcvNYWFm\nbeUmeDk5LMysEG6Cl4vDwswK4yZ4eTgszKxwboJ3PoeFmXUMN8E7l8PCzDqOm+Cdx2FhZh3LTfDO\n4bAws45Wrwn+1FNFV9ZbHBZmVgoDm+C77uomeDs5LMysVNwEL4bDwsxKyU3w9nJYmFmpuQneHoWH\nhaSDJD0k6WFJp9V4/tOS7k+32yXtWkSdZta53ARvvULDQtIw4ALgQOADwKck7Thg2KPAPhExFvgm\ncFF7qzSzsnATvHWK3rLYA3gkIh6PiBXAlcCk6gERcWdEvJDu3gls0eYazaxk3ARvvqLDYgvgiar7\nTzJ4GHwBuKmlFZlZ13ATvHmKDouGSfoocAzwjr6Gmdlg3ARffcMLXv4yYOuq+1umx95G0hhgJnBQ\nRDw32AynTZv25nSlUqFSqTSjTjMruf4m+MSJMHNm1gQ/5BA4+2zYfPOiq2ufvr4++vr6hvw6RYHb\nY5LWAJYC+wFPA3cDn4qIJVVjtgZ+CXw2Iu7MmV8UuT5mvWjCBJgyJftaJi+8AN/6VtbLmDwZTjkF\nRowouqr2k0REKG9cobuhImIlMBmYAywGroyIJZJOkPSPadiZwMbA9yXdJ+nugso1sy7iJvjQFLpl\n0WzesjBrv7JuWQy0YAGcfDI8+yzMmJH1NZT7/3b5lWLLwsysU7gJPjiHhZlZUutI8OOO85Hg4LAw\nM3uH6iPB3/MeHwkODgszs7rcBH+Lw8LMLIePBHdYmJk1rJeb4A4LM7Mh6NUmuMPCzGwV9FoT3GFh\nZrYaeqUJ7rAwM2uCbm+COyzMzJqoW5vgDgszsybrxia4w8LMrEW6qQnusDAza7FuaII7LMzM2qTM\nTXCHhZlZm5WxCe6wMDMrQK0m+LHHdm4T3GFhZlag6ib4qFGd2wR3WJiZdYBOb4I7LMzMOkinNsEd\nFmZmHajTmuAOCzOzDlWvCb5sWftrcViYmXW4gU3wMWPa3wR3WJiZlUSRTXCHhZlZyRTRBHdYmJmV\nVDub4A4LM7MSa1cT3GFhZtYFWt0Ed1iYmXWRVjXBCw8LSQdJekjSw5JOqzPmfEmPSFooaVy7azQz\nK5tmN8ELDQtJw4ALgAOBDwCfkrTjgDEfB94fEdsBJwD/3vZCzcxKqllN8KK3LPYAHomIxyNiBXAl\nMGnAmEnA5QARcRcwUtIm7S3TzKy8mtEELzostgCeqLr/ZHpssDHLaowxM7MctZrgjRreurKKse++\n09hrL1hrLahUKlQqlaJLMjPrGH19ffT19bHOOvDZz8J55zX2uqLDYhmwddX9LdNjA8dslTPmTVtt\nNY1LL4WzzoK9925WmWZm3WHgP9HnnXdWQ68rejfUfGBbSaMlrQUcCcwaMGYW8DkASR8Gno+I5fVm\n2InngTczK7tCtywiYqWkycAcsuC6OCKWSDohezpmRsSNkiZK+h3wCnBM3nz7u/+zZmXd/9GjYcYM\nGDu2patjZta1it4NRUTMBnYY8NgPBtyfPNT59nf/J06EmTOz7v/BB2cfH9t889Us2sysxxS9G6rl\nynIxdDOzTtb1YdGv0y+GbmbWyXomLPp16sXQzcw6Wc+FRb9Ouxi6mVkn69mwgPqHwD/1VNGVmZl1\nlp4Oi35ugpuZDc5hUcVNcDOz2hwWNbgJbmb2dg6LQbgJbmaWcVjkcBPczMxh0TA3wc2slzkshshN\ncDPrRQ6LVeQmuJn1EofFanIT3Mx6gcOiCdwEN7Nu57BoIjfBzaxbOSxawE1wM+s2DosWchPczLqF\nw6IN3AQ3s7LLDQtJn5D0rjT9DUnXSBrf+tK6i5vgZlZmjWxZnBkRL0n6CLA/cDFwYWvL6l5ugptZ\nGTUSFv1t2YOBmRFxA7BW60rqDW6Cm1mZNBIWyyT9APgkcKOktRt8nTXATXAzK4NG3vSPAG4GDoyI\n54GNgVNaWlUPchPczDpZ3bCQtEGaXAfoA/6fpI2B14AFrS+t97gJbmadarAti5+mr/eQhcM9VTeH\nRQu5CW5mnaZuWETEIenr+yJim/S1/7ZN+0rsXdVN8N/9zk1wMytOI8dZHDfg/hqSprauJBto9Gi4\n4go3wc2sOI00uPeTdKOkzSTtAtwJvGt1FyxpI0lzJC2VdLOkkTXGbClprqTFkhZJOnF1l1tmboKb\nWVFywyIiPg1cBiwCbgC+HBFTmrDs04FbI2IHYC5wRo0xrwNfjYgPAH8NfEnSjk1Ydmm5CW5mRWhk\nN9R2wEnAfwKPA5+VtF4Tlj2JLIRIXw8bOCAinomIhWn6ZWAJsEUTll16boKbWTs1shvqF2Sn/DgB\n2Bd4BJjfhGWPiojlkIUCMGqwwZLeC4wD7mrCsruGjwQ3s3YY3sCYPSLiRYCICOA7kn7RyMwl3QJs\nUv0QEMA3agyv266VNAK4GjgpbWHUNW3atDenK5UKlUqlkVJLr/9I8AUL4OST4fzzYcaMrK8hFV2d\nmXWKvr4++vr6hvw6RQMfqUmN7Z3JDtADICIuH/LS3j7PJUAlIpZL2hSYFxE71Rg3HLgeuCkizsuZ\nZzSyPt0uIvvk1KmnZiEyYwaMHVt0VdatJkyAKVOyr1Y+koiI3H8pG+lZTAX+T7p9FPg2cOhqVwiz\ngM+n6aOB6+qM+xHw27ygsLe4CW5mzdZIz+IfgP2AZyLiGGAs8I6Pua6C6cABkpam+Z8LkD6ie32a\n3gs4CviYpPsk3SvpoCYsuye4CW5mzdJIWPw5It4AXk/ni/ojsNXqLjgino2I/SNih4iYkE5SSEQ8\nXXX0+B0RsUZEjIuID0bE+IiYvbrL7jVugpvZ6mokLBZI2hC4iOy8UPcCv2lpVdYSPh26ma2q3E9D\nRcQX0+S/S5oNbBARD7S2LGul/iPBZ83KjgR3E9zM8gzpIkYR8T8Oiu7gJriZDYWveNfj3AQ3s0YM\ndvGjG9NR09YD3AQ3s8EMtmVxCTBH0tclrdmugqxYboKbWS11G9wRcZWkm4AzyT4R9WPgjarnv9uG\n+qwgboKbWbW8nsVfgFeAtcmuYVF9sy7nJriZ9RusZ3EQsBBYDxgfEVMj4qz+W9sqtMK5CW5mg21Z\nfB34REScHhGvtqsg61xugpv1rrphERF7R8TidhZj5eAmuFnv8XEWtsp8TXCz3uGwsNXiJrhZb3BY\nWFO4CW7W3RwW1lRugpt1J4eFtYSb4GbdxWFhLeUmuFl3cFhYy7kJblZ+DgtrGzfBzcrLYWFt5ya4\nWfk4LKwwboKblYfDwgrnJrhZ53NYWEdwE9ysszksrKO4CW7WmRwW1pHcBDfrLA4L62hugpt1BoeF\nlYKb4GbFclhYabgJblacwsJC0kaS5khaKulmSSMHGTtM0r2SZrWzRutMboKbtV+RWxanA7dGxA7A\nXOCMQcaeBPy2LVVZabgJbtY+RYbFJOCyNH0ZcFitQZK2BCYCP2xTXVYyboKbtV6RYTEqIpYDRMQz\nwKg64/4VOAXwn74Nyk1ws9YZ3sqZS7oF2KT6IbI3/W/UGP6OMJB0MLA8IhZKqqTXD2ratGlvTlcq\nFSqVypBqtnLrb4JPnAgzZ2ZN8IMPzgJk882Lrs6seH19ffT19Q35dYqCttUlLQEqEbFc0qbAvIjY\nacCYc4DPAK8D6wLvAq6JiM/VmWcUtT7WmV54Ab71rayXMXkynHIKjBhRdFXdZcIEmDIl+2rlI4mI\nyP1HvMjdULOAz6fpo4HrBg6IiK9FxNYRsQ1wJDC3XlCY1eImuFlzFBkW04EDJC0F9gPOBZC0maTr\nC6zLupCb4Garp7DdUK3g3VDWiIgsNE49NQuRGTNg7Niiqyov74YqtzLshjIrRL0jwZctK7oys87l\nsLCeNfBI8DFjfCS4WT0OC+t5boKb5XNYmCX9TfDrrnMT3Gwgh4XZALvv7iPBzQZyWJjV4Ca42ds5\nLMwG4Sa4WcZhYdYAN8Gt1zkszIbATXDrVQ4Ls1XgJrj1GoeF2SpyE9x6icPCbDW5CW69wGFh1iRu\ngls3c1iYNZmb4NaNHBZmLeImuHUTh4VZC7kJbt3CYWHWBm6CW9k5LMzayE1wKyuHhVkB3AS3snFY\nmBXITXArC4eFWcHcBLcycFiYdQg3wa2TOSzMOoyb4NaJHBZmHcpNcOskDguzDucmuHUCh4VZCbgJ\nbkVzWJiViJvgVhSHhVkJuQlu7VZYWEjaSNIcSUsl3SxpZJ1xIyVdJWmJpMWS9mx3rWadyk1wa5ci\ntyxOB26NiB2AucAZdcadB9wYETsBY4ElbarPrDTcBLdWKzIsJgGXpenLgMMGDpC0AbB3RFwCEBGv\nR8SL7SvRrDzcBLdWKjIsRkXEcoCIeAYYVWPM+4A/SbpE0r2SZkpat61VmpWMm+DWCi0NC0m3SHqg\n6rYofT20xvBae1mHA+OB70XEeOBVst1XZpbDTXBrpuGtnHlEHFDvOUnLJW0SEcslbQr8scawJ4En\nImJBun81cNpgy5w2bdqb05VKhUqlMtSyzbpKfxN8/nyYMgXOPx9mzMj6GlLR1Vm79fX10dfXN+TX\nKQr62ISk6cCzETFd0mnARhHxjq0GSb8Cjo+IhyVNBdaLiJqBISmKWh+zMoiAWbPg1FOzEJkxA8aO\nXb15TpiQhdCECc2p0dpLEhGR+29DkT2L6cABkpYC+wHnAkjaTNL1VeNOBK6QtJDs01DntL1Ssy7h\nJritqsLCIiKejYj9I2KHiJgQEc+nx5+OiEOqxt0fEbtHxLiIODwiXiiqZrNu4Sa4DZWP4DbrYW6C\nW6McFmbmI8Etl8PCzN7kI8GtHoeFmb2Nm+BWi8PCzGpyE9yqOSzMbFBughs4LMysQW6C97bCjuBu\nBR/BbdYe1UeCP/oo3HCDj+Auq0aP4HZYmNkqW7ECfv5zOPhg2GijoquxVeGwMDOzXGU4N5SZmZWE\nw8LMzHI5LMzMLJfDwszMcjkszMwsl8PCzMxyOSzMzCyXw8LMzHI5LMzMLJfDwszMcjkszMwsl8PC\nzMxyOSzMzCyXw8LMzHI5LMzMLJfDwszMcjkszMwsl8PCzMxyFRYWkjaSNEfSUkk3SxpZZ9wZkhZL\nekDSFZLWanetZma9rsgti9OBWyNiB2AucMbAAZJGA8cDH4yIMcBw4Mi2Vtkh+vr6ii6hpbx+5eb1\n635FhsUk4LI0fRlwWI0xLwJ/AdaXNBxYD3iqPeV1lm7/ZfX6lZvXr/sVGRajImI5QEQ8A4waOCAi\nngO+A/wBWAY8HxG3trVKMzNjeCtnLukWYJPqh4AAvlFjeNR4/TbAV4DRwAvA1ZI+HRE/bUG5ZmZW\nhyLe8R7dngVLS4BKRCyXtCkwLyJ2GjDmCOCAiDg+3f8ssGdETK4zz2JWxsysxCJCeWNaumWRYxbw\neWA6cDRwXY0xS4EzJa0DvAbsB8yvN8NGVtjMzIauyC2LjYH/ALYCHgeOiIjnJW0GXBQRh6Rxp5CF\nykrgPuALEbGikKLNzHpUYWFhZmbl0RVHcEs6SNJDkh6WdFrR9TSTpIslLZf0QNG1tIKkLSXNTQde\nLpJ0YtE1NZOktSXdJem+tI7nFF1Ts0kaJuleSbOKrqXZJP2PpPvTz+/uoutpNkkjJV0laUn6/dyz\n7tiyb1lIGgY8TNbPeIqsp3FkRDxUaGFNIukjwMvA5enAxK6SPtywaUQslDQCuAeY1C0/PwBJ60XE\nq5LWAO4ATo6IO4quq1kkfQX4ELBBRBxadD3NJOlR4EPpY/xdR9KlwK8i4pL+Y9ki4sVaY7thy2IP\n4JGIeDz1Mq4kO+CvK0TE7UBX/qJCdoxNRCxM0y8DS4Atiq2quSLi1TS5NtnfXNf8PCVtCUwEflh0\nLS0iuuN98h0kbQDsHRGXAETE6/WCArrjm7AF8ETV/SfpsjebXiHpvcA44K5iK2mutJvmPuAZoC8i\nflt0TU30r8Ap1DhOqksEcIuk+ZKOL7qYJnsf8CdJl6TdiDMlrVtvcDeEhXWBtAvqauCktIXRNSLi\njYj4ILAlsI+kfYuuqRkkHQwsT1uGSrdus1dEjCfbevpS2i3cLYYD44HvpXV8leycfTV1Q1gsA7au\nur9lesxKIu0rvRr4cUTUOt6mK6RN/BuA3YqupUn2Ag5N+/V/BnxU0uUF19RUEfF0+vp/gWvJdnt3\niyeBJyJiQbp/NVl41NQNYTEf2FbS6HT68iPJDvjrJt36X1u/HwG/jYjzii6k2ST9Vf/p99Mm/gHA\nwmKrao6I+FpEbB0R25D93c2NiM8VXVezSFovbfEiaX1gAvBgsVU1Tzo33xOStk8P7QfU3UVa5BHc\nTRERKyVNBuaQhd/FEbGk4LKaRtJPgQrwbkl/AKb2N6S6gaS9gKOARWm/fgBfi4jZxVbWNJsBl0nq\nb5T+OCJ+WXBN1phNgGvTaYSGA1dExJyCa2q2E4ErJK0JPAocU29g6T86a2ZmrdcNu6HMzKzFHBZm\nZpbLYWFmZrkcFmZmlsthYWZmuRwWZmaWy2Fh1qB0OvVHJW2Y7m+U7m+d99oG5n376ldo1jo+zsJs\nCCRNAbaLiBMk/QD4fUR8u+i6zFrNWxZmQ/NvwJ6STgL+BvhOrUGSrk1nKl0k6Qvpsa3TBbo2VuY2\nSfun515KXzeV9Kt0FtAH0hHuZoXzloXZEEmaAMwG9o+IuXXGbJiuKb8O2fnL9omI5yQdCxwE3A28\nPyL+KY1/MSI2kPRVYO2I+FY6Rch6EfFKW1bMbBDesjAbuolkV2XcdZAxX5a0ELiT7EzI2wFExI+A\nDYATgCk1XjcfOEbSPwNjHBTWKRwWZkMgaRzZ2Tk/DHxV0iY1xuwLfAzYMyLGkZ1ldp303Lpk4QEw\nYuBrI+K/gX3ITrN/qaTPtGI9zIbKYWE2NN8nu0DTk8C3qd2zGAk8FxGvSdqRLFj6TQd+Avwzb78U\nqSDrawB/jIiL0/N1ry9g1k4OC7MGpctqPl7Vp7gQ2FHS3gOGzgbWlLQYOAf4TXr9PmQXPpoeET8D\nXpN0dHpNf/OwAtwv6V7gCKDrrvFh5eQGt5mZ5fKWhZmZ5XJYmJlZLoeFmZnlcliYmVkuh4WZmeVy\nWJiZWS6HhZmZ5XJYmJlZrv8PP8dAL0wfwAEAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0xae30b70>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#Given\n",
    "import math \n",
    "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
    "l = 6.0      #a - length of the rod\n",
    "F = 1.0      #p - force applies in x direction \n",
    "d = 1.0      #a \n",
    "M = 1.0      #pa - torque applies on the rod\n",
    "l_ab = 4.0   #a application of torque point from A\n",
    "#M = 0 implies that\n",
    "R_A =  F/6.0 #p - The reaction at A\n",
    "R_B = - R_A  #F_Y = 0\n",
    "\n",
    "#Caliculations \n",
    "\n",
    "#Taking sections \n",
    "#Section 1---1\n",
    "l_1 = 1 #a - the length of the section \n",
    "M_1 = - R_A*l_1  #M = 0\n",
    "\n",
    "#Section 2---2\n",
    "l_2 = 4 #a - the length of the section \n",
    "M_2 = - R_A*l_2  #M = 0\n",
    "\n",
    "l_4 = 2 #a - the length of the section \n",
    "M_4 = 1/3.0 #pa #M = 0 '-M' because there is moment couple in between\n",
    "\n",
    "\n",
    "#Section 3---3\n",
    "l_3 = 1 #a - the length of the section \n",
    "M_3 = 1/6.0#pa M = 0 '-M' because there is moment couple in between\n",
    "print R_A\n",
    "\n",
    "#GRAPH\n",
    "#Since the symmetry exists the graphs are also symmetry\n",
    "%matplotlib inline\n",
    "#Drawing of shear and bending moment diagram\n",
    "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
    "X = [0,1,4,4.00001,5,6] # For graph precision \n",
    "M = [0,M_1,M_2,M_4,M_3,0];\t\t\t#Bending moment matrix\n",
    "plot(X,M);\t\t\t#Bending moment diagram\n",
    "suptitle( 'Shear and bending moment diagram')\n",
    "xlabel('X axis')\n",
    "ylabel( 'Y axis') ;\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}