summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter5.ipynb
blob: 089d0b854c0ce5b229268568c0be2f2b95692a49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
{
 "metadata": {
  "name": "",
  "signature": "sha256:71148b069e338fd0ffabcfe7f6bd37d7ab47477a297f58633926ede4f66ab53c"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Chapter 5:Axial force, Shear and Bending moment "
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example5.2 pagenumber 231"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given \n",
      "L_ab = 0.4  #mt The total length of the rod\n",
      "M = 200     #N_m - the moment acting on rod\n",
      "l_1 = 0.1   #mt -moment acting point the distance from 'a'\n",
      "R_1 = 100   #N - The Force acting \n",
      "l_2 = 0.2   #mt -R_1 acting point the distance from 'a'\n",
      "R_2 = 160   #N The Force acting \n",
      "l_3 = 0.3   #mt -R_2 acting point the distance from 'a'\n",
      "#caliculations\n",
      "\n",
      "#F_X = 0 forces in x directions \n",
      "R_A_X = 0   # since there are no forces in X-direction \n",
      "R_B_X = 0\n",
      "#M_A = 0 momentum at point a is zero\n",
      "\n",
      "# M + R_1*l_2 + R_2*l_3 = R_B*L_ab *the moment for a force is FxL\n",
      "R_B_Y =  (M + R_1*l_2 + R_2*l_3)/L_ab\n",
      "\n",
      "#M_B= 0 momentum at point b is zero\n",
      "# R_A_Y*L_ab + M - R_1*l_2 - R_2*0.1 = 0\n",
      "\n",
      "R_A_Y = -(M - R_1*l_2 - R_2*0.1)/L_ab\n",
      "    \n",
      "print \"The X,Y components of reaction force at A is \",R_A_X,\",\",R_A_Y,\"N\"\n",
      "print \"The X,Y components of reaction force at B is \",R_B_X,\",\",R_B_Y,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The X,Y components of reaction force at A is  0 , -410.0 N\n",
        "The X,Y components of reaction force at B is  0 , 670.0 N\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.2 page number 233"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given   \n",
      "P_Max  = 10   #N - the maximum distribution in a triangular distribution\n",
      "L = 3         #mt the total length of force distribution \n",
      "L_X = 5       #mt - the horizantal length of the rod\n",
      "#caliculations \n",
      "\n",
      "F_y = P_Max*L*0.5 #N - The force due to triangular distribition \n",
      "L_com  = 2*L /3   #mt - the resultant force acting as a result of distribution acting position \n",
      "#F_X = 0 forces in x directions\n",
      "R_A_X = 0         # since there are no forces in X-direction\n",
      "R_B_X = 0\n",
      "#M_A = 0 momentum at point a is zero\n",
      "#F_y*L_com - R_B_Y*L_X = 0\n",
      "R_B_Y = F_y*L_com/L_X\n",
      "\n",
      "#M_B= 0 momentum at point b is zero\n",
      "#- R_A_Y*L_X = F_y*(L_X-L )\n",
      "\n",
      "R_A_Y = - F_y*L/L_X \n",
      "print \"The X,Y components of reaction force at A is \",R_A_X,\",\",R_A_Y,\"N\"\n",
      "print \"The X,Y components of reaction force at B is \",R_B_X,\",\",R_B_Y,\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The X,Y components of reaction force at A is  0 , -9.0 N\n",
        "The X,Y components of reaction force at B is  0 , 6.0 N\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "\n",
      "Example 5.3 page number 233\n",
      "\n",
      "\n",
      "\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "F = 5       #K - force acting on the system\n",
      "tan = (4/3) # the Tan of the angle of force with x axis\n",
      "l_ab = 12   #inch - the total length of ab \n",
      "l = 3       # inch - Distance from 'a'\n",
      "#caliculation\n",
      "F_X = 4 #K\n",
      "F_Y = 3 #k\n",
      "\n",
      "#M_A = 0 momentum at point a is zero\n",
      "# F_X*l- R_B_Y*l_ab = 0 \n",
      "R_B_Y = F_X*l/l_ab\n",
      "\n",
      "#M_B= 0 momentum at point b is zero\n",
      "# R_A_Y*l_ab - F_X*(l_ab - l)\n",
      "R_A_Y = F_X*(l_ab - l)/l_ab\n",
      "    \n",
      "#F_X = 0 forces in x directions\n",
      "R_A_X = F_Y + R_B_Y  \n",
      "R_B_X = R_B_Y      # since the angle is 45 degrees\n",
      "\n",
      "#resultants \n",
      "R_A = pow(R_A_X**2 + R_A_Y**2,0.5)\n",
      "R_B = pow(R_B_X**2 + R_B_Y**2,0.5)\n",
      "\n",
      "print \"The X,Y components and resultant of reaction force at A is \",R_A_X,\",\",R_A_Y,\",\",R_A,\"N\"\n",
      "print \"The X,Y components and resultant of reaction force at B is \",R_B_X,\",\",R_B_Y,\",\",round(R_B,2),\"N\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The X,Y components and resultant of reaction force at A is  4 , 3 , 5.0 N\n",
        "The X,Y components and resultant of reaction force at B is  1 , 1 , 1.41 N\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.4 page number 239"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given   \n",
      "P_Max  = 10   #N - the maximum distribution in a triangular distribution\n",
      "L = 3         #mt the total length of force distribution \n",
      "L_X = 5       #mt - the horizantal length of the rod\n",
      "#caliculations \n",
      "\n",
      "F_y = P_Max*L*0.5 #N - The force due to triangular distribition \n",
      "L_com  = 2*L /3   #mt - the resultant force acting as a result of distribution acting position \n",
      "#F_X = 0 forces in x directions\n",
      "R_A_X = 0         # since there are no forces in X-direction\n",
      "R_B_X = 0\n",
      "#M_A = 0 momentum at point a is zero\n",
      "#F_y*L_com - R_B_Y*L_X = 0\n",
      "R_B_Y = F_y*L_com/L_X\n",
      "\n",
      "#M_B= 0 momentum at point b is zero\n",
      "#- R_A_Y*L_X = F_y*(L_X-L )\n",
      "\n",
      "R_A_Y = - F_y*L/L_X\n",
      "\n",
      "#For a---a section \n",
      "l_a = 2 #mt - a---a section from a \n",
      "l_com_a = 2*l_a/3\n",
      "v_a = R_A_Y + 0.5*l_a*(10.0*2/3) #*(10*2/3) because the maximum moves\n",
      "\n",
      "M_a =  (10.0*0.66)*l_a*(0.33) + R_A_Y*l_a \n",
      "\n",
      "#For b---b section \n",
      "\n",
      "v_b = F_y + R_A_Y #equilabrium conditions\n",
      "M_b =  (F_Y + R_A_Y)*(-1)\n",
      "\n",
      "print \"The force and moment in section a--a are\",round(v_a,2),\"KN ,\",M_a,\"KN-m\"\n",
      "print \"The force and moment in section b--b are\",v_b,\"KN ,\",M_b,\"KN-m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The force and moment in section a--a are -2.33 KN , -13.644 KN-m\n",
        "The force and moment in section b--b are 6.0 KN , 6.0 KN-m\n"
       ]
      }
     ],
     "prompt_number": 34
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5 page number 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given \n",
      "#Lets divide the section into two sections \n",
      "l_ac = 10 # ft -The total length of the rod\n",
      "R = 5     #k - The applies force at c\n",
      "tan = 4/3 # The tan of the angle of the force \n",
      "l_ab = 5  #ft - The distance of applied force from A\n",
      "R_y = 4 #k,downwards X- component of the force\n",
      "R_X = 3 #k Y- component of the force , lets consider only Y direction since we are concentrating on the Shears \n",
      "\n",
      "#F_Y = 0 forces in Y directions\n",
      "#R_A +R_B =  R_y\n",
      "#M_c = 0 making the moment zero at point c \n",
      "#Caliculations \n",
      "# R_A= R_B*(l_ac - l_ab)/(l_ab) so R_A = R_B\n",
      "\n",
      "R_A =  R_y/2 #F_Y = 0\n",
      "R_B =  R_y/2\n",
      "#considering section x--x\n",
      "l_x = 2       #ft - length of section from A\n",
      "v_x = R_A     #k ,F_X = 0 \n",
      "M_x = R_A*l_x #k-ft M_c = 0\n",
      "\n",
      "#considering section at midpoint t--t\n",
      "l_t =  2        #ft - length of section from A\n",
      "v_t = 0         #k ,F_X = 0 \n",
      "M_t = (R_A)*l_t #k-ft M_c = 0\n",
      "\n",
      "##considering section y---y\n",
      "l_y = 2       #ft - length of section from B\n",
      "v_y = - R_B   #k ,F_X = 0 \n",
      "M_y = R_B*l_y #k-ft M_c = 0\n",
      "\n",
      "#Graph\n",
      "%matplotlib inline\n",
      "import math \n",
      "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
      "#Drawing of shear and bending moment diagram\n",
      "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
      "X = [0,2,4.9999999999999,5,5.00000000000000001,7,10] # For graph precision \n",
      "\n",
      "V = [R_A,v_x,v_x,v_t,v_y,v_y,-R_B];\t\t\t#Shear matrix\n",
      "M = [0,M_x,M_t,M_t,M_t,M_y,0];\t\t\t#Bending moment matrix\n",
      "plot(X,V);\t\t\t#Shear diagram\n",
      "plot(X,M,'r');\t\t\t#Bending moment diagram\n",
      "suptitle( 'Shear and bending moment diagram')\n",
      "xlabel('X axis')\n",
      "ylabel( 'Y axis') ;"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEhCAYAAABycqfJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xv8lGWd//HXW/AEhpL9VEwKzaVVlxQwQ1P7VlqWhZpu\nZLaLKZrlphi4asoG7uoWCppbuoaQh9ZoZdN0TcnUr9imJiKimKfQldI8rCgpHhA+vz+uGxnxe2Zm\nrpnv/X4+HvPgnpn78JkZvvOZ67ru+/ooIjAzs/LaIHcAZmaWlxOBmVnJORGYmZWcE4GZWck5EZiZ\nlZwTgZlZyTkRNClJp0t6QNJ9ku6V9OHi8SckvTt3fJ1pL05JL9foeJdKOrRYniFpp1ocpxFI2lXS\nZ7q4bqukEcXy9ZIG1DY6a0R9cwdg3SdpT+BAYHhErCy+UDcung5AVT5e34h4s5r7JMXZncercbwA\niIhjanSMRjEcGAnc0IV133q/I+LAahxcUp+IWFWNfVl9uEXQnLYBno+IlQAR8UJEPF3x/Dcl3SNp\nkaQPAkjqL2mWpLskLZA0unh8iKR5xfr3FEkGSS2Sbpf0C2DxugFIulDS3UWrZHLF409ImtzG8beU\n9Kti/Rl0kKwkTS/W+7Wk9xSPfUDSDZLmF/Gu2e+lkr4v6X8k/aHiV78k/UDSQ5JuAraq2H/lr+CX\nJf2LpIWS7pC0VcXx7ixew79I+ksbcQ4p9v9jSQ9L+g9JnypieaSilfZuSdcUrbc7JA0rHp8s6bLi\n9Twh6QuSzi2OeYOkvsV6I4uY50u6UdI2Fa/ju8Vn+rCkvSVtCJwJjClain+7TsybSpot6UFJPwc2\nXeeze3exfHVxvAckHVOxztHFse4qWlb/VvE5/LukO4HvSfqwpN8W/9f+R9LQYr0ji/fiV5Iel/QP\nkiYW690haWB7/y+shiLCtya7Af2Be4GHgR8C+1Y89zhwfLH8dWBGsXw2cESxvEWxbT/SF8HGxeN/\nBdxdLLcALwPvbyeGgcW/fYBbgb/p5PgXAGcUy58FVgPvbmO/q4HDi+VJwL8VyzcDOxbLHwFuLpYv\nBX5WLO8EPFosfwH4FSnhDAKWAV8onrsVGFFxvAOL5e8BpxfL/w2MKZa/BvyljViHACuBXYrjzAdm\nFs+NBq4ulv8NmFQsfxy4t1ieDMwr3sMPASuATxfP/Rw4CNgQ+C2wZfH4mIpj3AqcUyx/BripWB4L\nXNDO5/Yt4JJieVgR/5r34vE1n0nF57spcD8wENi2WGcLUm/CvDXHKT6HawEV998F9CmW9wPmFMtH\nAo+S/g+/B3gJOLZ4bjpwYu6/rzLe3DXUhCLiFUkjgX1IXyw/k3RqRFxWrPLz4t8FpC9EgE8Bn5c0\nsbi/MTAY+DPwA0m7AqtIyWCN30XE/7YTxpjil2Jf0hftzsADHRx/H+CQIv5fSlrWzn5XAz8rln8C\n/FxSf2Av4CrprYbERmveDuCaYr+/l7R18fi+wJWRvmGelnRLO8d7IyKuL5bvAfYvlkeRvswBfgqc\n2872j0fEYgBJi4FfF48/QEoUAB+leB8i4taidfSuIvYbImKVpAeADSJibrHN/cX2Q0mJ5tfFa+8D\nPFVx/Mr3es3xRPstrn2A7xex3C9pUTvrnSjp4GJ5uyKOQcBtEfFi8XqvKh6neC1XFe83pGRxuaQd\ni+cqv2tujYhXgFckvQhcV/GaP9ROPFZDTgRNKiJWA7cBt0m6n/QrcE0ieL34dxVv/4y/EBGPVu5H\nqVvn6Yj4O0l9gNcqnn6lrWNL2h6YAOweES9J+jGwScUq7R2/u2MXIn2JbAAsi4jh7az3RhvH6OpY\nycqK5dV0/2/i9Yrl1RWxrLuv9mJ5A9LnKamtWAQsjoi9Ojn+uu91Rzp8XyS1AJ8ERkXEa5JuJX2+\n647frLufFRXL/0xqtR0i6f1AaxsxQ3qdr1cs+zspA48RNCFJQyVV/nIfDjzRyWZzgRMq9rHmS3UA\nqVUA8PekX5ydGUBKEsuLX+BdOUNlHvDl4tifIXU1tGUDYE2/9peB2yPiL8Djkg4rtpekzn45ziO1\nWjaQNIjUcuqOO4HDiuUvdXPbdd0OHAFvfck+V7ymriSqh4H/J2lUsf2GknbuZJvlpK6ZtlR+Dn9D\n27/AB5AS72uS/prUOgrgbuBjkrYoxi8Opf3B/QGsbbl8tZN416jqSQ7WdU4EzWkz4FJJiyXdB/w1\nqb8Z3v6HGRX3/xnYsBiIfACYUjx+ITBW0kLgg6Rxgcrt3yEi7iONUTwE/Afwm3birDz+FGDf4tiH\nAO11Ob0C7FG0clpIA5+QvkiPLuJ8gLXdNm29ZiLialJf9IOkltJvO4ixrXjHA98qjvcBUl92Z9u3\nGQvpsxlZfFZnk1pv6x6vzX1FOiHgMNIA7ELS+75nJ7HcCuzc1mAxcBGwmaQHSZ/J/Db2cyPQt1jn\nX4E7imCeKuL/Hekzf5y3vy+V8U8F/lXSAtKPi6hYp73XvO5zVida26VnZmtI2jQiXi2Wv0QaOD4k\nc1jZSepfjFH1JY1PzIyIX+SOy9aP++PM2jZS0g9I3RXLgKMyx9MoJkvajzRmMNdJoHdwi8DMrOQ8\nRmBmVnJOBGZmJedEYGZWck4EZmYl50RgZlZyTgRmZiXnRGBmVnLZE4GkPsWl8Nd1vraZmVVb9kQA\nnEiaD8ZXtpmZZZA1EUjajlSk5BI886CZWRa5WwTnASeT5iE3M7MMsiUCSZ8Dno2Ie3FrwMwsm2yT\nzkk6G/g74E3STIYDgP+KiL+vWMfjBmZmPRARXf6Bna1FEBHfjojBEbE9qQLULZVJoGK9ct8mTiTG\nj+c73/lO/lga5Ob3osHei//9X+I97yEWLfJ70SC37so9RlDJv/7XtXw5zJoFJ56YOxKz9r3vffDd\n78LYsbByZefrW8NpiEQQEbdFxOjO1yyZmTNh//1hyJDckZh17KijYJtt4KyzckdiPeAKZY3qzTfh\n/PNhzhwAWlpa8sbTQPxerNUw74UEM2bA8OEwejSMGFH3EBrmvWhCDV2hTFI0cnw1NXs2XHghzJuX\nOxKzrrviCpg6FebPh403zh1NaUkimmGw2DoQAdOmwYQJuSMx656vfAU+8AGYMiV3JNYNTgSN6Pbb\n4aWX4POfzx2JWfdIcPHFaXzrrrtyR2Nd5ETQiKZNg299Czbwx2NNaOut4YIL0llEr76aOxrrAo8R\nNJqHH4Z99oEnnoB+/XJHY9ZzX/wiDB6cfthYXXV3jMCJoNEcdxxstRWceWbuSMzWz/PPw7BhcNVV\nsPfeuaMpFSeCZvbcczB0KDz0UGpemzW7a66Bk0+GhQuhf//c0ZSGzxpqZhddBIce6iRgvcfBB8Oo\nUXDqqbkjsQ64RdAoXnstXUF8yy2w8865ozGrnmXLUhfR5ZfDJz6RO5pScIugWf3kJzBypJOA9T4D\nB8KPfpSmoVi+PHc01ga3CBrB6tWwyy7wwx/6F5P1XkcfDX37pusMrKbcImhGN9wAm2wCH/947kjM\namf6dLjxRpg7N3cktg4ngkawZjoJuVCb9WKbb56uOB43Dl58MXc0VsFdQ7nde2+arXHJEthww9zR\nmNXe17+erji+9NLckfRa7hpqNtOmwQknOAlYeZxzTppV99prc0diBbcIclq6FHbdNbUGttgidzRm\n9XPbbfDlL8OiRbDllrmj6XV8ZXEzOfnkVIDmvPNyR2JWf+PHw7PPwpVX5o6k13EiaBbLl8P228M9\n97gUpZXTihWpotnZZ6cr6q1qPEbQLFyP2MquX780YHz88allYNm4RZDDm2+mKk5z5sCHP5w7GrO8\n/vEf4Q9/SH8PPoW6KtwiaAZz5sD73+8kYAZpyvWHHkp1ui0LtwjqLQL22APOOAMOOih3NGaNYf58\nOPDANF31oEG5o2l6bhE0OtcjNnun3XeHY49Nt972468JOBHUm+sRm7Vt0iR48km47LLckZSOu4bq\nyfWIzTq2cGE6m27BglTv2HrEXUON7LzzUk1iJwGztu22W5pyZdw4dxHVkVsE9eJ6xGZds3Il7Lnn\n2jED67amubJY0ibAbcDGwEbALyLitHXW6T2J4Mwz09xCM2bkjsSs8S1eDC0tcPfdvuiyB5omEQBI\n6hcRKyT1BX4DTIyI31Q83zsSwZp6xLfeCjvtlDsas+YwdWoq2nTzzT65opuaaowgIlYUixsBfYAX\nMoZTO2vqETsJmHXdhAnpR9QPf5g7kl4vd4tgA2AB8AHgooj4x3Web/4WgesRm/Xcww/DRz8Kd94J\nO+6YO5qm0WwtgtURsRuwHbCvpJac8dSE6xGb9dwHP5iuwj/ySFi1Knc0vVbf3AEARMRLkq4Hdgda\nK5+bPHnyW8stLS20tLTUM7T1N20aTJzoybTMeuqEE+Dqq+H881N3kb1Da2srra2tPd4+51lD7wHe\njIgXJW0KzAWmRMTNFes0d9eQ6xGbVceSJWmOrttv91hbFzRT19Ag4BZJC4G7gOsqk0Cv4HrEZtWx\nww7pFOyxY9M07lZVvqCsVlyP2Ky6Vq+GT30KPvlJOO20ztcvsaa6jqAzTZ0IXI/YrPqefDKdin3L\nLTBsWO5oGpYTQSNwPWKz2pk5M52Ofddd7nZtRzONEfRerkdsVjtHHQXbbANnnZU7kl7DLYJqcz1i\ns9r7059g+HC48UYYMSJ3NA3HLYLcXI/YrPbe+950Vt7YsfD667mjaXpOBNUUkf5z+qIXs9r7yldS\n63vKlNyRND0ngmpyPWKz+pHg4oth1qw0cGw95kRQTa5HbFZfW28NF1yQuohefTV3NE3Lg8XV4nrE\nZvmMGQPbbZd+jJmvI8jmuONgq63SZfBmVl/PP58uMLvqKth779zRZOdEkIPrEZvld8016Yr+hQuh\nf//c0WTl00dzuOgiOOwwJwGznA4+GEaNglNPzR1J03GLYH25HrFZ41i2LHURXX55qSsCukVQb1dc\n4XrEZo1i4ED40Y/SNBTLl+eOpmm4RbA+XI/YrDEdfTT07ZuuMyghtwjqyfWIzRrT9OlpHqK5c3NH\n0hScCNaH6xGbNabNN0+zAI8bBy++mDuahueuoZ5asAAOOsj1iM0a2Te+AStWwKWX5o6krtw1VC+u\nR2zW+KZOhXnz4Nprc0fS0Nwi6AnXIzZrHrfdBl/+MixaBFtumTuauvCVxfXgesRmzWX8eHj2Wbjy\nytyR1IUTQa25HrFZ81mxIlU0O/tsOPTQ3NHUnMcIas31iM2aT79+acD4+ONTy8Dexi2C7nA9YrPm\ndsop8Nhj6W+4F5/27RZBLbkesVlzmzIlzRI8e3buSBqKWwRdFQF77AGTJsHo0bmjMbOemj8fDjww\nTVc9aFDuaGrCLYJauf32NFD8uc/ljsTM1sfuu8Oxx6Zbo/zQzMyJoKumTYOTTnI9YrPeYNKkdD3Q\nZZfljqQhuGuoK1yP2Kz3ue8+2G+/NF3M4MG5o6mqpukakjRY0q2SFkt6QNIJuWLp1HnnpZrETgJm\nvceuu6ZpYsaNK30XUbYWgaRtgG0iYqGkzYB7gIMj4vcV6+RvEbgesVnvtXIl7Lnn2jGDXqJpWgQR\n8eeIWFgsvwz8Htg2Vzztcj1is95rww3TOMHpp6eu35JqiDECSUOA24BdiqSw5vG8LQLXIzYrh6lT\nU6Gpm2/uFSeEdLdF0LeWwXRF0S00BzixMgmsfX5yxb2W4lYf47iCgxnJ53Z2ErC3GzgQXnghdxRW\nNRMmwDXXpLKz3/xm7mi6rbW1ldbW1h5vn7VFIGlD4L+BGyLi/Daez9cicD1i64BU+vHF3ueRR2Cv\nveDOO2HHHXNHs16aZoxAkoCZwINtJYHsbrgBNt3U9YjNymLoUDjjDDjySFi1Knc0dZWzM+yjwFeA\nj0u6t7gdkDGet5s2LTUXe/HEVGa2jhNOgD594PzG+21aSw0xWNyebF1DrkdsnXDXUC+2ZAl85COp\nxGWTniTSNF1DDc31iM3Ka4cd4MwzYezYNPV8CbhFsC7XI7YucIugl4uAT30qnShy2mm5o+k2l6pc\nXyefnAaKpk+v73GtqTgRlMCTT8LIkXDLLTBsWO5ousWJYH2sqUe8YEEqQGPWDieCkpg5M51Cftdd\nTdVV7DGC9bGmHrGTgJkBHHVUKl5z1lm5I6kptwjWcD1i6wa3CErkqadgt93gxhthxIjc0XSJWwQ9\n5XrEZtaWbbdNY4Zjx8Lrr+eOpiacCCD9tJs2DSZOzB2JmTWiI45IPQZTpuSOpCacCMD1iM2sYxJc\nfDHMmpUGjnsZJwJwPWIz69zWW8MFF6QuoldfzR1NVXmw2PWIrQc8WFxiY8bAdtulH5ANytcRdNdx\nx8FWW6VLys26yImgxJ5/Pl1gdtVVsPfeuaNpkxNBd7gesfWQE0HJXXNNmoVg4ULo3z93NO/g00e7\nw/WIzawnDj4YRo2CU0/NHUlVlLdF8OqrqR5xa2vTTjVr+bhFYCxblrqILr+84aoYukXQVT/5Cey+\nu5OAmfXMwIEwY0aahmL58tzRrJdytghcj9jWk1sE9pZx41JVs4svzh3JW9wi6ArXIzazapk2Lc1D\nNHdu7kh6rJyJwPWIzaxaNt88zVw8bhy8+GLuaHqk00Qg6YuSBhTLkyRdLak5puBry4IF8Oij8MUv\n5o7EzHqL/faDz38exo/PHUmPdKVFMCkilkvaG/gkMBO4qLZh1ZDrEZtZLUydmuYtu/ba3JF0W1cS\nwari388BMyLiv4GNahdSDS1dmsYHjjkmdyRm1ttsthn8+Mfw9a/D//1f7mi6pSuJ4E+SfgSMAa6X\ntEkXt2s8F1wARx7povRmVhv77pu6nb/5zdyRdEunp49K6g8cACyKiEclDQKGRcSvah5cNU8fdT1i\nqyKfPmrtWrEChg+Hs8+GQw/NEkLV5hqSNKAYG3h3W89HxAs9jLHLqpoIpk+H3/0OZs+uzv6s1JwI\nrEN33AGHHAKLFqVJLeusmong+og4UNITwDtWiojtexxlF1UtEbgesVWZE4F16pRT4LHH0vdOnU9V\n9+yjbZk9Gy68EObNW/99meFEYF3w2mswciSccQYcfnhdD131K4slHb3O/b6SvtOT4LJwPWIzy2GT\nTeCyy9K1BU8/nTuaDnXl7J/9JP1S0raS/ga4AxhQjYNLmiXpGUn3V2N/bXI9YjPLZffd4dhj062B\nm5Bd6hqS9CXgB8ArwBER8ZuqHFzaB3gZuDwihrXx/Pp3DY0eDZ/9bKpEZlYl7hqyLnvjDdhjj9Qy\nOPLIuhyy6mMEkoYClwIPADsBi4EJEfHKesRZuf8hwHU1SQSuR2w14kRg3XLffWkaigULYPDgmh+u\nFrOPXgv8U0QcC3wMeBS4u4fx1dd556Wr/JwEzCynXXeFE09ME9M14C+Ivl1Y5yMR8RJARKwGpkm6\nrrZhrTV58uS3lltaWmhpaenahs89Bz/7WWoVmJnlduqpqdbxjBlpzKCKWltbaW1t7fH2XR0jGAbs\nDGxCcU1BRFze46O+fd9DqEXX0JlnprmFZsxYr/jM2uKuIeuRxYuhpQXuvjuVyq2RWowRTCZ1Ce0C\nXA98BvhNRBy2HnFW7n8I1U4ErkdsNeZEYD02dWqa/PLmm2GD2kzbVosxgsOA/YCnI+KrwK5AVWZt\nk/RT4LfAUElLJX21Gvt1PWIza1gTJsDrr6dSuQ2iKy2CuyPiw5LuAT4BLAceiogP1jy4nrQI1tQj\nvvBCl6K0mnGLwNbLI4/AXnvBnXfCjjtWffe1aBHcLWkgMAOYD9xL+hXfmNbUI+7qoLKZWb0NHQqT\nJqXrClat6nT1WuvWXEOStgcGRMR9tQvpbcfrfovgE5+Ao4+GI46oTVBmuEVgVbB6deq1GD06dRdV\nUbknnVuwAA46CJYscSlKqyknAquKJUvgIx9JE2JWcUyzFl1DzcP1iM2smeywQzrVfezYNF1+Ju0m\nAkk3FF1BzWHpUrjxxqpfqGFmVlPHHQebbw7nnJMthI5aBLOAuZJOl9T4P7EvuCBl1c03zx2JmVnX\nSTBzZqqieH/tJmLuMISO+uAlbQb8E/Bp4ArWViqLiJhe8+C6OkbgesRWZx4jsKqbOTNdW3DXXevd\nvV3tMYKVpGmiNwHeBWxW3N7V4whr4ZJLYP/9nQTMrHkddRQMGgRnnVX3Q3dUs/gAYDpwHTAlIlbU\nM7Aihs5bBK5HbBm4RWA18dRTsNtuabxzxIge76aaLYLTgb+NiFNyJIEumzMnzSvkJGBmzW7bbdNY\nwdixaRqKOumoRVClyvE912kIEanyz6RJ6aIMszpxi8BqJgK+8IV0XcHZZ/doF1VrEeROAl3iesRm\n1ttI8O//DrNmpYHjOmjuC8rOPRdOOqlmU7mamWWx9dZrT4l/9dWaH655p5hwPWLLyF1DVhdjxsB2\n26VZE7qhPHMNHXdcyppTptQ3KDOcCKxOnn8ePvQh+M//hL337vJm5UgEzz2XpnF9+GHYaqv6B2al\n50RgdfOLX8DEibBwIfTv36VNyjHp3EUXwWGHOQmYWe930EGw555w6qk1O0TztQhcj9gagFsEVlfL\nlsGwYXD55anmSid6f4vA9YjNrGwGDoQZM9I0FMuXV333zdUicD1iaxBuEVgW48ZBnz5w8cUdrta7\nWwSuR2xmZTZ9Osydm25V1FyJ4NxzU21PdTnRmZn1HgMGpNmWx42DF1+s2m6bp2vI9YitgbhryLL6\nxjdgxQq49NI2n+69XUOuR2xmlkydmuZau/baquyuOVoES5emObqXLHEpSmsIbhFYdvPmweGHw6JF\nsOWWb3uqd15ZfPLJsGpVGigxawBOBNYQTjoJnnkGrrzybQ/3vkTw0kuuR2wNx4nAGsKKFTB8eKpb\ncOihbz3c+8YIXI/YzKxt/fqlAePjj4dnn+3xbrK2CIq6yOcDfYBLIuJ76zwf8b73uR6xNRy3CKyh\nnHIKPPZY+q6UmqdFIKkP8APgAGBn4HBJ75w3wvWIzcw6NmUKPPQQzJ7do81zdg3tATwWEU9ExEpg\nNnDQO9aaMKHecZmZNZdNNkkT0o0fD08/3e3NcyaC9wJLK+7/sXjs7VyP2MyscyNHwte+Bsce2+1N\n+9YgnK7qUg/r5DPPfGu5paWFFs8zZGb2Nq2trbS2tqaBqwULur19tsFiSaOAyRFxQHH/NGB15YBx\nh6UqzTLyYLE1rFWrUN++zTFYDMwH/krSEEkbAWOA6lwvbWZWVn36dHuTbF1DEfGmpH8A5pJOH50Z\nEb/PFY+ZWVk1/pXFDRyflZe7hqyRNc11BGZm1hicCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErO\nicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonA\nzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys\n5JwIzMxKLksikPS3khZLWiVpRI4YzMwsydUiuB84BJiX6fhmZlbom+OgEfEQgKQchzczswoeIzAz\nK7matQgk3QRs08ZT346I62p1XDMz656aJYKI2L8a+5k8efJbyy0tLbS0tFRjt2ZmvUZrayutra09\n3l4RUb1ountw6VZgYkTc087zkTM+s/ZI4P+a1qgkERFdHoTNdfroIZKWAqOA6yXdkCMOMzPL3CLo\njFsE1qjcIrBG1hQtAjMzaxxOBGZmJedEYGZWck4EZmYl50RgZlZyTgRmZiXnRGBmVnJOBGZmJedE\nYGZWck4EZmYl50RgZlZyTgRmZiXnRGBmVnJOBGZmJedEYGZWck4EZmYl50RgZlZyTgRmZiXnRGBm\nVnJOBGZmJedEYGZWck4EZmYl50RgZlZyTgRmZiXnRGBmVnJOBGZmJedEYGZWck4EZmYllyURSDpH\n0u8l3Sfp55I2zxGHmZnlaxH8CtglInYFHgFOyxRH02htbc0dQsPwe7GW34u1/F70XJZEEBE3RcTq\n4u5dwHY54mgm/k++lt+LtfxerOX3oucaYYzgKOCXuYMwMyurvrXasaSbgG3aeOrbEXFdsc7pwBsR\ncWWt4jAzs44pIvIcWDoSOAb4ZES81s46eYIzM2tyEaGurluzFkFHJB0AnAx8rL0kAN17IWZm1jNZ\nWgSSHgU2Al4oHrojIr5R90DMzCxf15CZmTWGRjhr6B0kHSDpIUmPSjoldzw5SRos6VZJiyU9IOmE\n3DHlJKmPpHslXZc7lpwkbSFpTnFh5oOSRuWOKRdJpxV/H/dLulLSxrljqhdJsyQ9I+n+isfeLekm\nSY9I+pWkLTrbT8MlAkl9gB8ABwA7A4dL2ilvVFmtBE6KiF2AUcDxJX8/TgQeBMrelP0+8MuI2An4\nEPD7zPFkIWkI6aSTERExDOgDfClnTHX2Y9J3ZaVTgZsiYihwc3G/Qw2XCIA9gMci4omIWAnMBg7K\nHFM2EfHniFhYLL9M+oPfNm9UeUjaDvgscAlQ2hMJiilZ9omIWQAR8WZEvJQ5rFyWk34s9ZPUF+gH\n/ClvSPUTEbcDy9Z5eDRwWbF8GXBwZ/tpxETwXmBpxf0/Fo+VXvHrZzjpauwyOo90ttnqzlbs5bYH\nnpP0Y0kLJM2Q1C93UDlExAvANOBJ4CngxYj4dd6osts6Ip4plp8Btu5sg0ZMBGVv8rdJ0mbAHODE\nomVQKpI+BzwbEfdS4tZAoS8wArgwIkYAr9CF5n9vJOkDwHhgCKmlvJmkI7IG1UAinQ3U6XdqIyaC\nPwGDK+4PJrUKSkvShsB/AT+JiGtyx5PJXsBoSY8DPwU+IenyzDHl8kfgjxFxd3F/DikxlNHuwG8j\n4v8i4k3g56T/K2X2jKRtACQNAp7tbINGTATzgb+SNETSRsAY4NrMMWUjScBM4MGIOD93PLlExLcj\nYnBEbE8aDLwlIv4+d1w5RMSfgaWShhYP7QcszhhSTg8BoyRtWvyt7Ec6maDMrgXGFstjgU5/PGa5\nsrgjEfGmpH8A5pLOAJgZEaU8I6LwUeArwCJJ9xaPnRYRN2aMqRGUvQvxm8B/FD+W/gB8NXM8WUTE\nfUXLcD51AFV7AAACD0lEQVRp7GgB8KO8UdWPpJ8CHwPeI2kp8E/Ad4H/lHQ08ATwxU734wvKzMzK\nrRG7hszMrI6cCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicBKq5jie4mkgcX9gcX991Vh3/+z\n/hGa1YevI7BSk3QysGNEfE3SxcCSiPhe7rjM6sktAiu780hTFIwnzVFzblsrSbpa0vyiONAxxWPv\nL4p/bClpA0m3S9qveO7l4t9BkuYVxXTul7R3nV6XWZe5RWClJ+nTwA3A/hFxczvrDIyIZZI2BX4H\n7FvcPxr4NHA3sENEfL1Y/y8R8S5JE4CNI+LsYi6c/mWcPdYam1sEZvAZ0lz2wzpY50RJC4E7gO2A\noQARMRPYHPgaMLGN7X4HfFXSd4APOQlYI3IisFKTtBtpxso9gZPWTN+7zjotwCeBURGxG7AQ2Lh4\nrh8pMQTwrnW3LSpI7UOaXv1SSX9Xm1di1nNOBFZaRVfNRaRiP0uBc2h7jGAAsCwiXpP016Ta0Wt8\nD7gC+A4wo41jvA94LiIuIZXYHF7dV2G2/pwIrMyOAZ6oGBe4ENhJ0j7rrHcj0FfSg8C/krqHkPQx\nYCTwvYi4EnhD0pp54NcMvn0cWChpAWk64O/X7NWY9ZAHi83MSs4tAjOzknMiMDMrOScCM7OScyIw\nMys5JwIzs5JzIjAzKzknAjOzknMiMDMruf8PP5JcgJ4iq3UAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x87a5ac8>"
       ]
      }
     ],
     "prompt_number": 42
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.6 pagenumber 243 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "l = 1                       #L - Length of the cantilever \n",
      "F_app = ((2**0.5))*2        #p - force applies \n",
      "tan = 1                     # The angle of force applied\n",
      "F_app_x = F_app/((2**0.5))  #p The horizantal component of the force , neglected \n",
      "F_app_y = F_app/((2**0.5))  #p  The Vertical component of the force \n",
      "#F_Y = 0 \n",
      "R_A = 1 #p\n",
      "\n",
      "#Considering  section 1-----1\n",
      "l_1 = 0.5       # The length of the section from one end\n",
      "v_1 = R_A       #F_Y = 0\n",
      "M_1 = -R_A*l_1  #MAking moment at section 1 = 0\n",
      "\n",
      "#considering end of cantilever\n",
      "l_2 = 1       # The length of the section from one end\n",
      "v_2 = R_A     #F_Y = 0\n",
      "M_2 = -R_A*l_2#MAking moment at section 1 = 0\n",
      "\n",
      "#Graph\n",
      "%matplotlib inline\n",
      "import math \n",
      "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
      "#Drawing of shear and bending moment diagram\n",
      "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
      "X = [0,0.5,1] # For graph precision \n",
      "\n",
      "V = [R_A,v_1,v_2 ];\t\t\t#Shear matrix\n",
      "M = [0,M_1,M_2];\t\t\t#Bending moment matrix\n",
      "plot(X,V);\t\t\t        #Shear diagram\n",
      "plot(X,M,'r');\t\t\t    #Bending moment diagram\n",
      "suptitle( 'Shear and bending moment diagram')\n",
      "xlabel('X axis')\n",
      "ylabel( 'Y axis') ;\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEhCAYAAACDefxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGVdJREFUeJzt3XuYJXV95/H3hxlUQAggRlBUvICIF4Io4gVp14ly2cVl\nvCCaRI2PsrImZqMrGmMYN4ksxrheWA0iUZM1okZUlIuiTgsqIsj9phBhF4XwoCAKeOHy3T+qBs40\np6ere/pc+vT79Tz9zO+c+p2q7/md6fp0VZ2qSlUhSVIXm4y6AEnS0mFoSJI6MzQkSZ0ZGpKkzgwN\nSVJnhoYkqTNDY8IleXuSS5JcmOT8JE9rn78mybajrm8us9WZ5NYBLe/jSV7Uto9L8vhBLGccJNk9\nyf4d+04neUrbPjnJVoOtTuNq5agL0OAkeQZwILBHVd3Rrnzv304uIIu8vJVVdedizpOmzvk8vxjL\nK4Cqeu2AljEu9gD2BE7t0Pee8a6qAxdj4UlWVNVdizEvDY9bGpNte+CnVXUHQFXdVFXX90z/kyTf\nT3JRkscBJNkiyT8mOTvJeUkOap/fKckZbf/vt4FEkqkkZyb5InDpzAKSfCjJOe3Wzpqe569JsqbP\n8h+U5Ktt/+PYQLAleW/b72tJtmufe0ySU5Oc29a7br4fT/L+JN9O8m89WxNJckySK5KcDvxuz/x7\n/7q+NcnfJLkgyVlJfrdned9t38PfJPllnzp3auf/sSQ/SPLJJM9va/lhz9bftkm+0G4VnpXkSe3z\na5J8on0/1yRZneQ97TJPTbKy7bdnW/O5SU5Lsn3P+/if7Wf6gyTPTrIp8D+AQ9ot0JfMqHmzJCck\nuSzJicBmMz67bdv259vlXZLktT19XtMu6+x2i+2DPZ/DPyT5LnB0kqcl+U77f+3bSXZp+72qHYuv\nJrk6yRuSvLntd1aSbWb7f6EBqyp/JvQH2AI4H/gB8L+B5/RMuxr4r2379cBxbftdwCva9tbtazen\nWWncv31+Z+Cctj0F3Ao8cpYatmn/XQGsBZ44x/I/APxl2z4AuBvYts987wYObdvvAD7Ytr8OPLZt\nPx34etv+OPDptv144Mq2vRr4Kk047QDcDKxup60FntKzvAPb9tHA29v2l4FD2vZhwC/71LoTcAfw\nhHY55wLHt9MOAj7ftj8IvKNtPxc4v22vAc5ox/DJwO3AC9ppJwIvBDYFvgM8qH3+kJ5lrAX+rm3v\nD5zetl8JfGCWz+3PgY+27Se19a8bi6vXfSY9n+9mwMXANsBD2z5b0+zNOGPdctrP4SQg7eMtgRVt\nexXwr237VcCVNP+HtwNuAV7XTnsv8MZR/34t1x93T02wqrotyZ7APjQroU8neWtVfaLtcmL773k0\nK0+A5wP/Kcmb28f3Bx4O/DtwTJLdgbtogmOd71XV/52ljEPav0BX0qyUdwMu2cDy9wEObus/JcnN\ns8z3buDTbfv/ACcm2QJ4JvDZ5J4NlPutGw7gC+18L0/ykPb55wD/Us3a6Pok35hleb+tqpPb9veB\n32/be9Os+AE+BbxnltdfXVWXAiS5FPha+/wlNKEC8Czacaiqte1W15Zt7adW1V1JLgE2qaqvtK+5\nuH39LjSh9LX2va8ArutZfu9Yr1temH1Lbh/g/W0tFye5aJZ+b0zyn9v2jm0dOwDfrKqft+/3s+3z\ntO/ls+14QxMs/5Tkse203nXS2qq6Dbgtyc+BL/W85yfPUo8GzNCYcFV1N/BN4JtJLqb563JdaPym\n/fcu1v+/sLqqruydT5pdS9dX1R8mWQH8umfybf2WneRRwJuAp1bVLUk+Bjygp8tsy5/vsZbQrHA2\nAW6uqj1m6ffbPsvoemznjp723cz/d+c3Pe27e2qZOa/ZavktNJ9nkn61BLi0qp45x/JnjvWGbHBc\nkkwBzwP2rqpfJ1lL8/nOPN40cz6397T/mmZr8OAkjwSm+9QMzfv8TU/bddeIeExjgiXZJUnvFsEe\nwDVzvOwrwJ/2zGPdCngrmq0NgD+i+Ut2LlvRBMov2r/su3xT5wzg5e2y96fZ3dHPJsC6/fAvB86s\nql8CVyd5cfv6JJnrL9IzaLaGNkmyA80W2Xx8F3hx237ZPF8705nAK+CeFfKN7XvqEmo/AB6cZO/2\n9Zsm2W2O1/yCZvdQP72fwxPp/5f9VjQh/esku9JsdRVwDrBvkq3b4y0vYvYvLmzFvVtEr56j3nUW\n9Qscmh9DY7I9EPh4kkuTXAjsSrN/HNb/Ja6ex38NbNoeZL0EeGf7/IeAVya5AHgczXGM3tffR1Vd\nSHNM5Qrgk8C3Zqmzd/nvBJ7TLvtgYLbdXrcBe7VbT1M0B3WhWem+pq3zEu7dddTvPVNVn6fZd34Z\nzRbYdzZQY796/wz483Z5j6HZ9z7X6/vWQvPZ7Nl+Vu+i2Sqcuby+86rmyw4vpjm4fAHNuD9jjlrW\nArv1OxAOfBh4YJLLaD6Tc/vM5zRgZdvnKOCstpjr2vq/R/OZX83649Jb/7uBo5KcR/OHSPX0me09\nz5ymIcq9uxYlzVeSzarqV237ZTQHxQ8ecVkjl2SL9pjaSprjKcdX1RdHXZc2nvsFpY2zZ5JjaHaZ\n3Az88YjrGRdrkqyiOcbxFQNjcrilIUnqzGMakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhI\nkjobaWikuW/DDe2lIGbr84EkV6a5x8BsF6KTJA3BqLc0PgbsN9vEJAfQ3BthZ+B1NNfDkSSNyEhD\no6rOpLn0wmwOor2Md1WdDWzdcx8ESdKQjXpLYy4PA67tefxjmhu9SJJGYNxDA+577XwvliVJIzLu\nV7n9Cc2tRtfZsX1uPUkMEklagKqa102txn1L4ySau8TR3pHs51V1Q7+Oo77Z+rj8HHnkkSOvYVx+\nHAvHwrHY8M9CjHRLI8mngH2B7ZJcCxwJbApQVcdW1SlJDkhyFc2d2rreDlKSNAAjDY2qOrRDnzcM\noxZJ0tzGffeU5mlqamrUJYwNx+JejsW9HIuNMxF37ktSk/A+JGmYklATdiBckjRGDA1JUmeGhiSp\nM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhI\nkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeG\nhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1\nZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6mykoZFkvyRXJLkyyRF9pk8luSXJ+e3P\nX46iTklSY+WoFpxkBXAMsAr4CXBOkpOq6vIZXb9ZVQcNvUBJ0n2McktjL+Cqqrqmqu4ATgBe2Kdf\nhluWJGk2owyNhwHX9jz+cftcrwKemeTCJKck2W1o1UmS7mNku6doAmEu5wEPr6rbk+wPfAHYpV/H\nNWvW3NOemppiampqEUqUpMkxPT3N9PT0Rs0jVV3W3Ysvyd7Amqrar338NuDuqjp6A6+5Gtizqm6a\n8XyN6n1I0lKVhKqa1yGAUe6eOhfYOclOSe4HHAKc1NshyUOSpG3vRRNyN913VpKkYRjZ7qmqujPJ\nG4CvACuA46vq8iSHtdOPBV4MvD7JncDtwMtGVa8kaYS7pxaTu6ckaf6W2u4pSdISY2hIkjozNCRJ\nnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0ND\nktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjoz\nNCRJnRkakqTODA1JUmeGhiSpM0NDktSZoSFJ6szQkCR1ZmhIkjozNCRJnRkakqTODA1JUmeGhiSp\nszlDI8lLk2zVtt+R5PNJnjL40iRJ46bLlsY7quoXSZ4NPA84HvjwYMuSJI2jLqFxV/vvfwSOq6ov\nA/cbXEmSpHHVJTR+kuQjwCHAyUke0PF1kqQJk6racIdkC2A/4KKqujLJDsCTquqrwyiwiyQ11/uQ\nJK0vCVWVeb1mtpVtkq3aYxnb9pteVTctoMaBMDQkaf4WOzROrqoDk1wD3KdTVT1qQVUOgKEhSfO3\nqKGxlBgakjR/CwmNLudpvGbG45VJjpxvcZKkpa/Lt6BWJTklyUOTPBE4C9hqMRaeZL8kVyS5MskR\ns/T5QDv9wiR7LMZyJUkLs3KuDlV1aJKXARcBtwGvqKpvbeyCk6wAjgFWAT8BzklyUlVd3tPnAOCx\nVbVzkqfTnFS498YuW5K0MF12T+0C/ClwIvD/gD9ov4a7sfYCrqqqa6rqDuAE4IUz+hwEfAKgqs4G\ntk7ykEVYtiRpAbrsnjoJ+Kuqeh2wL3AlcM4iLPthwLU9j3/cPjdXnx0XYdmSpAWYc/cU8PSqugWg\nqu4G/j7JlxZh2V2/7jTzyH7f16159KPhCU+AXXdl6sADmZqa2qjiJGnSTE9PMz09vVHz6PSV2yRP\nAnYDHkC70q6qf9qoBSd7A2uqar/28duAu6vq6J4+/wBMV9UJ7eMrgH2r6oYZ86r63Ofgs5+FU0+F\npz4VXvpSOPhgePCDN6ZMSZpYAzlPI8kamt1STwBOBvYHvlVVL15gnevmuxL4Ac2Vc68Dvgcc2udA\n+Buq6oA2ZN5XVfc5EL7eeRq/+lUTHAaIJG3QoELjEmB34Lyq2r09EP3Jqlq18FLvmff+wPuAFcDx\nVXVUksMAqurYts8xNNe+ug14dVWd12c+/U/uM0AkaVaDCo1zquppSb4P/AfgF8AVVfW4hZe6uDqd\nEW6ASNJ6BnJGOM35E9sAxwHnAucD31lAfaO12WawejV86lNw/fVw+OGwdi3svDOsWgUf+QjceOOo\nq5SksTava08leRSwVVVdOLiS5m+jrj3lFoikZcoLFm4sA0TSMmJoLCYDRNKEW+z7aZwKHF5VVy9G\ncYM08EujGyCSJtBih8ZLgL+lufbTu9vrQ42lod5PwwCRNCEWffdUkgcCfwW8APhn7r2ER1XVexda\n6GIb2U2YDBBJS9ggvnJ7B3ArzeVDtgQe2P5suaAKJ41f45W0zGxo99R+wHuBLwHvrKrbh1nYfIzd\n7V7dApG0BCz2MY0zgf9SVZcuRnGDNHah0csAkTSmFjs0xnhNvL4lU6oBImmMeJ7GUmKASBoxQ2Op\nMkAkjYChMQkMEElDYmhMGgNE0gAZGpPMAJG0yAyN5cIAkbQIDI3lyACRtECGxnJngEiaB0ND9zJA\nJM3B0FB/BoikPgwNzc0AkdQyNDQ/Boi0rBkaWjgDRFp2DA0tDgNEWhYMDS0+A0SaWIaGBssAkSaK\noaHhMUCkJc/Q0GgYINKSZGho9AwQackwNDReDBBprBkaGl8GiDR2DA0tDQaINBYMDS09Bog0MoaG\nljYDRBoqQ0OTwwCRBs7Q0GQyQKSBMDQ0+QwQadEYGlpeDBBpoxgaWr4MEGneDA0JDBCpI0NDmskA\nkWZlaEgbYoBI6zE0pK4MEMnQkBbEANEyZWhIG8sA0TJiaEiLyQDRhFsyoZFkW+DTwCOBa4CXVtXP\n+/S7BvgFcBdwR1XtNcv8DA0NlgGiCbSUQuPdwE+r6t1JjgC2qaq39ul3NbBnVd00x/wMDQ2PAaIJ\nsZRC4wpg36q6Icn2wHRV7dqn39XAU6vqZ3PMz9DQaBggWsKWUmjcXFXbtO0AN617PKPfj4BbaHZP\nHVtVx80yP0NDo2eAaIlZSGisHGAxpwPb95n09t4HVVVJZlvjP6uqrk/yYOD0JFdU1Zn9Oq5Zs+ae\n9tTUFFNTUwuqW1qwzTaD1aubn94AectbDBCNhenpaaanpzdqHqPcPTVVVf+eZAdgbb/dUzNecyRw\na1X9fZ9pbmlofN1+O5x2GnzmM82/BojGxEK2NDYZVDFzOAl4Zdt+JfCFmR2SbJ5ky7a9BfB84OKh\nVSgtls03b7Y+TjgBrrsODj8cvvEN2HlnWLUKPvIRuPHGUVcpdTLKr9x+BngEPV+5TfJQ4LiqOjDJ\no4ET25esBD5ZVUfNMj+3NLT0uAWiEVsyB8IXm6GhJc8A0QgYGtIkMEA0JIaGNGkMEA2QoSFNMgNE\ni8zQkJYLA0SLwNCQliMDRAtkaEjLnQGieTA0JN3LANEcDA1J/Rkg6sPQkDQ3A0QtQ0PS/Bggy5qh\nIWnhDJBlx9CQtDgMkGXB0JC0+AyQiWVoSBosA2SiGBqShscAWfIMDUmjYYAsSYaGpNEzQJYMQ0PS\neDFAxpqhIWl8GSBjx9CQtDQYIGPB0JC09BggI2NoSFraDJChMjQkTY5+AfKSl8Dq1QbIIjE0JE0m\nA2QgDA1Jk88AWTSGhqTlxQDZKIaGpOXLAJk3Q0OSwADpyNCQpJkMkFkZGpK0IQbIegwNSerKADE0\nJGlBlmmAGBqStLGWUYAYGpK0mCY8QAwNSRqUCQwQQ0OShmFCAsTQkKRhW8IBYmhI0igtsQAxNCRp\nXCyBADE0JGkcjWmAGBqSNO7GKEAMDUlaSkYcIIaGJC1VIwgQQ0OSJsGQAsTQkKRJM8AAMTQkaZIt\ncoAsJDQ2mfdSFkGSlyS5NMldSZ6ygX77JbkiyZVJjhhmjZI0djbfvAmIE06A666Dww+HtWth551h\n1So49li48caBljCS0AAuBg4GzpitQ5IVwDHAfsBuwKFJHj+c8pau6enpUZcwNhyLezkW95qYsRhR\ngIwkNKrqiqr64Rzd9gKuqqprquoO4ATghYOvbmmbmF+IReBY3MuxuNdEjsUQA2RUWxpdPAy4tufx\nj9vnJEmzGXCArFzEUteT5HRg+z6T/qKqvtRhFh7ZlqSNsS5AVq9e/yD6EUc0B9EXYKTfnkqyFnhT\nVZ3XZ9rewJqq2q99/Dbg7qo6uk9fA0aSFmC+354a2JbGPMxW8LnAzkl2Aq4DDgEO7ddxvm9akrQw\no/rK7cFJrgX2Bk5Ocmr7/EOTnAxQVXcCbwC+AlwGfLqqLh9FvZKkxkSc3CdJGo5x/vbUerqc6Jfk\nA+30C5PsMewah2WusUjyinYMLkry7SRPHkWdw9D1BNAkT0tyZ5LVw6xvmDr+jkwlOT/JJUmmh1zi\n0HT4HdkuyWlJLmjH4lUjKHPgkvxjkhuSXLyBPvNbb1bV2P8AK4CrgJ2ATYELgMfP6HMAcErbfjrw\n3VHXPcKxeAbwO217v+U8Fj39vgF8GXjRqOse4f+LrYFLgR3bx9uNuu4RjsUa4Kh14wD8DFg56toH\nMBb7AHsAF88yfd7rzaWypdHlRL+DgE8AVNXZwNZJHjLcModizrGoqrOq6pb24dnAjkOucVi6ngD6\nJ8C/AoO9vsJodRmLlwOfq6ofA1TVT4dc47B0GYvrga3a9lbAz6o5jjpRqupM4OYNdJn3enOphEaX\nE/369ZnEleV8T3p8DXDKQCsanTnHIsnDaFYYH26fmtSDeF3+X+wMbJtkbZJzk/zh0Kobri5jcRzw\nhCTXARcCbxxSbeNm3uvNcfjKbRddf9FnfvV2ElcQnd9TkucCfww8a3DljFSXsXgf8NaqqiRh9q94\nL3VdxmJT4CnA84DNgbOSfLeqrhxoZcPXZSz+ArigqqaSPAY4PcnuVfXLAdc2jua13lwqofET4OE9\njx9Ok4gb6rNj+9yk6TIWtAe/jwP2q6oNbZ4uZV3GYk/ghCYv2A7YP8kdVXXScEocmi5jcS3w06r6\nFfCrJGcAuwOTFhpdxuKZwN8CVNW/JbkaeBzN+WHLybzXm0tl99Q9J/oluR/NiX4zf+lPAv4I7jmb\n/OdVdcNwyxyKOcciySOAE4E/qKqrRlDjsMw5FlX16Kp6VFU9iua4xusnMDCg2+/IF4FnJ1mRZHOa\nA5+XDbnOYegyFlcAqwDaffiPA3401CrHw7zXm0tiS6Oq7kyy7kS/FcDxVXV5ksPa6cdW1SlJDkhy\nFXAb8OoRljwwXcYC+CtgG+DD7V/Yd1TVXqOqeVA6jsWy0PF35IokpwEXAXcDx1XVxIVGx/8X7wI+\nluRCmj+e31JVN42s6AFJ8ilgX2C79oTqI2l2Uy54venJfZKkzpbK7ilJ0hgwNCRJnRkakqTODA1J\nUmeGhiSpM0NDktSZoSHNIcnDk/woyTbt423ax49YhHl/e+MrlIbH8zSkDpL8d+CxVXVYkmOBH1Wf\n+9VLk84tDamb/wXsneTPaK5b9J5+nZJ8vr2C7CVJXts+98gkP0zyoCSbJDkzybpLWNza/rtDkjPa\nGyRdnOTZQ3pf0ry4pSF1lOQFwKnA71fV12fps01V3ZxkM+B7wHPax68BXgCcAzy6ql7f9v9lVW2Z\n5E3A/avqXe3VeLeoqluH8sakeXBLQ+puf+A64Ekb6PPGJBcAZ9FcMXQXgKo6Hvgd4DDgzX1e9z3g\n1UmOBJ5sYGhcGRpSB0l+j+aqqM8A/luS7fv0maK5V8XeVfV7NLcZvX87bXOaEClgy5mvbe+wtg/N\nZak/PsE3SNISZ2hIc2h3F30YeGNVXQv8Hf2PaWwF3FxVv06yK7B3z7SjgX+mucrocX2W8Qjgxqr6\nKPBRmvs6S2PH0JDm9lrgmp7jGB8CHp9knxn9TgNWJrkMOIpmFxVJ9qW5GdTRVfUvwG+TvLJ9zbqD\nis8FLkhyHvBS4P0DezfSRvBAuCSpM7c0JEmdGRqSpM4MDUlSZ4aGJKkzQ0OS1JmhIUnqzNCQJHVm\naEiSOvv/E00dakiohy4AAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x8154208>"
       ]
      }
     ],
     "prompt_number": 128
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.7 page number 243"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "l_ab = 3  #L - The total length lets say '3L'\n",
      "R_1 = 1   #p - The force applied at b\n",
      "R_2 = 1   #p - The force applied at c\n",
      "l_ab = 1  #L\n",
      "l_bc = 1  #L \n",
      "\n",
      "#Logical step \n",
      "#Since the system is in symmetry we can avoid moment M = 0 caliculations\n",
      "\n",
      "#F_Y = 0 \n",
      "R_A = (R_1 + R_2)/2\n",
      "R_B = (R_1 + R_2)/2\n",
      "\n",
      "#Lets take '3' sections \n",
      "#Considering section 1-----1 at 0.5L\n",
      "l_1 = 0.5     #L - distance of the section from the A\n",
      "v_1 = R_A     #F_Y = 0 \n",
      "M_1 = R_A*l_1 #MAking moment at section 1 = 0\n",
      "\n",
      "#Considering section 2-----2 at 1L\n",
      "l_2 = 1       #L - distance of the section from the A\n",
      "v_2 = R_A     #F_Y = 0 \n",
      "M_2 = R_A*l_2 #MAking moment at section 2 = 0\n",
      "\n",
      "#Considering section 3-----3 at 1.5L\n",
      "l_3 = 1.5       #L - distance of the section from the A\n",
      "v_3 = 0        #F_Y = 0 \n",
      "M_3 = R_A*l_2  #MAking moment at section 2 = 0 and symmetry \n",
      "\n",
      "#GRAPH\n",
      "#Since the symmetry exists the graphs are also symmetry\n",
      "%matplotlib inline\n",
      "import math \n",
      "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
      "#Drawing of shear and bending moment diagram\n",
      "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
      "X = [0,0.5,1,1.000000001,1.5,1.999999999999,2,2.5,3] # For graph precision \n",
      "\n",
      "V = [R_A,v_1,v_2,v_3,v_3,v_3,-v_2,-v_1,-R_B];\t\t\t#Shear matrix\n",
      "M = [0,M_1,M_2,1,1,1,M_2,M_1,0];\t\t\t#Bending moment matrix\n",
      "plot(X,V);\t\t\t#Shear diagram\n",
      "plot(X,M);\t\t\t#Bending moment diagram\n",
      "suptitle( 'Shear and bending moment diagram')\n",
      "xlabel('X axis')\n",
      "ylabel( 'Y axis') ;"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEhCAYAAACDefxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGmRJREFUeJzt3Xu4JHV95/H3BwZUEAJIRLxiIqisNyQiXtATB+W2i8EQ\n0ZhoXB+DPstqEvUxii6TTdAlGndFVsMiKhijrlkgYwARkCNEEUEuclXYwC7eeMIjoMCqwHz3j66B\n5tA9p86lT3f1eb+eZ56p7q7u+tWpmX6fqupLqgpJktrYbNwDkCR1h9GQJLVmNCRJrRkNSVJrRkOS\n1JrRkCS1ZjSmXJIjk1yV5IoklyV5XnP9TUl2GPf45jNsnEnuHNHyPpPkd5vpE5I8fRTLmQRJnp3k\ngJbzziZ5bjN9epJtRzs6Tao14x6ARifJC4CDgD2q6p7myfdhzc0FZJmXt6aq7l3Ox6Q3zoVcvxzL\nK4CqevOIljEp9gD2BM5sMe/9P++qOmg5Fp5k86q6bzkeSyvHPY3p9hjg1qq6B6CqflpVP+67/T8m\n+U6S7yZ5KkCSrZN8KslFSS5NcnBz/S5Jzm/m/04TJJLMJLkgyT8CV88dQJKPJ7m42dtZ13f9TUnW\nDVj+o5J8tZn/BDYRtiQfaeY7J8mOzXW/meTMJJc04934uJ9J8tEk30jyv/v2JpLkuCTXJTkbeHTf\n4/f/dn1nkr9KcnmSC5M8um9532rW4a+S/HzAOHdpHv/TSb6X5HNJXtGM5ft9e387JDmt2Su8MMkz\nm+vXJTmpWZ+bkrwqyYebZZ6ZZE0z357NmC9J8pUkj+lbj//SbNPvJXlxki2A/wwc1uyB/t6cMT8i\nyReSXJPkFOARc7bdDs30qc3yrkry5r553tQs66Jmj+1jfdvhb5N8CzgmyfOSfLP5t/aNJLs18/1R\n87P4apIbkxyR5J3NfBcm2X7YvwuNWFX5Z0r/AFsDlwHfA/478JK+224E/kMz/VbghGb6A8Drmunt\nmvtuRe9J42HN9bsCFzfTM8CdwJOGjGH75u/NgfOAZ8yz/GOB9zXTBwIbgB0GPO4G4LXN9PuBjzXT\n5wJPaaafD5zbTH8G+GIz/XTg+mb6VcBX6cVpZ+A24FXNbecBz+1b3kHN9DHAkc30PwGHNdOHAz8f\nMNZdgHuAf9Ms5xLgxOa2g4FTm+mPAe9vpn8buKyZXgec3/wMnwXcDezX3HYK8EpgC+CbwKOa6w/r\nW8Z5wIea6QOAs5vpNwDHDtlufwZ8spl+ZjP+jT+LGzduk77t+wjgSmB74LHNPNvRO5px/sblNNth\nPZDm8jbA5s30vsA/NNN/BFxP79/wjsAdwB83t30EePu4/3+t1j8enppiVXVXkj2Bfeg9CX0xyZ9X\n1UnNLKc0f19K78kT4BXAv0vyzubyw4AnAD8BjkvybOA+euHY6NtV9X+GDOOw5jfQNfSelHcHrtrE\n8vcBDmnGf0aS24Y87gbgi8303wGnJNkaeCHwpeT+HZQtN/44gNOax702yU7N9S8B/r56z0Y/TvK1\nIcv7VVWd3kx/B3h5M703vSd+gM8DHx5y/xur6mqAJFcD5zTXX0UvKgAvovk5VNV5zV7XNs3Yz6yq\n+5JcBWxWVWc197myuf9u9KJ0TrPumwM/6lt+/8964/LC8D25fYCPNmO5Msl3h8z39iS/00w/vhnH\nzsDXq+r2Zn2/1FxPsy5fan7e0AvLyUme0tzW/5x0XlXdBdyV5Hbgy33r/Kwh49GIGY0pV1UbgK8D\nX09yJb3fLjdG45fN3/fx4H8Lr6qq6/sfJ71DSz+uqj9Msjnwi76b7xq07CRPBt4B/FZV3ZHk08DD\n+2YZtvyFnmsJvSeczYDbqmqPIfP9asAy2p7buadvegML/7/zy77pDX1jmftYw8byK+htzySDxhLg\n6qp64TzLn/uz3pRN/lySzABrgb2r6hdJzqO3feeeb5r7OHf3Tf8lvb3BQ5I8CZgdMGborecv+6Z9\n7hoTz2lMsSS7JenfI9gDuGmeu50FvK3vMTY+AW9Lb28D4PX0fpOdz7b0gvKz5jf7Nq/UOR/4/WbZ\nB9A73DHIZsDG4/C/D1xQVT8HbkxyaHP/JJnvN9Lz6e0NbZZkZ3p7ZAvxLeDQZvo1C7zvXBcAr4P7\nn5D/tVmnNlH7HvDrSfZu7r9Fkt3nuc/P6B0eGqR/OzyDwb/Zb0sv0r9I8jR6e10FXAy8NMl2zfmW\n32X4Cxe25YE9ojfOM96NlvUFHFoYozHdHgl8JsnVSa4Ankbv+Dg8+D9x9V3+S2CL5iTrVcBfNNd/\nHHhDksuBp9I7j9F//4eoqivonVO5Dvgc8M9Dxtm//L8AXtIs+xBg2GGvu4C9mr2nGXondaH3pPum\nZpxX8cCho0HrTFWdSu/Y+TX09sC+uYkxDhrvnwB/1izvN+kde5/v/gPHQm/b7Nlsqw/Q2yucu7yB\nj1W9FzscSu/k8uX0fu4vmGcs5wG7DzoRDnwCeGSSa+htk0sGPM5XgDXNPB8ELmwG86Nm/N+mt81v\n5ME/l/7x/zXwwSSX0vtFpPrmGbbOc2/TCsoDhxYlLVSSR1TV/2umX0PvpPghYx7W2CXZujmntobe\n+ZQTq+ofxz0uLZ3HBaWl2TPJcfQOmdwG/Psxj2dSrEuyL71zHGcZjOnhnoYkqTXPaUiSWjMakqTW\njIYkqTWjIUlqzWhIklozGpKk1oyGJKm1sUYjve9tuKX5KIhh8xyb5Pr0vmNg2AfRSZJWwLj3ND4N\n7D/sxiQH0vtuhF2BP6b3eTiSpDEZazSq6gJ6H70wzME0H+NdVRcB2/V9D4IkaYWNe09jPo8Dbu67\n/AN6X/QiSRqDSY8GPPSz8/2wLEkak0n/lNsf0vuq0Y0e31z3IEkMiSQtQlUt6EutJn1PYz29b4mj\n+Uay26vqlkEzjvvL1kf556ijjhr7GJbzzynXnMKjP/RovvOj7wDTtW7Tvu3m/nnXe9/Fsz7xLN5z\nznvYsGHD2Mfj9lvYn8UY655Gks8DLwV2THIzcBSwBUBVHV9VZyQ5MMkN9L6pre3XQWpCnXrtqbzl\n9Ldw5uvO5Lk7P5fe7wXqqq222IpzX38ua09eC8DRLzuaxG9jnWZjjUZVvbbFPEesxFg0eg8NhqbB\njlvtaDhWkUk/PCVgZmZm3ENYsuHBmBnXkFbENGy7Tdm4fhvDcfr1p3Pk145c9KGPSTPt228xpuKb\n+5LUNKzHtNrUHkYCbrrpcevdt7L25LUctOtB7nF0QBJqyk6Eq+M8JLW6TOsehx5gNDQyBmN1MhzT\nzWhoJAzG6mY4ppfR0LIzGALDMa2MhpaVwVA/wzF9jIaWjcHQIIZjuhgNLQuDoU0xHNPDaGjJDIba\nMBzTwWhoSQyGFsJwdJ/R0KIZDC2G4eg2o6FFMRhaCsPRXUZDC2YwtBwMRzcZDS2IwdByMhzdYzTU\nmsHQKBiObjEaasVgaJQMR3cYDc3LYGglGI5uMBraJIOhlWQ4Jp/R0FAGQ+NgOCab0dBABkPjZDgm\nl9HQQxgMTQLDMZmMhh7EYGiSGI7JYzR0P4OhSWQ4JovREGAwNNkMx+QwGjIY6gTDMRmMxipnMNQl\nhmP8jMYqZjDURYZjvIzGKmUw1GWGY3yMxipkMDQNDMd4GI1VxmBomhiOlWc0VhGDoWlkOFaW0Vgl\nDIammeFYOUZjFTAYWg0Mx8owGlPOYGg1MRyjZzSmmMHQamQ4RstoTCmDodXMcIyO0ZhCBkMyHKNi\nNKaMwZAeYDiWn9GYIgZDeijDsbyMxpQwGNJwhmP5GI0pYDCk+RmO5WE0Os5gSO0ZjqUzGh1mMKSF\nMxxLYzQ6ymBIi2c4Fs9odJDBkJbOcCyO0egYgyEtH8OxcGONRpL9k1yX5Pok7x5w+0ySO5Jc1vx5\n3zjGOSkMhrT8DMfCrBnXgpNsDhwH7Av8ELg4yfqqunbOrF+vqoNXfIATxmBIo7MxHGtPXgvA0S87\nmiRjHtVkGueexl7ADVV1U1XdA3wBeOWA+Vb9ljMY0ui5x9HOOKPxOODmvss/aK7rV8ALk1yR5Iwk\nu6/Y6CaEwZBWjuGY39gOT9ELwnwuBZ5QVXcnOQA4Ddht0Izr1q27f3pmZoaZmZllGOJ4GQxp5U3z\noarZ2VlmZ2eX9BgZV0mT7A2sq6r9m8vvATZU1TGbuM+NwJ5V9dM519e0/UawWoKRwJRtOk2JW+++\nlbUnr+WgXQ+aqnD0S0JVLWjFxnl46hJg1yS7JNkSOAxY3z9Dkp3SbKkke9GL3E8f+lDTZbUEQ5pk\nHqoabGyHp6rq3iRHAGcBmwMnVtW1SQ5vbj8eOBR4a5J7gbuB14xrvCvFYEiTY5oPVS3W2A5PLadp\nOTy1GoPh4Sl1wbQequra4Sn1WY3BkLrCQ1UPMBoTwGBIk89w9BiNMTMYUncYDqMxVgZD6p7VHg6j\nMSYGQ+qu1RwOozEGBkPqvtUaDqOxwgyGND1WYziMxgoyGNL0WW3hMBorxGBI02s1hcNorACDIU2/\n1RIOozFiBkNaPVZDOIzGCBkMafWZ9nAYjRExGNLqNc3hMBojYDAkTWs4jMYyMxiSNprGcBiNZWQw\nJM01beEwGsvEYEgaZprCYTSWgcGQNJ9pCYfRWCKDIamtaQiH0VgCgyFpoboeDqOxSAZD0mJ1ORxG\nYxEMhqSl6mo4jMYCGQxJy6WL4TAaC2AwJC23roXDaLRkMCSNSpfCYTRaMBiSRq0r4TAa8zAYklZK\nF8JhNDbBYEhaaZMeDqMxhMGQNC6THA6jMYDBkDRukxoOozGHwZA0KSYxHEajj8GQNGkmLRxGo2Ew\nJE2qSQqH0cBgSJp8kxKOVR8NgyGpKyYhHKs6GgZDUteMOxyrNhoGQ1JXjTMcqzIaBkNS140rHPNG\nI8mrk2zbTL8/yalJOvtMazAkTYtxhKPNnsb7q+pnSV4MrAVOBD4x2mGNhsGQNG1WOhxtonFf8/e/\nBU6oqn8CthzdkEbDYEiaVisZjjbR+GGS/wEcBpye5OEt7zcxDIakabdS4ch8D5xka2B/4LtVdX2S\nnYFnVtVXRzKiRUhSw9bDYEy2BCbg43SkqXHr3bey9uS1HLTrQRz9sqNJMnTeJFTV8BkG3WfYk22S\nbZtzGTsMur2qfrqQBY3SsGgYjMlnNKTl1zYcyx2N06vqoCQ3AQ+ZqaqevJAFjdKgaBiMbjAa0mi0\nCceyRqNL5kbDYHSH0ZBGZ75wLCYabd6n8aY5l9ckOWohC1lJBkOSekZxcrzNq6D2TXJGkscmeQZw\nIbDtkpcMJNk/yXVJrk/y7iHzHNvcfkWSPTb1eAZDkh5sucOxZr4Zquq1SV4DfBe4C3hdVf3zkpYK\nJNkcOA7YF/ghcHGS9VV1bd88BwJPqapdkzyf3psK9x70eAZDkgbbGI61J68FmPdVVZvS5vDUbsDb\ngFOA/wv8QfMy3KXaC7ihqm6qqnuALwCvnDPPwcBJAFV1EbBdkp0GPZjBkKThlmuPY949DWA9cERV\nnZNkM+BPgYuB3Re1xAc8Dri57/IPgOe3mOfxwC1zH8xgSNKmzd3jWIw20Xh+Vd0BUFUbgL9J8uVF\nL/EBbTM3dx9q4P3WH7+e9awHYGZmhpmZmcWPTCtm++17r6BSN22/Pfx0Yt6xpfnMzs4yOzvLfvfs\nx/qvrV/UY7R6yW2SZ9Lbs3g4zZN2VZ28qCU+8Jh7A+uqav/m8nuADVV1TN88fwvMVtUXmsvXAS+t\nqlvmPNbQd4RLGh1fMt1to3rJ7TrgWOBjwAzw1/TONSzVJcCuSXZJsiW9z7aam771wOubcewN3D43\nGJKkldPm8NShwLOBS6vqjc2J6M8tdcFVdW+SI4CzgM2BE6vq2iSHN7cfX1VnJDkwyQ30Xrn1xqUu\nV5K0eG0+sPDiqnpeku8ALwN+BlxXVU9diQG24eEpaTw8PNVtizk81WZP4+Ik2wMn0DukdBfwzUWM\nT5LUcQv67KkkTwa2raorRjekhXNPQxoP9zS6zQ8slLSijEa3jeTVU5IkbTQ0GknObA5HSZIEbHpP\n41PAWUmOTLLFSg1IkjS5NnlOI8kjgf8E7Ad8lgc+wqOq6iOjH147ntOQxsNzGt02ipfc3gPcSe/j\nQ7YBNixybJKkKTA0Gkn2Bz4CfBnYo6ruXrFRSZIm0tDDU0kuAN5SVVev7JAWzsNT0nh4eKrblvV9\nGunQM3GHhipNFaPRbcv6Pg2fhSVJc/nmPklSa0ZDktSa0ZAktWY0JEmtGQ1JUmtGQ5LUmtGQJLVm\nNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtGQ5LUmtGQJLVm\nNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtGQ5LUmtGQJLVm\nNCRJrRkNSVJrRkOS1JrRkCS1tmYcC02yA/BF4EnATcCrq+r2AfPdBPwMuA+4p6r2WsFhSpLmGNee\nxp8DZ1fVbsC5zeVBCpipqj0MhiSN37iicTBwUjN9EvA7m5g3ox+OJKmNcUVjp6q6pZm+BdhpyHwF\nnJPkkiRvXpmhSZKGGdk5jSRnA48ZcNOR/ReqqpLUkId5UVX9OMmvA2cnua6qLhg047p16+6fnpmZ\nYWZmZlHjlqRpNTs7y+zs7JIeI1XDnq9HJ8l19M5V/CTJzsB5VfW0ee5zFHBnVf3NgNtqHOshrXYJ\n+F+vu5JQVQs6BTCuw1PrgTc0028ATps7Q5KtkmzTTG8NvAK4csVGKEl6iHHtaewA/E/gifS95DbJ\nY4ETquqgJL8BnNLcZQ3wuar64JDHc09DGgP3NLptMXsaY4nGcjMa0ngYjW7r0uEpSVIHGQ1JUmtG\nQ5LUmtGQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtG\nQ5LUmtGQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtG\nQ5LUmtGQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktSa0ZAktWY0JEmtGQ1JUmtG\nQ5LUmtGQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa2OJRpLfS3J1kvuSPHcT8+2f5Lok\n1yd590qOUZL0UOPa07gSOAQ4f9gMSTYHjgP2B3YHXpvk6SszvMkyOzs77iGMzDSvG0z/+sHsuAcw\nUtO//RZuLNGoquuq6vvzzLYXcENV3VRV9wBfAF45+tFNnmn+hzvN6wbTv35GY/WZ5HMajwNu7rv8\ng+Y6SdKYrBnVAyc5G3jMgJveW1VfbvEQtcxDkiQtUarG99yc5DzgHVV16YDb9gbWVdX+zeX3ABuq\n6pgB8xoYSVqEqspC5h/ZnsYCDBvwJcCuSXYBfgQcBrx20IwLXWlJ0uKM6yW3hyS5GdgbOD3Jmc31\nj01yOkBV3QscAZwFXAN8saquHcd4JUk9Yz08JUnqlkl+9dSDtHmjX5Jjm9uvSLLHSo9xKeZbvyQz\nSe5Iclnz533jGOdiJPlUkluSXLmJebq87Ta5fl3edgBJnpDkvOYNuVcleduQ+Tq5DdusX1e3YZKH\nJ7koyeVJrknywSHztd92VTXxf4DNgRuAXYAtgMuBp8+Z50DgjGb6+cC3xj3uZV6/GWD9uMe6yPXb\nB9gDuHLI7Z3ddi3Xr7Pbrhn/Y4DnNNOPBL43Zf//2qxfZ7chsFXz9xrgW8CLl7LturKn0eaNfgcD\nJwFU1UXAdkl2WtlhLlrbNzJ28oR/VV0A3LaJWbq87dqsH3R02wFU1U+q6vJm+k7gWuCxc2br7DZs\nuX7Q0W1YVXc3k1vS+wX1p3NmWdC260o02rzRb9A8jx/xuJZLm/Ur4IXN7uMZSXZfsdGNXpe3XRtT\ns+2aVzPuAVw056ap2IabWL/ObsMkmyW5HLgFOK+qrpkzy4K23SS85LaNtmfr5/4m0JWz/G3GeSnw\nhKq6O8kBwGnAbqMd1orq6rZrYyq2XZJHAv8AvL35jfwhs8y53KltOM/6dXYbVtUG4DlJfg04K8lM\nVc3Oma31tuvKnsYPgSf0XX4CvRpuap7HN9d1wbzrV1U/37ibWVVnAlsk2WHlhjhSXd5285qGbZdk\nC+B/AX9XVacNmKXT23C+9ZuGbVhVdwCnA78156YFbbuuROP+N/ol2ZLeG/3Wz5lnPfB6uP/d5LdX\n1S0rO8xFm3f9kuyUJM30XvReLj332GRXdXnbzavr264Z+4nANVX134bM1tlt2Gb9uroNk+yYZLtm\n+hHAy4HL5sy2oG3XicNTVXVvko1v9NscOLGqrk1yeHP78VV1RpIDk9wA3AW8cYxDXpA26wccCrw1\nyb3A3cBrxjbgBUryeeClwI7NmzqPovcqsc5vO5h//ejwtmu8CPgD4LtJNj7hvBd4IkzFNpx3/eju\nNtwZOCnJZvR2Ej5bVecu5bnTN/dJklrryuEpSdIEMBqSpNaMhiSpNaMhSWrNaEiSWjMakqTWjIY0\nj+ajs/8lyfbN5e2by09chsf+xtJHKK0c36chtZDkXcBTqurwJMcD/1IDvq9emnbuaUjt/Fdg7yR/\nArwQ+PCgmZKcmuSS5st83txc96Qk30/yqOYTRy9Ism9z253N3zsnOb/5gp8rk7x4hdZLWhD3NKSW\nkuwHnAm8vKrOHTLP9lV1W/M5P98GXtJcfhOwH3Ax8BtV9dZm/p9X1TZJ3gE8rKo+0HzG0dZDPklW\nGiv3NKT2DgB+BDxzE/O8vfnuggvpfVrobgBVdSLwa8DhwDsH3O/bwBuTHAU8y2BoUhkNqYUkzwH2\nBV4A/GmSxwyYZwZYC+xdVc+h97W9D2tu24peRArYZu59m2//24feR1J/JskfjmZNpKUxGtI8msNF\nn6D35Tw3Ax9i8DmNbYHbquoXSZ4G7N132zHAZ+l9Au4JA5bxROBfq+qTwCfpfXucNHGMhjS/NwM3\n9Z3H+Djw9CT7zJnvK8CaJNcAH6R3iIokLwX2BI6pqr8HfpXkDc19Np5U/G3g8iSXAq8GPjqytZGW\nwBPhkqTW3NOQJLVmNCRJrRkNSVJrRkOS1JrRkCS1ZjQkSa0ZDUlSa0ZDktTa/wc67F2tjQSN/wAA\nAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x8154240>"
       ]
      }
     ],
     "prompt_number": 127
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.8 page nmber 244"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given \n",
      "l_ab = 1.0   #L - The length of the beam\n",
      "F_D = 1.0    #W - The force distribution \n",
      "F = F_D*l_ab #WL - The force applied\n",
      "#Beause of symmetry the moment caliculations can be neglected\n",
      "#F_Y = 0\n",
      "R_A = F/2 #wl - The reactive force at A\n",
      "R_B = F/2 #wl - The reactive force at B\n",
      "\n",
      "#considering many sections \n",
      "\n",
      "#section 1--1\n",
      "l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
      "M_1 = [0,0,0,0,0,0,0,0,0,0,0]\n",
      "v = [0,0,0,0,0,0,0,0,0,0,0]\n",
      "for i in range(10):\n",
      "    v[i] = R_A - F_D*l_1[i]  \n",
      "    M_1[i] = R_A*l_1[i] - F_D*(l_1[i]**2)/2 #M = 0 in the section\n",
      "print R_A\n",
      "#Graphs\n",
      "import numpy as np\n",
      "values = [0.5,0,-0.5]\n",
      "y = np.array(values)\n",
      "t = np.linspace(0,1,3)\n",
      "poly_coeff = np.polyfit(t, y, 2)\n",
      "import matplotlib.pyplot as plt\n",
      "plt.plot(t, y, 'o')\n",
      "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
      "plt.show()\n",
      "\n",
      "import numpy as np\n",
      "values = M_1\n",
      "y = np.array(values)\n",
      "t = np.linspace(0,1,11)\n",
      "poly_coeff = np.polyfit(t, y, 2)\n",
      "import matplotlib.pyplot as plt\n",
      "plt.plot(t, y, 'o')\n",
      "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "0.5\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFYJJREFUeJzt3X2QHPV95/H3FwmbhzsHI0pgBAQH40hxBceOEeLBeHxg\nJCMHXCEFEVZ8R3w5KhUJ5wrHEgbCUhWfgYiLiKIQB2OKVMUnOPAFLsKATJhC5pn4AbAkQFx0CHyW\nDAmuHCdSUvjeHzuS1ss+jLZ3u3um36+qLaZnftP941e73219P9O9kZlIkppjv6onIEkql4VfkhrG\nwi9JDWPhl6SGsfBLUsNY+CWpYQoX/ohYEBGbIuKFiFg2yphWRHwvIp6NiHbRY0qSJi6KfI4/IqYB\nzwFnAq8ATwKLMnPjkDGHAA8D8zPz5Yg4LDNfLTZtSdJEFT3jnwtszswtmbkTWAOcO2zMhcCdmfky\ngEVfkqpVtPDPArYO2X6589xQxwOHRsSDEfFURPxWwWNKkgqYXvD93fSJ9gc+DJwBHAQ8GhGPZeYL\nBY8tSZqAooX/FeDoIdtHM3jWP9RW4NXM3AHsiIiHgA8CP1P4I8KbBknSBGRm7Mv4oq2ep4DjI+LY\niHgHcAFw97AxdwGnRcS0iDgIOAnYMNLOMtOvTK666qrK51CXL9fCtXAtxv6aiEJn/Jm5KyKWAPcB\n04CbM3NjRFzcef2rmbkpIu4FngbeAm7KzBELvyRp6hVt9ZCZ3wK+Ney5rw7bXgGsKHosSVJxXrlb\nQ61Wq+op1IZrsZdrsZdrUUyhC7gmU0RkXeYiSb0iIsiSw11JUo+x8EtSw1j4JalhLPyS1DAWfklq\nGAu/JDWMhV+SGsbCL0kNY+GXpIapVeGfP/8K1q59qOppSFJfK3yTtsl0//1/xIsvXg7AwoWnVzwb\nSepPtTrjB3jxxS+zatW6qqchSX2rXoX/lBUw/U3efHNa1TORpL5Vr8J/zHr4vTn806ynJ/yXZSRJ\nY6tX4V9zF0c+eQpv/MoPmXfzPL7z0neqnpEk9Z1aFf7586/kL790Mc9/YSNL5y7lwjsv5Lzbz+OF\n114Y/82SpK7U+g+x7Ni5g5WPreT6R69n8QmLufL0K5lx0IyKZihJ9dN3f4jlwP0P5LKPXsaG39vA\nzn/dyezVs1nxyAre3PVm1VOTpJ5V6zP+4Ta9uoll317G09ue5itnfIULPnABEfv0i06S+spEzvh7\nqvDv1t7S5tL7L2X6ftO5/qzrOe2Y06Z4dpJUT40p/ABv5Vt845lv8KUHvsSJs07kmjOu4fgZx0/h\nDCWpfvquxz+W/WI/Fp+wmOeWPMdH3vMRTr75ZH7/3t/ntf/3WtVTk6Ra69nCv5sBsCTtm55t9YzG\nAFhSkzSqxz8eA2BJTWDhH8YAWFK/qyTcjYgFEbEpIl6IiGVjjDsxInZFxK8XPWa3DIAl6e0KFf6I\nmAb8GbAA+CVgUUTMGWXctcC9QOkNdwNgSdqr6Bn/XGBzZm7JzJ3AGuDcEcYtBe4AflLweIXMPHgm\nqxeuZv1F61n/0nrmrJ7DmmfXeAtoSY1StPDPArYO2X6589weETGLwV8GN3aeqrzKzj5sNnf95l3c\ncu4t/PEjf+wtoCU1StHC300RXwks7yS3QQWtntG0jm3x5O886S2gJTVK0T+2/gpw9JDtoxk86x/q\nV4E1nc/SHwZ8MiJ2Zubdw3c2MDCw53Gr1aLVahWc3vh2B8DnzTmPlY+t5OSbT/YW0JJqq91u0263\nC+2j0Mc5I2I68BxwBvAj4AlgUWZuHGX8LcD/zMxvjvDapH+ccyK2v7Gdq9tXc/uG21l26jKWzF3C\nAdMPqHpakjSi0j/OmZm7gCXAfcAG4LbM3BgRF0fExUX2XRUDYEn9rq8v4JoMXgEsqc68cneKeAWw\npLpq1G2Zy+QVwJL6iYV/H3gFsKR+YKunAG8BLalq9vgrYgAsqSoW/goZAEuqguFuhQyAJfUKC/8k\nMwCWVHe2eqaYAbCkqWSPv8YMgCVNBQt/zRkAS5pshrs1ZwAsqQ4s/BUwAJZUJVs9NWAALGmi7PH3\nOANgSfvKwt8HDIAl7QvD3T5gACxpqln4a8oAWNJUsdXTIwyAJY3EHn8DGABLGsrC3xAGwJJ2M9xt\nCANgSUVY+HuYAbCkibDV00cMgKXmsccvAB78hwf5wrovGABLDWDh1x4GwFIzGO5qDwNgSaOx8Pc5\nA2BJw9nqaRgDYKm/VNLjj4gFwEpgGvC1zLx22OufAb4IBPDPwO9m5tMj7MfCXyIDYKk/lF74I2Ia\n8BxwJvAK8CSwKDM3DhlzMrAhM3/a+SUxkJnzRtiXhb9kBsBS76si3J0LbM7MLZm5E1gDnDt0QGY+\nmpk/7Ww+DhxV8JiaJAbAUjMVLfyzgK1Dtl/uPDeazwH3FDymJpkBsNQs0wu+v+veTER8HPht4NTR\nxgwMDOx53Gq1aLVaBaamfTXz4JmsXriapSctZdm3l7H6ydUGwFLNtNtt2u12oX0U7fHPY7Bnv6Cz\nfRnw1ggB7wnAN4EFmbl5lH3Z468ZA2Cp/qoId6czGO6eAfwIeIK3h7vHAH8HLM7Mx8bYl4W/hgyA\npXorPdzNzF3AEuA+YANwW2ZujIiLI+LizrA/BN4N3BgR34uIJ4ocU+UyAJb6jxdwaZ9sf2M7V7ev\n5vYNt7Ps1GUsmbuEA6YfUPW0pMbyJm0qjVcAS/Vg4VfpDIClaln4VQkDYKk63pZZlTAAlnqLhV+T\nxiuApd5gq0dTxgBYmnr2+FVLBsDS1LHwq7YMgKWpYbir2jIAlurDwq9SGQBL1bPVo0ptenUTX1z3\nRZ7Z/owBsDQB9vjVswyApYmx8KunGQBL+85wVz3NAFgqh4VftWMALE0tWz2qPQNgaXT2+NXXDICl\nt7Pwq+8ZAEs/y3BXfc8AWCrOwq+eZAAsTZytHvUFA2A1lT1+NZ4BsJrGwi9hAKxmMdyVMACWxmPh\nV98yAJZGZqtHjWEArH5kj1/qggGw+omFX+qSAbD6RSXhbkQsiIhNEfFCRCwbZcyfdl7/QUR8qOgx\npaIMgNVkhQp/REwD/gxYAPwSsCgi5gwbczbwvsw8HvhPwI1FjilNprEC4LVrH2L+/CtotQaYP/8K\n1q59qOrpSpOiUKsnIk4GrsrMBZ3t5QCZec2QMX8BPJiZt3W2NwEfy8xtw/Zlq0eV2x0AP7HlSfKB\nk9j+wP8ABv8Vfdxxl3PDDfNZuPD0aicpDVFFq2cWsHXI9sud58Ybc1TB40pTYvZhs7l70d0c/d0z\n2H7cVviP8+CY7wDw4otfZtWqdRXPUCpuesH3d3uKPvy30YjvGxgY2PO41WrRarUmNCmpqIN/8j64\n86/gl/8azrsQXjkRvn0Nb745reqpqeHa7TbtdrvQPoq2euYBA0NaPZcBb2XmtUPG/AXQzsw1nW1b\nPaq9+fOv4P77/2hwY/oOmLcSTrmeY356HN/9r/cw46AZ1U5Q6qii1fMUcHxEHBsR7wAuAO4eNuZu\n4LOdCc4DXh9e9KW6ueSSszjuuMsHN3YdCN+5jJ9f+xl++YQjvQJYPa/w5/gj4pPASmAacHNmfiUi\nLgbIzK92xuz+5M8bwEWZ+d0R9uMZv2pl7dqHWLVqHW++OY0DDvhXli79BAsXnu4VwKoVL+CSSrT7\nCuD999ufFWet8ApgVcLCL5XMK4BVNW/LLJXMK4DViyz80iTwFtDqJbZ6pClgAKyy2OOXasYAWFPN\nwi/VkAGwppLhrlRDBsCqGwu/VBIDYNWFrR6pIgbAmgz2+KUeZACsIiz8Uo8yANZEGe5KPcoAWGWy\n8Es1YgCsMtjqkWrMAFjjsccv9SkDYI3Gwi/1MQNgjcRwV+pjBsCaLBZ+qceMFgD/y65/qXpq6hG2\neqQet+nVTSz79jKe2TYYAJ//gfMNgBvEHr/UYAbAzWThlxrOALh5DHelhjMAVjcs/FIfMgDWWGz1\nSA1gANy/7PFLGpMBcP+x8EsalwFwfzHclTQuA2BZ+KWGMgBurkKFPyIOjYh1EfF8RNwfEYeMMObo\niHgwIn4YEc9GxCVFjilpcs08eCarF65m/UXrWf/SeuasnsNtz96Grdf+VajHHxHXAa9m5nURsQx4\nd2YuHzbmCOCIzPx+RPwb4O+BT2fmxmHj7PFLNWAA3FtKD3cjYhPwsczc1inw7cycPc57/gZYlZkP\nDHvewi/VhAFw76gi3D08M7d1Hm8DDh9rcEQcC3wIeLzgcSVNIQPg/jZ9vAERsQ44YoSXLh+6kZkZ\nEaOesnfaPHcAn8/M/zvSmIGBgT2PW60WrVZrvOlJmkK7A+DPffhzXN2+mtmrZ7Ps1GUsnbuUd05/\nZ9XTa6R2u0273S60j8lo9bQy88cR8R7gwZFaPRGxP/C3wLcyc+Uo+7LVI9WcVwDXTxU9/uuA1zLz\n2ohYDhwyQrgbwK2dcf95jH1Z+KUe0d7S5tL7LzUAroEqCv+hwO3AMcAW4PzMfD0ijgRuysyFEXEa\n8BDwNLD7YJdl5r3D9mXhl3qIAXA9eMsGSaXbsXMHKx9byfWPXs/iExZz5elXMuOgGVVPqzG8ZYOk\n0nkFcO/xjF/SpDIALpetHkm1YQBcDgu/pFoxAJ569vgl1YpXANeThV/SlDMArhdbPZJKZwA8eezx\nS+opBsDFWfgl9RwD4GIMdyX1HAPg8ln4JdWCAXB5bPVIqiUD4O7Y45fUdwyAx2bhl9SXhgfA1555\nLe879H1VT6sWDHcl9aXhAfC8r80zAC7Awi+pZxgATw5bPZJ6lgGwPX5JDdXkANjCL6mxmhoAG+5K\naiwD4O5Z+CX1FQPg8dnqkdTX+j0AtscvSaPo1wDYwi9JY+jHANhwV5LGYAA8yMIvqXGaHgDb6pHU\neL0cANvjl6QCejEALrXwR8ShwG3AzwNbgPMz8/VRxk4DngJezsxfG2WMhV9S5XotAC473F0OrMvM\n9wMPdLZH83lgA2Bll1RrTQiAixT+c4BbO49vBT490qCIOAo4G/ga0BtNM0mN188BcJHCf3hmbus8\n3gYcPsq4PwH+AHirwLEkqRIzD57J6oWrWX/Reta/tJ45q+dw27O30cut6TELf0Ssi4hnRvg6Z+i4\nTnP+basQEZ8Ctmfm9/BsX1IPm33YbO76zbv4+rlf57pHruPkm0/m4ZcernpaEzJ9rBcz8xOjvRYR\n2yLiiMz8cUS8B9g+wrBTgHMi4mzgAOBdEfFXmfnZkfY5MDCw53Gr1aLVao3/fyBJJWod2+LJ33mS\nbzzzDRbduYi5s+ZyzZnXlBYAt9tt2u12oX0U+VTPdcBrmXltRCwHDsnMUQPeiPgY8AU/1SOpX+zY\nuYMbHr+BFY+sYPEJi7ny9CuZcdCMUudQ9qd6rgE+ERHPA/+us01EHBkRa0d5j5VdUt84cP8DWX7a\n8p4LgL2AS5ImSRVXAHvlriTVwNArgK8/63pOPebUKTuWhV+SamLoFcBTGQB7W2ZJqomfuQL4yHpd\nAWzhl6QpVMcA2FaPJJVosgNge/yS1CMmKwC28EtSD5mMANhwV5J6SFUBsIVfkipWdgBsq0eSamZf\nAmB7/JLUR7oJgO3xS1If2X0L6CVzl7DozkX8xu2/weZ/3AzA2rUPMX/+FRPar2f8ktQDht4C+tR/\n+3GeXnUUWzb+CWCrR5L62vY3tvORS89m67v+Nzy8DB75A1s9ktTPZh48k1/Y9Cm4ZT3MemJC+7Dw\nS1KPeec7d8Grs+G/3z6h91v4JanHXHLJWRx33OUTfv+Yf2xdklQ/CxeeDsCqVVdy3337/n7DXUnq\nYX6OX5I0Lgu/JDWMhV+SGsbCL0kNY+GXpIax8EtSw1j4JalhLPyS1DAWfklqmAkX/og4NCLWRcTz\nEXF/RBwyyrhDIuKOiNgYERsiYt7EpytJKqrIGf9yYF1mvh94oLM9khuAezJzDnACsLHAMRuh3W5X\nPYXacC32ci32ci2KKVL4zwFu7Ty+Ffj08AER8XPARzPz6wCZuSszf1rgmI3gN/VersVersVerkUx\nRQr/4Zm5rfN4G3D4CGPeC/wkIm6JiO9GxE0RcVCBY0qSChqz8Hd6+M+M8HXO0HGd22qOdGvN6cCH\ngT/PzA8DbzB6S0iSVIIJ35Y5IjYBrcz8cUS8B3gwM2cPG3ME8GhmvrezfRqwPDM/NcL+vCezJE3A\nvt6WucgfYrkb+PfAtZ3//s0Ik/lxRGyNiPdn5vPAmcAPR9rZvk5ckjQxRc74DwVuB44BtgDnZ+br\nEXEkcFNmLuyM+yDwNeAdwIvARQa8klSd2vwFLklSOUq/cjciFkTEpoh4ISKWjTLmTzuv/yAiPlT2\nHMsy3lpExGc6a/B0RDwcESdUMc+p1s33RGfciRGxKyJ+vcz5lanLn49WRHwvIp6NiHbJUyxNFz8f\nh0XEvRHx/c5a/IcKplmKiPh6RGyLiGfGGNN93czM0r6AacBm4Fhgf+D7wJxhY85m8IIvgJOAx8qc\nY83W4mTg5zqPF/TjWnSzDkPG/R3wt8B5Vc+7wu+JQxjMyY7qbB9W9bwrXIsB4Cu71wF4DZhe9dyn\naD0+CnwIeGaU1/epbpZ9xj8X2JyZWzJzJ7AGOHfYmD0XhmXm48AhETHSNQK9bty1yMxHc28e8jhw\nVMlzLEM33xMAS4E7gJ+UObmSdbMWFwJ3ZubLAJn5aslzLEs3a/F/gHd1Hr8LeC0zd5U4x9Jk5nrg\nn8YYsk91s+zCPwvYOmT75c5z443px4LXzVoM9TngnimdUTXGXYeImMXgD/2Nnaf6NZjq5nvieODQ\niHgwIp6KiN8qbXbl6mYtbgI+EBE/An4AfL6kudXRPtXNIh/nnIhuf2CHf7SzH3/Qu/5/ioiPA78N\nnDp106lMN+uwksHrPzIigrd/f/SLbtZifwYvijwDOAh4NCIey8wXpnRm5etmLb4EfD8zWxFxHLAu\nIj6Ymf88xXOrq67rZtmF/xXg6CHbRzP4m2msMUd1nus33awFnUD3JmBBZo71T71e1c06/CqwZrDm\ncxjwyYjYmZl3lzPF0nSzFluBVzNzB7AjIh4CPgj0W+HvZi1OAb4MkJkvRsQ/AL8IPFXKDOtln+pm\n2a2ep4DjI+LYiHgHcAGDF4INdTfwWYDOLZxfz733BOon465FRBwDfBNYnJmbK5hjGcZdh8z8hcx8\nbw5eAX4H8Lt9WPShu5+Pu4DTImJa575XJwEbSp5nGbpZi00MXhRKp5/9i8D/KnWW9bFPdbPUM/7M\n3BURS4D7GEztb87MjRFxcef1r2bmPRFxdkRsZvDePheVOceydLMWwB8C7wZu7Jzt7szMuVXNeSp0\nuQ6N0OXPx6aIuBd4GniLwYsl+67wd/l98V+AWyLiBwyexH4xM/+xsklPoYj4b8DHgMMiYitwFYNt\nvwnVTS/gkqSG8U8vSlLDWPglqWEs/JLUMBZ+SWoYC78kNYyFX5IaxsIvSQ1j4Zekhvn/QMLBpbNV\n54oAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x87884e0>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FeX5xvHvQwIJKLIoiywVBRTFIiggKmqURXaxWq0L\nAWsrYllcWkUoBeuCWvtTgxsqKK64IwrIphFrEYMCVgkoILKJgoIskpiQ5/dHjjFGAklOkjnL/bmu\nXGbmvDPnZsyZ58y8M++YuyMiIlIl6AAiIhIZVBBERARQQRARkRAVBBERAVQQREQkRAVBRESAcigI\nZtbDzFaY2edmduM+Xm9lZgvNLMvMrt/H6wlmtsTMXg83i4iIlF1YBcHMEoD7gR7AccDFZnZskWbf\nAsOAu4tZzQhgOaAbIkREAhTuEUJHYJW7r3X3HGAqcG7hBu6+xd0XAzlFFzazJkAv4DHAwswiIiJh\nCLcgNAbWF5reEJpXUvcAfwPywswhIiJhCrcglPk0j5n1Ab5x9yXo6EBEJHCJYS6/EWhaaLop+UcJ\nJXEq0M/MegHJwCFm9qS7pxZuZGbqWxARKQN3L9WX7XCPEBYDLc2smZlVAy4CphfT9hfB3H2Uuzd1\n9yOBPwBvFS0Ghdrqx52xY8cGniFSfrQttC20Lfb/UxZhHSG4e66ZDQVmAwnAJHfPNLPBodcnmllD\nIAM4BMgzsxHAce6+q+jqwskiIiLhCfeUEe4+C5hVZN7EQr9v5penlfa1jneAd8LNIiIiZac7laNI\nSkpK0BEihrbFz7QtfqZtER4r67mmymJmHukZRUQijZnhldypLCIiMUIFQUREABUEEREJUUEQERFA\nBUFEREJUEEREBFBBEBGREBUEEREBVBBERCREBUFERAAVBBERCVFBEBERoByGvxaJNzNmLCAtbQ7Z\n2YkkJeUyfHh3evc+I+hYImFTQRAphRkzFjBixGxWr76tYN7q1aMBVBQk6mn4a5ESyMrNYtnmZQwa\n/Q9W7GgIjT+AGlvhqxNhUwfa1f+MGY/cx+E1Dw86qghQtuGvVRBEitibt5fMrZlkbMzgg40fkLEp\ng+VblnP0oUfzzZIEvlp8FWzqALvrweEfQeMM6hz/HNbkO6onVqdj4450aNSBDo070L5Re2on1w76\nnyRxSAVBpJTcnbXb1xbs+DM2ZfDRVx9x+MGH06FxBzo06kDHxh1p27AtNarW4Jxz/s6cObf+aj3n\nnDOGWbP+yRfbv8hf18b8dS3ZvIRGNRsVrKdDow60bdiW6lWrB/CvlXgSSEEwsx7AvUAC8Ji731nk\n9VbA40A7YLS7/zs0vynwJFAfcOARd0/bx/pVEKTcfL3r6/wd/8YMPtiUv+NOSkz6xQ67faP21Kle\nZ5/L76sPoXnzUdx3X4999iHk5uWSuSWTjE0/H21kbsmk1WGtCo4iOjbuyHH1jiOxirr0pPxUekEw\nswRgJdAV2AhkABe7e2ahNvWAI4D+wLZCBaEh0NDdl5rZwcCHQP/Cy4baqSBImezI3sGHmz78xc54\nR/aO/B1xaGfcoVEHGh/SuFTrnTFjARMmzCUrK4Hk5L0MG9atVB3KWblZLN28tOAo4oONH7Bhxwba\nNmz7i9NNzes0x6xUn2eRAkEUhFOAse7eIzQ9EsDd79hH27HArp8Kwj5enwZMcPf5RearIEiB4i75\nzM7NZtnXy34+9bMxg3Xfr+OEhif84tt/i7otInIn+33W9yzetLjgtNUHGz/gh5wfaN+o/S/yF+60\n1uWvsj9lKQjhHqM2BtYXmt4AnFzalZhZM/JPKS0KM4/EsILTNWv+CfUyoVEG7z9zLfWX72bjj+s4\n+tCj6di4I52bdubaTtfSul5rqiZUDTp2idRKrkWXo7rQ5aguBfM279pc0LH9YMaDZGzKKOi0rrnz\nMOY+sYuvPnwQsvI7rXX5q4Qr3IIQ9lf30Omil4AR7r4r3PVJ7LovbTarq7aHa46E3CTY2JEdXwyg\n1Y9LWfbcR9SoWiPoiOWq4cEN6XtMX/oe0xfI7wBfs20NGZsyGDnhXr46uiqc0RT+dynMG8/q1bcx\nYcIYFQQps3ALwkagaaHppuQfJZSImVUFXgaedvdpxbUbN25cwe8pKSmkpKSUNqdEuXXfr+Ojli/D\n0S/DK0/Bl2cWvFb9zHExVwz2xcxoXrc5zes25+GVK/jynXGQvB26jIK/tIbZ/8eeLI1GE6/S09NJ\nT08Pax3h9iEkkt+p3AXYBHxAkU7lQm3HATsLdSobMAX41t2v3c97qA8hjuXm5TJh0QRue/c2aq9s\nzeopc2Bv0i/anHPOGN5885aAEgbjV5e/NlkIfQdzaNJuPvjHXI6qc1Rw4SQilKUPIayvE+6eCwwF\nZgPLgefdPdPMBpvZ4FCohma2HrgW+LuZrQudJjoNuAw4y8yWhH56hJNHYsviTYvp+GhH3vj8Df57\nxX+573e30LzZP3/RpnnzUQwb1i2ghMEZPrw7zZuP/nnGhlM4am5P+rbuRsdHO3LHf+4gZ29OcAEl\nKunGNIk4O7J3MOatMTz/6fPc1e0uBrQZUHBlULiXfMaS4rbFF9u+4OqZV7NhxwYm9pnIqU1PDTqq\nBEB3KktUc3emrZjG8DeH0+2obtzV7S4Oq3FY0LGikrvz4vIXuebNa+h3TD/Gdxlf7M12EptUECRq\nrft+HcNmDWPl1pVM7DORM5udeeCF5IC2Z21n1PxRTFsxjf875/+4qPVFEXkfhpQ/FQSJOoU7jYef\nPJwbT7uRpMSkAy8opbJw/UIGvzGYRjUb8WDvB9XpHAdUECSqLN60mCtfv5I61evwUO+HOPrQo4OO\nFNNy9uZwz/v3cNd7d/HXU//K9adcHzU37knpqSBIVNhfp7FUPHU6x4dKv+xUpDTcnVczX6X1g63Z\n+eNOPrn6E1JPSFUxqGRH1jmSmZfMZMwZY7jghQu46o2r2LZnW9CxJALoCEEqxU+dxp99+xkP935Y\nncYRQp3OsUunjCTiFO40HnHyCG447QZ1GkcgdTrHHhUEiSjqNI4u6nSOLSoIEhHUaRzd1OkcG9Sp\nLIFSp3FsUKdz/NIRgpQLdRrHJnU6Ry+dMpJKp07j+KBO5+ijgiAVZl/P723QroY6jePIvjqd57y5\nUM91jlAqCFIhCp5lvPq2/BlJO6jVvwv22zXc1+cedRrHmZ86nTM3riT31dPZ+P6UgteaNx/Nffed\no6IQAVQQpEL84ulcrV6FnsNhTTfOyq3DW2/8O9hwEgh3p+2l5/Nxo/dhZT+YNx6y8ofXjscn2EUi\nXWUkFSI7O/To7ZRx0O0GeOVpeG0yebtqBppLgmNm1NnUBh5Ynj/jzx3h4K8AyMpKCDCZhEMFQQ4o\nKSkXTrsTWj8Pk98reMB9cvLegJNJkJKSciGrNrzxMCwdBKldocYW/V1EMRUEOaAjL9pJ4sl3wpPz\nYHd9IH6fZSw/+8Vznd8dDSv6U+1Pv+XyIZ2CDSZllhjuCsysB3AvkAA85u53Fnm9FfA40A4Y7e7/\nLumyErxJH01i1o5pTDztIV749OFCz+/toY7DOPfT//8JE8aQlZVAUlWjeqszuGfLLfTKPoOaSTql\nGG3C6lQ2swRgJdAV2AhkABe7e2ahNvWAI4D+wLafCkJJlg21U6dyQJ7937PcMPcG3h74Ni0PbRl0\nHIkC7s6QGUPI3JrJrEtnUaNqjaAjxa0gOpU7Aqvcfa275wBTgXMLN3D3Le6+GMgp7bISnFcyX+H6\nOdcz+7LZKgZSYmbGg70f5IhaR9B/an+ycrOCjiSlEG5BaAysLzS9ITSvopeVCjTz85kMmTGEmZfM\npHX91kHHkShTxaow+dzJ1EquxYUvXkjO3qLfBSVShduHEM65nBIvO27cuILfU1JSSElJCeNtZX/e\n+uItBk0bxPSLp9Pu8HZBx5EolVglkWd+9wznv3A+l716Gc/+7lkSquhy1IqUnp5Oenp6WOsItw+h\nEzDO3XuEpm8C8vbVOWxmY4FdhfoQSrSs+hAqz3vr3uO858/jxd+/qMHppFxk5WbR97m+NK7ZmMnn\nTqaK6cLGyhJEH8JioKWZNTOzasBFwPTi8oWxrFSwxZsWc97z5/H0755WMZByk5yYzLSLprFm2xr+\nMuMv6MtdZAt76Aoz68nPl45OcvfxZjYYwN0nmllD8q8gOgTIA3YCx7n7rn0tu4/16wihgn389cd0\nf6o7j/R9hH7H9As6jsSgHdk76PZUN05rehr/7v5vjX1VCTSWkZTaiq0rOHvK2dxzzj1cdPxFQceR\nGPbdnu84e8rZ9D26L7ecrbGOKprGMpJSWbNtDd2e6sb4LuNVDKTC1a1elzkD5vBy5suMf/dXJwMk\nAoR9p7JEp/Xfr6fLk10Y1XkUA9sODDqOxIn6B9VnXuo8znj8DGpUrcGITiOCjiSFqCDEoc27NtPl\nyS4M6ziMIR2GBB1H4kyjmo2YnzqfM584k+pVq3PlSVcGHUlCVBDizNYfttL1ya6knpDKdadcF3Qc\niVNH1D6CeanzSHkiheqJ1RlwwoCgIwkqCHFle9Z2uj/Vnb5H92X06aODjiNxrkXdFswZMIcuT3ah\netXqXHDcBUFHinsqCHFiZ/ZOej7Tk9N/czq3d7ldl/1JRDiu3nHMunQW5zx9DtUTq9P76N5BR4pr\nuuw0DvyQ8wO9n+1Ny7otmdhnooqBRJxFGxbR97m+PHv+s3Q9qmvQcWKC7kOQX8nOzebcqedS76B6\nPHHuExpPRiLWgi8XcP4L5/PKha9w+hGnBx0n6qkgyC/k7M3h9y/+nsQqiUy9YCqJVXSGUCLb3NVz\nufSVS3njkjfo2Lhj0HGimm5MkwJ78/aSOi2VnLwcnj3/WRUDiQrdmndjUr9J9H2uL8s2Lws6TtxR\nQYhBeZ7Hn17/E1t2b+HlC1+mWkK1oCOJlFjfY/pyf8/76fFMDzK3ZB54ASk3+toYY9ydYTOHseq7\nVbx56ZskJyYHHUmk1H7f+vfsyd1Dt6e6kT4onRZ1WwQdKS6oIMQQd+eGuTfwwaYPmJ86n4OqHRR0\nJJEySz0hlT05e+j6ZFcWXL6A39T6TdCRYp4KQgy5+Z2bmbNmDm8PfJtDkg4JOo5I2Aa3H8ye3D10\nebILCwYt4PCahwcdKaapIMSIO/9zJ89/+jzvDHqHutXrBh1HpNxc0+kafsj5ga5PdSV9YDr1DqoX\ndKSYpU7lGDBh0QQe/ehR5g2YR/2D6gcdR6TcjTp9FP2P6U/3p7uzbc+2oOPELBWEKDfpo0ncvfBu\n5qXOo/EhjYOOI1Jhbj37VlKOSKHnMz3Zmb0z6DgxSTemRbFn//csf5v7N9IHptPy0JZBxxGpcO7O\nkBlDyNyayaxLZ1Gjao2gI0Us3akcR17JfIW/zPwL8wbMo3X91kHHEak0eZ7HoGmD2LxrM9Mvnq5L\nq4sRyJ3KZtbDzFaY2edmdmMxbdJCry8zs3aF5t9kZp+a2f/M7FkzSwo3TzyY+flMhswYwsxLZqoY\nSNypYlWYfO5kaifX5sIXLyRnb07QkWJGWEcIZpYArAS6AhuBDOBid88s1KYXMNTde5nZycB97t7J\nzJoBbwHHunu2mT0PzHT3KUXeI+6PEGbMWEBa2hyysxPZVW8Vn7d9g9kD36RTk05BRxMJzI97f+T8\nF86nRtUaXJp8FQ9MmE92diJJSbkMH96d3r3PCDpioMpyhBDuZacdgVXuvjYUYCpwLlD4fvN+wBQA\nd19kZrXNrAGwA8gBapjZXqAG+UVFCpkxYwEjRsxm9erboOl70PFBGs3ow7dtf4QmQacTCU61hGq8\n+PsXOSWtM5ctHcHOuUvB8096rF6d/wCoeC8KpRXuKaPGwPpC0xtC8w7Yxt2/A/4NrAM2AdvdfV6Y\neWJOWtqc/GLQaDH84Tx45Sk2LXyaCRPmBh1NJHDJicnUnXs2OxNrQ6+/APlnE1avvk2fkTII9wih\npOdyfnXYYmbNgWuAZsD3wItmdqm7P1O07bhx4wp+T0lJISUlpQxRo1N2diJU/w7+0B9efwRWnwNA\nVpaeayACsHdPDXj2DRiUAu0fhsVDgPj7jKSnp5Oenh7WOsItCBuBpoWmm5J/BLC/Nk1C81KA/7r7\ntwBm9gpwKrDfghBvkpJyoddQyPwdrOhfMD85eW+AqUQiR1JSLmQfAi8/C3/sDGu6wXct4u4zUvTL\n8s0331zqdYR7ymgx0NLMmplZNeAiYHqRNtOBVAAz60T+qaGvye+M7mRm1S3/mY5dgeVh5ok57S5L\npOpvZsO8OwrmNW8+imHDugWYSiRyDB/enebNR8PWVvDOGOg/kKNajNRnpAzCOkJw91wzGwrMBhKA\nSe6eaWaDQ69PdPeZZtbLzFYBu4HLQ68tNbMnyS8qecBHwCPh5Ik1X+38ise/fog7Tr6NOcvHk5WV\nQHLyXoYN66HOMpGQnz4LEyaMYU9WFT6ptZEzbtyuz0gZ6Ma0COXu9HmuDyc2PJFbzr4l6DgiUePL\n7V/S/tH2zE+dT5sGbYKOExg9QjOGTFoyia92fsWYM8cEHUUkqhxR+wju6noXA14dQHZudtBxooqO\nECLQF9u+oMOjHUgflM7x9Y8POo5I1HF3+j/fn9b1WnN7l9uDjhMIHSHEgL15exk4bSA3nnajioFI\nGZkZj/R5hMlLJrNw/cKg40QNFYQIc+/79+I4151yXdBRRKJag4Mb8ECvB0idlsruH3cHHScq6JRR\nBPn0m09JmZLCoj8t4qg6RwUdRyQmpL6aSs1qNXmg9wNBR6lUOmUUxXL25pA6LZXbzr5NxUCkHKX1\nTOP1z15nzuo5QUeJeCoIEeLWBbfS4KAG/PnEPwcdRSSm1E6uzaR+k7hi+hV6/OYB6JRRBMjYmEGf\n5/qwZPASGtVsFHQckZg0dOZQvs/+nqfOeyroKJVCp4yi0J6cPQx4dQBpPdJUDEQq0J1d72TRhkW8\nvPzloKNELB0hBOyaN69h867NTL1gatBRRGLe+xvep//U/iy9aikND24YdJwKpSOEKPP2F2/z0vKX\neKBXfF39IBKUTk06cUW7K7jy9SuJ5S+aZaWCEJDvs77n8tcu55G+j3BojUODjiMSN8amjGXd9+t4\nYukTQUeJODplFJA/vvZHqlapysS+E4OOIhJ3Pv76Y7o82YWMP2fQrHazoONUCJ0yihKvrXiN9LXp\n3N397qCjiMSlNg3a8NdT/srlr11OnucFHSdiqCBUsi27t3DVjKuY0n8KNZNqBh1HJG799dS/8uPe\nH0lblBZ0lIihU0aVyN05/4XzaV6nOf/q/q+g44jEvVXfraLTY5149/J3ObbesUHHKVc6ZRThnv74\naT779jM98EYkQrSo24Jbz76V1Gmp5OzNCTpO4FQQKsn679dz/Zzreeq8p0hOTA46joiEDD5pMIdW\nP5Tb343P5yYUpoJQCfI8jz9O/yPDTx5Ou8PbBR1HRAoxMyb1m8QDGQ+weNPioOMEKuyCYGY9zGyF\nmX1uZjcW0yYt9PoyM2tXaH5tM3vJzDLNbLmZdQo3TyR6KOMhdmTvYGTnkUFHEZF9aHxIY+7rcR+p\nr6ayJ2dP0HECE1ZBMLME4H6gB3AccLGZHVukTS+ghbu3BK4EHir08n3ATHc/FmgDZIaTJxJ99u1n\njE0fy5P9nySxSmLQcUSkGH84/g8cX/94/v7W34OOEphwjxA6Aqvcfa275wBTgXOLtOkHTAFw90VA\nbTNrYGa1gNPdfXLotVx3/z7MPBElNy+XgdMGMvbMsRxz2DFBxxGR/TAzHuz9IFM/nco7a98JOk4g\nwi0IjYH1haY3hOYdqE0T4Ehgi5k9bmYfmdmjZlYjzDwR5a737qJG1Rr8peNfgo4iIiVwWI3DeKTP\nIwx6bRA7sncEHafShXsOo6Q3CBS9FtZD730iMNTdM8zsXmAk8I+iC48bN67g95SUFFJSUsqStVIt\n3byUe96/hw+v/JAqpr57kWjR++jeTFsxjetmX8dj/R4LOk6Jpaenk56eHtY6wroxLdQJPM7de4Sm\nbwLy3P3OQm0eBtLdfWpoegVwJvlFYqG7Hxma3xkY6e59irxH1N2Ylp2bTftH2/PXU/7KwLYDg44j\nIqW0M3snbR5uw4SeE+hzdJ8DLxCBgrgxbTHQ0syamVk14CJgepE204HUUMBOwHZ3/9rdNwPrzezo\nULuuwKdh5okIY9PH0qJuC1JPSA06ioiUQc2kmjxx7hNc+fqVbP1ha9BxKk3YQ1eYWU/gXiABmOTu\n481sMIC7Twy1+elKpN3A5e7+UWj+CcBjQDVgdei174usP6qOEN5b9x4XvHgBy65aRv2D6gcdR0TC\ncP3s61m3Yx0vXPACZqX6sh24shwhaCyjcrTrx120fbgt/+r2L8479ryg44hImLJyszjpkZMYffpo\nLvntJUHHKRUVhIANeWMIe3L38ET/J4KOIiLl5MNNH9LzmZ4sGbyExocUvYgycmlwuwDNXjWbmatm\ncl+P+4KOIiLl6KRGJzG041CumH5FzD92UwWhHGzbs40rpl/B5H6TqZVcK+g4IlLObup8E9/t+Y6J\nH8b2Ew51yqgcXPrKpRxa/VDSeupBGyKxasXWFXSe3Jn3//Q+Leq2CDrOAemUUQBe/PRFFm9azB1d\n7wg6iohUoFaHtWLMGWMYOG0ge/P2Bh2nQqgghOGrnV8xdNZQnuz/JDWqxtSoGyKyD8NOHkZSQhJ3\n/zc2n4euU0Zl5O70fa4v7Rq20xPQROLIl9u/pP2j7ZmfOp82DdoEHadYOmVUiSYvmcymnZsYc+aY\noKOISCU6ovYR3NX1Lga8OoDs3Oyg45QrHSGUwRfbvqDjYx15e+DbHF//+KDjiEglc3f6P9+f1vVa\nc3uXyHz0po4QKkGe5zHotUHccOoNKgYiccrMeKTPI0xeMpmF6xcGHafcqCCU0r3v30ue53HdKdcF\nHUVEAtTg4AY80OsBUqelsvvH3UHHKRc6ZVQKy7cs58wnzmTRnxZxVJ2jgo4jIhFgwKsDqJVUi/t7\n3R90lF/QKaMKlLM3hwGvDuC2s29TMRCRAhN6TmD6yunMXT036Chh0xHCfsyYsYC0tDlkZyeyvsVb\n1Gn9IxnXLIy6YXBFpGLNXT2XS1+4jOPfvYy8H2qSlJTL8OHd6d37jMAyleUIIdxHaMasGTMWMGLE\nbFavvg0aZUCHhzhi8kXMPPrdQP8ni0jk+XFFEtkfN+Xt5G9g1r8BWL16NEBU7S90yqgYaWlz8otB\n4h44LxVmpfHlJ2lMmBD9h4UiUr7S0uaw4+V3oMkiOPZlAFavvi3q9hcqCMXIzg4dPJ2cBt8eA59e\nBEBWVkKAqUQkEmVnJ0LOQfDaJDjnOkjMAqJvf6GCUIykpFxI3gan3g3zfh64Ljk5Nge1EpGyS0rK\nzf9l3emwuS10eBCIvv2FCkIxhg/vTu0+vWFFf9jaCoDmzUcxbFi3gJOJSKQZPrw7zZvn9xkw/3bo\nfAfNWl0XdfuLsK8yMrMewL1AAvCYu9+5jzZpQE/gB2CQuy8p9FoCsBjY4O5997FsIFcZbdyxkWPT\njuPEDwbBjjokJ+9l2LBuUdVBJCKVZ8aMBUyYMJesrAQ+b/0qp5/QlqlXTgksT6U/Uzm0M18JdAU2\nAhnAxe6eWahNL2Cou/cys5OB+9y9U6HXrwNOAmq6e799vEcgBWHw64OplVyLu7rdVenvLSLR7cvt\nX3LiIyey/OrlNDi4QSAZgrgxrSOwyt3XunsOMBU4t0ibfsAUAHdfBNQ2swahwE2AXsBjQMRc3L9y\n60peznyZkZ1HBh1FRKLQEbWPILVNKrcsiK6h8cMtCI2B9YWmN4TmlbTNPcDfgLwwc5SrMW+P4fpT\nrqdu9bpBRxGRKDXq9FFM/WQqa7atCTpKiYV7Y1pJz+UU/fZvZtYH+Mbdl5hZyv4WHjduXMHvKSkp\npKTst3lYFm9azH/W/YfHz328wt5DRGJfvYPqMfzk4Yx5ewzP/O6ZCn+/9PR00tPTw1pHuH0InYBx\n7t4jNH0TkFe4Y9nMHgbS3X1qaHoFkAIMBwYAuUAycAjwsrunFnmPSu1D6PZUN84/9nyuan9Vpb2n\niMSmXT/uokVaC9687E3aNmxbqe8dRB/CYqClmTUzs2rARcD0Im2mA6mhgJ2A7e6+2d1HuXtTdz8S\n+APwVtFiUNnmrZnH2u1ruaLdFUHGEJEYcXC1gxl9+mhGzR8VdJQSCasguHsuMBSYDSwHnnf3TDMb\nbGaDQ21mAmvMbBUwEbi6uNWFkyVc7s7IeSO59axbqZpQNcgoIhJDBrcfzIqtK3hn7TtBRzkgjXYa\n8uKnL3LHe3eQ8ecMqpju1xOR8vP0x0/zQMYD/PeP/6200ZL1PIQyytmbw+i3RjO+y3gVAxEpd5f8\n9hJ+yPmB6SuLnlGPLNr7AY8vfZymtZrS7ajous1cRKJDFavC7Wffzqi3RrE3L3LHN4r7gvBDzg/c\n/M7NjO8yXg++EZEK06tlLw6tfihPLnsy6CjFivuCMGHRBE5pcgodG3cMOoqIxDAz446udzA2fSxZ\nuVlBx9mnuC4I2/Zs4+6Fd3Pr2bcGHUVE4sCpTU+l3eHteDDjwaCj7FNcX2U0ct5Ivv3hWx7t92iF\nrF9EpKhPv/mUs6acxefDPqdWcq0Ke59KH+20MlRUQdi4YyNtHm7DsquW0eSQJuW+fhGR4gyaNoim\nhzTllrMrbvA7FYRS0PDWIhKUyhgeWwWhhFZuXclpk0/js2GfaURTEQnEtW9eS05eDvf3ur9C1q+C\nUEIXvngh7Rq246bTbyrX9YqIlNSW3Vs49oFj+eDPH3BUnaPKff26U7kEFm9azHvr32NEpxFBRxGR\nOFZ4eOxIEXcF4ab5NzHmjDHUqFoj6CgiEueuO+U65q+Zz9LNS4OOAsRZQdDw1iISSSJteOy4KQga\n3lpEIlEkDY8dNwXhpeUv4Ti/b/37oKOIiBSollCNf571T0bOH0nQF/nERUHQ8NYiEsl+Gh77tZWv\nBZojLvaOGt5aRCJZwfDY84MdHjvmC4KGtxaRaNCrZS8Oq3FYoMNjx3xB0PDWIhINImF47LALgpn1\nMLMVZva/+xRZAAAKd0lEQVS5md1YTJu00OvLzKxdaF5TM3vbzD41s0/MbHi4WYrS8NYiEk2CHh47\nrKErzCwBWAl0BTYCGcDF7p5ZqE0vYKi79zKzk4H73L2TmTUEGrr7UjM7GPgQ6F942dDyZR66QsNb\ni0i0+eSbTzh7ytlhD48dxNAVHYFV7r7W3XOAqcC5Rdr0A6YAuPsioLaZNXD3ze6+NDR/F5AJNAoz\nT4GNOzby6EePMjZlbHmtUkSkwh1f/3h6tezF3f+9u9LfO9yC0BhYX2h6Q2jegdr84gEEZtYMaAcs\nCjNPgX++80+uaHeFnnUgIlHn5pSbeXDxg3y96+tKfd/EMJcv6bmcooctBcuFThe9BIwIHSn8yrhx\n4wp+T0lJISUlZb9vtnLrSl5Z8Qorh64sYTwRkchxRO0jSG2Tyi0Lbinx8Njp6emkp6eH9b7h9iF0\nAsa5e4/Q9E1AnrvfWajNw0C6u08NTa8AznT3r82sKvAGMMvd7y3mPUrdh6DhrUUk2m3ZvYVWD7Qi\n488ZZRoeO4g+hMVASzNrZmbVgIuA6UXaTAdSQwE7AdtDxcCAScDy4opBmQJpeGsRiQH1DqrHiJNH\nVOrw2GEVBHfPBYYCs4HlwPPunmlmg81scKjNTGCNma0CJgJXhxY/DbgMOMvMloR+eoSTBzS8tYjE\njsoeHjumnpg2b808hswYwvKrl2tEUxGJCRMWTWDWqlnMvHRmqZaL6yemaXhrEYlFlTk8dswUBA1v\nLSKxqDKHx46JgqDhrUUkllXW8NgxsffU8NYiEssqa3jsqC8IGt5aROJBZQyPHfUFQcNbi0g8qIzh\nsaO6IGh4axGJJxU9PHZU34eg4a1FJN6UdHjsstyHELUFYeOOjbR5uA3LrlqmEU1FJK4MmjaIpoc0\n5Zazbym2TVwVhMGvD6ZWci3u6nZXAKlERILz5fYvOfGRE1l+9XIaHNxgn23ipiCs3LqSzo93ZuXQ\nldStXjegZCIiwbn2zWvJycspdnjsuCkIGt5aROLdgYbHjouxjDS8tYhIxQyPHXUFQcNbi4jku7bT\nteU6PHZUFYR5a+axdvtarmh3RdBRREQCVzOpJqNPH82o+aPKZX1RUxA0vLWIyK9dedKVZG7NLJfh\nsaOmIGh4axGRX0tKTOKWs24pl+Gxo6IgaHhrEZHiXXz8xez+cXfYw2OHvXc1sx5mtsLMPjezG4tp\nkxZ6fZmZtSvNsqDhrUVE9iehSgLju4wPe3jssAqCmSUA9wM9gOOAi83s2CJtegEt3L0lcCXwUEmX\n/YmGtxYR2b9eLXtxaI1DwxoeO9wjhI7AKndf6+45wFTg3CJt+gFTANx9EVDbzBqWcFkActcewpal\nFTPcq4hILDAz7ux6Jze+OZKuPUaWaR3hFoTGwPpC0xtC80rSplEJlgXgm+deZcSI2cyYsSDMuCIi\nsWvbx7nsXl2L+Tvql2n5cAtCSbu0wzvXs7UVq1ffxoQJc8NajYhILEtLm8MPr78Cne8o0/LhFoSN\nQNNC003J/6a/vzZNQm1KsmzIOGAcK1a8S3p6ejh5RURiUnp6OitX/ge+eQmeOLNM6wi3ICwGWppZ\nMzOrBlwETC/SZjqQCmBmnYDt7v51CZcNGQeMo1Wr00lJSQkzsohI7ElJSeGYYzoD42DLi2VaR1gF\nwd1zgaHAbGA58Ly7Z5rZYDMbHGozE1hjZquAicDV+1u2uPdq3nwUw4bpslMRkeIMH96d5s1Hl3n5\nqBj++pxz/s6wYd3o3fuMoOOIiES0GTMWMGHCXGbPvjU+nocgIiL7FxfPQxARkYqhgiAiIoAKgoiI\nhKggiIgIoIIgIiIhKggiIgKoIIiISIgKgoiIACoIIiISooIgIiKACoKIiISoIIiICKCCICIiISoI\nIiICqCCIiEiICoKIiAAqCCIiEqKCICIiQBgFwczqmtlcM/vMzOaYWe1i2vUwsxVm9rmZ3Vho/r/M\nLNPMlpnZK2ZWq6xZREQkfOEcIYwE5rr70cD80PQvmFkCcD/QAzgOuNjMjg29PAdo7e4nAJ8BN4WR\nJS6kp6cHHSFiaFv8TNviZ9oW4QmnIPQDpoR+nwL030ebjsAqd1/r7jnAVOBcAHef6+55oXaLgCZh\nZIkL+mP/mbbFz7QtfqZtEZ5wCkIDd/869PvXQIN9tGkMrC80vSE0r6g/AjPDyCIiImFK3N+LZjYX\naLiPl0YXnnB3NzPfR7t9zSv6HqOBH9392QO1FRGRimPuB9xn73tBsxVAirtvNrPDgbfdvVWRNp2A\nce7eIzR9E5Dn7neGpgcBfwa6uHtWMe9TtoAiInHO3a007fd7hHAA04GBwJ2h/07bR5vFQEszawZs\nAi4CLob8q4+AvwFnFlcMoPT/IBERKZtwjhDqAi8AvwHWAhe6+3YzawQ86u69Q+16AvcCCcAkdx8f\nmv85UA34LrTKhe5+dRj/FhERCUOZC4KIiMSWiLlTubgb2Iq0SQu9vszM2lV2xspyoG1hZpeGtsHH\nZvaembUJImdFK8nfRKhdBzPLNbPfVWa+ylTCz0eKmS0xs0/MLL2SI1aaEnw+DjOzN81saWhbDAog\nZqUws8lm9rWZ/W8/bUq+33T3wH/IP520CmgGVAWWAscWadMLmBn6/WTg/aBzB7gtTgFqhX7vEYvb\noiTboVC7t4A3gPODzh3g30Rt4FOgSWj6sKBzB7gtxgHjf9oOwLdAYtDZK2h7nA60A/5XzOul2m9G\nyhFCsTewFVJwI5y7LwJqm9m+7n2IdgfcFu6+0N2/D03G6k19JfmbABgGvARsqcxwlawk2+IS4GV3\n3wDg7lsrOWNlKcm2+Ao4JPT7IcC37p5biRkrjbu/C2zbT5NS7TcjpSCU5Aa2fbWJxR1hSW/m+8kV\nxOZNfQfcDmbWmPydwUOhWbHaIVaSv4mWQF0ze9vMFpvZgEpLV7lKsi0eBVqb2SZgGTCikrJFolLt\nN8O57LQ8lfSDXPQS1FjcAZT432RmZ5F/l/dpFRcnMCXZDvcCI93dzcz49d9HrCjJtqgKnAh0AWoA\nC83sfXf/vEKTVb6SbItRwFJ3TzGz5sBcMzvB3XdWcLZIVeL9ZqQUhI1A00LTTcmvZPtr0yQ0L9aU\nZFsQ6kh+FOjh7vs7ZIxWJdkOJwFT82sBhwE9zSzH3adXTsRKU5JtsR7Y6u57gD1mtgA4AYi1glCS\nbXEqcBuAu682sy+AY8i/LyrelGq/GSmnjApuYDOzauTfwFb0Qz0dSIWCO6C3+89jKcWSA24LM/sN\n8ApwmbuvCiBjZTjgdnD3o9z9SHc/kvx+hCExWAygZJ+P14DOZpZgZjXI70BcXsk5K0NJtsUKoCtA\n6Hz5McCaSk0ZOUq134yIIwR3zzWzocBsfr6BLdPMBoden+juM82sl5mtAnYDlwcYucKUZFsA/wDq\nAA+Fvh3nuHvHoDJXhBJuh7hQws/HCjN7E/gYyCP/5tCYKwgl/Lu4HXjczJaR/6X3Bnf/rtiVRjEz\new44EzjMzNYDY8k/fVim/aZuTBMRESByThmJiEjAVBBERARQQRARkRAVBBERAVQQREQkRAVBREQA\nFQQREQlRQRAREQD+H2Gz7ECR6pNEAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x9e8f588>"
       ]
      }
     ],
     "prompt_number": 111
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.9 page number 245"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given   \n",
      "P_Max  = 10   #N - the maximum distribution in a triangular distribution\n",
      "L = 3         #mt the total length of force distribution \n",
      "L_X = 5       #mt - the horizantal length of the rod\n",
      "#caliculations \n",
      "\n",
      "F_y = P_Max*L*0.5 #N - The force due to triangular distribition \n",
      "L_com  = 2*L /3   #mt - the resultant force acting as a result of distribution acting position \n",
      "#F_X = 0 forces in x directions\n",
      "R_A_X = 0         # since there are no forces in X-direction\n",
      "R_B_X = 0\n",
      "#M_A = 0 momentum at point a is zero\n",
      "#F_y*L_com - R_B_Y*L_X = 0\n",
      "R_B_Y = F_y*L_com/L_X\n",
      "\n",
      "#M_B= 0 momentum at point b is zero\n",
      "#- R_A_Y*L_X = F_y*(L_X-L )\n",
      "\n",
      "R_A_Y = - F_y*L/L_X\n",
      "\n",
      "#caliculating for some random value\n",
      "#For a---a section \n",
      "l_a = 2 #mt - a---a section from a \n",
      "l_com_a = 2*l_a/3\n",
      "v_a = R_A_Y + 0.5*l_a*(10.0*2/3) #*(10*2/3) because the maximum moves\n",
      "\n",
      "M_a =  (10.0*0.66)*l_a*(0.33) + R_A_Y*l_a\n",
      "\n",
      "print \"The force and moment in section a--a are\",round(v_a,2),\"KN ,\",M_a,\"KN-m\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The force and moment in section a--a are -2.33 KN , -13.644 KN-m\n"
       ]
      }
     ],
     "prompt_number": 112
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.13 page number 254"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "l_ab = 4  #L - The total length lets say '3L'\n",
      "R_1 = 1   #p - The force applied at b\n",
      "R_2 = 1   #p - The force applied at c\n",
      "l_ab = 1  #L\n",
      "l_bc = 3 #L \n",
      "\n",
      "#Logical step \n",
      "#Since the system is in symmetry we can avoid moment M = 0 caliculations\n",
      "\n",
      "#F_Y = 0 \n",
      "R_A = (R_1 + R_2)/2\n",
      "R_B = (R_1 + R_2)/2\n",
      "\n",
      "#Lets take '3' sections \n",
      "#Considering section 1-----1 at 0.5L\n",
      "l_1 = 0.5    #L - distance of the section from the A\n",
      "v_1 = R_A     #F_Y = 0 \n",
      "M_1 = R_A*l_1 #MAking moment at section 1 = 0\n",
      "\n",
      "#Considering section 2-----2 at 1L\n",
      "l_2 = 1       #L - distance of the section from the A\n",
      "v_2 = R_A     #F_Y = 0 \n",
      "M_2 = R_A*l_2 #MAking moment at section 2 = 0\n",
      "\n",
      "#Considering section 3-----3 at 1.5L\n",
      "l_3 = 3       #L - distance of the section from the A\n",
      "v_3 = 0        #F_Y = 0 \n",
      "M_3 = R_A*l_2  #MAking moment at section 2 = 0 and symmetry \n",
      "\n",
      "#GRAPH\n",
      "#Since the symmetry exists the graphs are also symmetry\n",
      "%matplotlib inline\n",
      "import math \n",
      "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
      "#Drawing of shear and bending moment diagram\n",
      "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
      "X = [0,0.5,1,1.0000001,2,2.9999999999,3,3.5,4] # For graph precision \n",
      "\n",
      "V = [R_A,v_1,v_2,v_3,v_3,v_3,-v_2,-v_1,-R_B];\t\t\t#Shear matrix\n",
      "M = [0,M_1,M_2,M_3,M_3,M_3,M_2,M_1,0];\t\t\t#Bending moment matrix\n",
      "plot(X,V);\t\t\t#Shear diagram\n",
      "plot(X,M);\t\t\t#Bending moment diagram\n",
      "suptitle( 'Shear and bending moment diagram')\n",
      "xlabel('X axis')\n",
      "ylabel( 'Y axis') ;"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEhCAYAAABoTkdHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHDtJREFUeJzt3X+8XHV95/HXm/xAfmUJagNIFFtBQSNGCEYQuA2oASoU\nSwSqDT98YJZd1K7Yh4pa0m1XwPqjApUqBiGWApsu0FiCgDTXUORHYn4QSIJhJbuImHUf/EyySiCf\n/eN8bzJMZu7MuXdmzpmZ9/PxuI+cmfnOnM9852Y+95z3nDOKCMzMzJq1S9EFmJlZd3HjMDOzXNw4\nzMwsFzcOMzPLxY3DzMxyceMwM7Nc3Dh6nKQvSnpE0ipJKyRNS9dvkLRP0fU1Uq9OSZvatL7rJP1J\nWr5G0iHtWE8ZSDpM0olNjh2U9O60fLukCe2tzspsbNEFWPtIei9wMjA1IramN+Bd080BqMXrGxsR\nL7fyMcnqzHN9K9YXABFxfpvWURZTgcOBO5oYu32+I+LkVqxc0piIeKUVj2Wd5S2O3rYv8H8jYitA\nRDwTEU9X3P5JST+T9LCktwJI2kPStZIelLRc0inp+gMlLUnjf5aaEpIGJN0r6V+AR6sLkPRtSUvT\nVs/cius3SJpbY/2vlXRXGn8NwzQ3Sd9I434s6XXpuj+QdIekZaneoce9TtK3JN0n6X9WbFVI0lWS\n1km6G/i9isev/Ct7k6S/kbRS0v2Sfq9ifQ+k5/A3kl6sUeeB6fG/L+kxSTdI+kCq5ecVW4H7SLot\nbR3eL2lKun6upOvT89kg6cOSvpbWeYeksWnc4anmZZJ+JGnfiudxWXpNH5P0PknjgP8KnJG2RGdV\n1bybpJskrZF0C7Bb1Wu3T1q+Na3vEUnnV4z5eFrXg2nL7cqK1+EfJD0AXC5pmqSfpt+1+yQdnMad\nk+biLklPSLpQ0mfTuPslTaz3e2EdEBH+6dEfYA9gBfAY8PfAsRW3PQH857R8AXBNWv4K8NG0vHe6\n7+5kbxy7pusPApam5QFgE/CmOjVMTP+OARYD72iw/iuAL6Xlk4BtwD41HncbcFZa/jJwZVq+B3hL\nWn4PcE9avg64OS0fAqxPyx8G7iJrUPsBzwIfTrctBt5dsb6T0/LlwBfT8r8CZ6TlOcCLNWo9ENgK\nvD2tZxkwL912CnBrWr4S+HJa/kNgRVqeCyxJc/hOYAvwwXTbLcCpwDjgp8Br0/VnVKxjMfC3aflE\n4O60fDZwRZ3X7TPA99LylFT/0Fw8MfSaVLy+uwGrgYnA/mnM3mR7NZYMrSe9DgsBpct7AWPS8gnA\nP6flc4D1ZL/DrwOeBz6RbvsG8Omi/3/18493VfWwiNgs6XDgGLI3opslfT4irk9Dbkn/Lid7AwX4\nAPAhSZ9Nl3cFJgO/Bq6SdBjwClnzGPJQRPyvOmWckf4SHUv2xnwo8Mgw6z8GOC3Vv0jSs3Uedxtw\nc1r+R+AWSXsARwELpO0bKuOHpgO4LT3uWkmT0vXHAv8U2TvS05L+rc76XoqI29Pyz4D3p+XpZG/+\nADcCX6tz/yci4lEASY8CP07XP0LWWACOJs1DRCxOW197pdrviIhXJD0C7BIRd6b7rE73P5isMf04\nPfcxwK8q1l8510PrE/W36I4BvpVqWS3p4TrjPi3pj9PyAamO/YCfRMRz6fkuSNeTnsuCNN+QNZf5\nkt6Sbqt8T1ocEZuBzZKeA35Y8ZzfWace6wA3jh4XEduAnwA/kbSa7K/Mocbxu/TvK7z6d+HDEbG+\n8nGU7WZ6OiL+TNIY4LcVN2+utW5JbwYuAo6IiOclfR94TcWQeuvPm72I7E1nF+DZiJhaZ9xLNdbR\nbNaztWJ5G/n/7/yuYnlbRS3Vj1Wvlpcgez0l1apFwKMRcVSD9VfP9XCGnRdJA8DxwPSI+K2kxWSv\nb3X+VP04WyqW/5psq/A0SW8CBmvUDNnz/F3Fst+7CuSMo4dJOlhS5ZbBVGBDg7vdCXyq4jGG3oQn\nkG11AMwm+4u2kQlkTeWF9Bd+M5/gWQL8aVr3iWS7PmrZBRjaL/+nwL0R8SLwhKTT0/0lqdFfpkvI\ntop2kbQf2ZZZHg8Ap6flM3Pet9q9wEdh+5vyb9JzaqaxPQa8XtL0dP9xkg5tcJ8XyHYV1VL5OryD\n2n/hTyBr1L+V9Dayra8AlgLHSdo75S9/Qv0PM0xgx5bRuQ3qHdLSD3VYfm4cvW1P4DpJj0paBbyN\nbH85vPo/clRc/mtgXApeHwH+Kl3/beBsSSuBt5LlGpX330lErCLLWNYBNwD/XqfOyvX/FXBsWvdp\nQL1dYJuBI9NW1ABZ0AvZG+/HU52PsGM3Uq3nTETcSrYvfQ3ZlthPh6mxVr1/Dnwmre8PyPbFN7p/\nzVrIXpvD02v1FbKtw+r11XysyD4AcTpZ4LySbN7f26CWxcChtcJx4GpgT0lryF6TZTUe50fA2DTm\nUuD+VMyvUv0Pkb3mT/Dqeams/6vApZKWk/0xEhVj6j3n6tusw7RjV6OZ5SVpt4j4f2n5TLKg/LSC\nyyqcpD1SxjaWLF+ZFxH/UnRd1hreT2g2OodLuops98mzwHkF11MWcyWdQJZ53Omm0Vu8xWFmZrk4\n4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLpdDGoex7Hzam00bUG3OFpPXK\nvqOg3snrzMysQ4re4vg+MLPejZJOIvtuhYOAT5CdP8fMzApUaOOIiHvJTtNQzymkU4BHxIPA3hXf\no2BmZgUoeoujkTcAT1Zc/iXZl8WYmVlByt44YOdz7/vkWmZmBSr72XGfIvva0iEHpOteRZKbiZnZ\nCERE7i/GKvsWx0Kyb5sjfbPZcxGxsdbAor+8vZmfSy65pPAaav1s27aNj93yMc677TygnDV2y1y6\nzvb+fOgTH+Ltf/92Nr+0ufBaemE+R6roj+PeSPaNa2+V9KSk8yTNkTQHICIWAb+Q9DjwHeA/FVhu\nz7p2xbWseHoFV550ZdGlmA1r6r5TmbrfVD656JNFl9LXCt1VFRFnNTHmwk7U0q9Wb1zN5+/5PEvO\nWcLu43YvuhyzYUni6pOv5ojvHsH8VfOZfdjsokvqS2XfVdVTBgYGii7hVTa9tIlZC2bx9Q98nUNe\nf0i6dqDIkppWtrmsx3W21sDAAHuO35MFsxZw0V0XsfY3a4suqaZumc+R6olvAJQUvfA8OikimH3b\nbMbvMp55p87bfr0EnkrrBvOWz+ObD3yTh85/yFvLIySJ6MFw3NrEuYZ1u/Omnue8oyBuHH1oKNdY\nMGuB/1KzrjWUd9z35H3MXzW/6HL6ihtHn6mda5h1p27IO3qRM44+Ui/XqOSMw7qR846RccZhDTnX\nsF7lvKOz3Dj6hHMN62XOOzrLjaMPONewfuC8o3OccfS4ZnKNSs44rNs572ieMw6rybmG9RvnHe3n\nxtHDnGtYP3Le0X5uHD3KuYb1M+cd7eWMowflzTUqOeOwXuK8Y3jOOGw75xpmGecd7eHG0WOca5jt\n4LyjPdw4eohzDbOdOe9oPWccPWI0uUYlZxzWq5x37MwZR59zrmE2POcdrePG0QOca5g15ryjddw4\nupxzDbPmOe9oDWccXaxVuUYlZxzWD5x3ZJxx9CHnGmYj47xjdNw4upRzDbORc94xOm4cXci5htno\nOe8YOWccXaYduUYlZxzWb/o573DG0Seca5i1lvOO/Nw4uohzDbPWc96RnxtHl3CuYdY+zjvyccbR\nBdqda1RyxmH9rN/yDmccPcy5hllnOO9ojhtHyTnXMOsc5x3NceMoMecaZp3nvKMxZxwl1clco5Iz\nDrNMP+Qdzjh6jHMNs2I576jPjaOEnGuYFc95R31uHCXjXMOsPJx31OaMo0SKyjUqOeMw21mv5h3O\nOHqAcw2zcnLe8WpuHCXhXMOsvJx3vJobRwk41zArP+cdOzjjKFgZco1KzjjMhtdLeYczji7lXMOs\nuzjvcOMolHMNs+7jvMONozDONcy6V7/nHc44ClC2XKOSMw6z5nV73uGMo4s41zDrDf2adxTaOCTN\nlLRO0npJn6tx+4Ck5yWtSD9fKqLOVnKuYdY7+jXvGFvUiiWNAa4CTgCeApZKWhgR1TsMfxIRp3S8\nwDZwrmHWe4byjhnzZzBt/2l98X+7yC2OI4HHI2JDRGwFbgJOrTEu9/63MooILrj9Ao6efDSzD5td\ndDlm1kJTJk3hsuMvY9aCWWzZuqXoctquyMbxBuDJisu/TNdVCuAoSaskLZJ0aMeqazHnGma9rZ/y\njsJ2VZE1hUaWA5MjYoukE4HbgINrDZw7d+725YGBAQYGBlpQYmsM5RpLzlniXMOsRw3lHdOumcb8\nVfNLuWdhcHCQwcHBUT9OYR/HlTQdmBsRM9PlLwDbIuLyYe7zBHB4RDxTdX1pP4676aVNHPHdI7j4\nmItL+YtUzR/HNRud1RtXM2P+DJacs6T0eUc3fhx3GXCQpAMljQfOABZWDpA0SZLS8pFkje6ZnR+q\nnJxrmPWffsg7CmscEfEycCFwJ7AGuDki1kqaI2lOGnY6sFrSSuDvgDOLqXZknGuY9adezzt85Hib\ndNPmaiXvqjJrjW7YTd2Nu6p6lo/XMLNePp+VtzharMznoWqGtzjMWqvM57PyFkdJONcws0q9mHe4\ncbSQz0NlZtV68XxWbhwt4lzDzOrptbzDGUcLdHuuUckZh1n7lC3vcMZRIOcaZtaMXsk73DhGybmG\nmTWrV/ION45RcK5hZnn1Qt7hjGOEeinXqOSMw6wzypB3OOPoMOcaZjYa3Zx3uHGMgHMNMxutbs47\n3Dhycq5hZq3SrXmHM44cejXXqOSMw6zziso7nHF0gHMNM2uHbss73Dia5FzDzNql2/ION44mONcw\ns3brprzDGUcD/ZBrVHLGYVasTuYdzjjaxLmGmXVSN+QdbhzDcK5hZp3WDXmHG0cdzjXMrChlzzuc\ncdTQb7lGJWccZuXR7rzDGUcLOdcwszIoa97hxlHFuYaZlUVZ8w43jgrONcysbMqYdzjjSPo516jk\njMOsnNqRdzjjGCXnGmZWZmXKO9w4cK5hZuVXpryj7xuHcw0z6xZlyTv6OuNwrrEzZxxm5deqvMMZ\nxwg41zCzblR03tG3jcO5hpl1q6Lzjr5sHM41zKzbFZl39F3G4VxjeM44zLrLaPIOZxxNcq5hZr2k\niLyjrxqHcw0z6zVF5B190zica5hZr+p03tEXGYdzjeY54zDrXnnzjrZlHJI+ImlCWv6ypFslvTvv\niorkXMPM+kGn8o5mdlV9OSJekPQ+4HhgHnB1W6tqIecaZtYvOpV3NNM4Xkn//hFwTUT8KzC+bRW1\nkHMNM+s3ncg7mmkcT0n6LnAGcLuk1zR5v0JFBBfcfgFHTz6a2YfNLrocM7OOmTJpCpcdfxmzFsxi\ny9YtLX/8huG4pD2AmcDDEbFe0n7AlIi4q+XVjFCtcLzdX/LeqxyOm/WGZj4UNNJwvG7jkDQhZRv7\n1Cnqmbwra5fqxrF642pmzJ/BknOWeBdVTm4cZr1j00ubOOK7R3DxMRfX3PMy0sYxdpjbbgROBpYD\ntd5K3px3ZZ3gXMPMLDOUd8yYP4Np+09r2XtiTx3H4eM1Rs9bHGa9p96u+3Yex/HxqstjJV2Sd0Wd\n4OM1zMx21urjO5r5dNQJkhZJ2l/SO4D7gQmtWLmkmZLWSVov6XN1xlyRbl8laWq9x/LxGmZmtbX6\n+I7hMg4AIuIsSWcCDwObgY9GxL+PdsWSxgBXAScATwFLJS2MiLUVY04C3hIRB0l6D9mBh9NrPZ5z\nDTOz+lqZdzSzq+pg4FPALcD/Bj6WPqI7WkcCj0fEhojYCtwEnFo15hTgeoCIeBDYW9KkWg/m4zXM\nzIbXquM7mtlVtRD4y4j4BHAcsB5YOuI17vAG4MmKy79M1zUac0CtB3OuYWbWWCvyjoa7qoD3RMTz\nABGxDfi6pB+OeI07NPvZnerEv+b9vvrfvrp9eWBggIGBgZFV1ecmTsw+WWVWRhMnwjOlOYKs+wwO\nDjI4OMjkVyaz8LGFI36cpj6OK2kKcCjwGtIbd0SMKmGRNB2YGxEz0+UvANsi4vKKMf8ADEbETeny\nOuC4iNhY9VhNf3WsmXUvf1y8tdr5cdy5wBXAlcAA8FWy7GG0lgEHSTpQ0niyc2FVt8CFwOxUx3Tg\nueqmYWZmndXMrqrTgcOA5RFxbgqnbxjtiiPiZUkXAncCY4B5EbFW0px0+3ciYpGkkyQ9TvaJrnNH\nu14zMxudZk5yuDQipkn6GTADeAFYFxFv7USBzfCuKrP+4F1VrdWOc1UNWSppInAN2e6lzcBP867I\nzMx6Q65zVUl6MzAhIla1r6T8vMVh1h+8xdFaLT+tejdx4zDrD24crdW2T1WZmZlVqts4JN2Rdk2Z\nmZltN9wWx7XAnZK+KGlcpwoyM7NyGzbjkLQn8JfAB4EfsON0HxER32h/ec1xxmHWH5xxtFa7Po67\nFdhEdqqRvYBtI6jNzMx6SN3GIWkm8A3gh8DUiBj5OXjNzKxn1N1VJele4D9GxKOdLSk/76oy6w/e\nVdVaLT+OQ130btxFpZrZKLhxtFbLj+PwO7GZmdXiAwDNzCwXNw4zM8vFjcPMzHJx4zAzs1zcOMzM\nLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjMzCwXNw4zM8vFjcPM\nzHJx4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjM\nzCwXNw4zM8vFjcPMzHJx4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3D\nzMxyGVvESiXtA9wMvAnYAHwkIp6rMW4D8ALwCrA1Io7sYJlmZlZDUVscnwfujoiDgXvS5VoCGIiI\nqW4aZmblUFTjOAW4Pi1fD/zxMGPV/nLMzKxZRTWOSRGxMS1vBCbVGRfAjyUtk3R+Z0ozM7PhtC3j\nkHQ3sG+Nm75YeSEiQlLUeZijI+JpSa8H7pa0LiLurTVw7ty525cHBgYYGBgYUd1mZr1qcHCQwcHB\nUT+OIuq9Z7ePpHVk2cWvJe0HLI6ItzW4zyXApoj4eo3boojnYWadJYH/q7eOJCIidxxQ1K6qhcDZ\nafls4LbqAZJ2l7RXWt4D+ACwumMVmplZTUVtcewD/HfgjVR8HFfS/sA1EXGypN8Hbkl3GQvcEBGX\n1nk8b3GY9QFvcbTWSLc4CmkcrebGYdYf3Dhaq9t2VZmZWZdy4zAzs1zcOMzMLBc3DjMzy8WNw8zM\ncnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjMzCwXNw4zM8vFjcPMzHJx4zAzs1zcOMzM\nLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjMzCwXNw4zM8vFjcPM\nzHJx4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjM\nzCwXNw4zM8vFjcPMzHJx4zAzs1zcOMzMLBc3DjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3D\nzMxyceMwM7NcCmkckmZJelTSK5LePcy4mZLWSVov6XOdrNHMzGoraotjNXAasKTeAEljgKuAmcCh\nwFmSDulMee0xODhYdAkNdUON4DpbrVvqhMGiC2hK98znyBTSOCJiXUT8vMGwI4HHI2JDRGwFbgJO\nbX917dMNv0zdUCO4zlbrljrdOMqhzBnHG4AnKy7/Ml1nZmYFGtuuB5Z0N7BvjZsujogfNvEQ0eKS\nzMysBRRR3PuzpMXARRGxvMZt04G5ETEzXf4CsC0iLq8x1k3GzGwEIkJ579O2LY4c6hW9DDhI0oHA\nr4AzgLNqDRzJEzczs5Ep6uO4p0l6EpgO3C7pjnT9/pJuB4iIl4ELgTuBNcDNEbG2iHrNzGyHQndV\nmZlZ9ynzp6pepZmDASVdkW5fJWlqp2tMNQxbp6QBSc9LWpF+vlRAjddK2ihp9TBjyjCXw9ZZhrlM\ndUyWtDgd1PqIpE/VGVfonDZTZxnmVNJrJD0oaaWkNZIurTOusPlspsYyzGVFLWNSDTU/mJR7LiOi\n9D/AGOBx4EBgHLASOKRqzEnAorT8HuCBktY5ACwseD6PAaYCq+vcXvhcNlln4XOZ6tgXeFda3hN4\nrKS/n83UWZY53T39OxZ4AHhfCeezUY2lmMtUy2eAG2rVM5K57JYtjmYOBjwFuB4gIh4E9pY0qbNl\nNn3QYqFhfkTcCzw7zJAyzGUzdULBcwkQEb+OiJVpeROwFti/aljhc9pknVCOOd2SFseT/UH2TNWQ\nMsxnoxqhBHMp6QCy5vA9ateTey67pXE0czBgrTEHtLmuas3UGcBRaZNwkaRDO1Zd88owl80o3Vym\nTwFOBR6suqlUczpMnaWYU0m7SFoJbAQWR8SaqiGFz2cTNZZiLoFvAn8BbKtze+657JbG0WyCX91N\nO538N7O+5cDkiDgMuBK4rb0ljVjRc9mMUs2lpD2BfwY+nf6i32lI1eVC5rRBnaWY04jYFhHvInsD\nO1bSQI1hhc5nEzUWPpeS/gj4PxGxguG3fnLNZbc0jqeAyRWXJ5N1xeHGHJCu66SGdUbEi0ObuBFx\nBzBO0j6dK7EpZZjLhso0l5LGAf8D+MeIqPUGUYo5bVRnmeY01fA8cDtwRNVNpZhPqF9jSebyKOAU\nSU8ANwIzJM2vGpN7LrulcWw/GFDSeLKDARdWjVkIzIbtR50/FxEbO1tm4zolTZKktHwk2Ueia+0b\nLVIZ5rKhssxlqmEesCYi/q7OsMLntJk6yzCnkl4nae+0vBvwfmBF1bBC57OZGsswlxFxcURMjog3\nA2cC/xYRs6uG5Z7LMhw53lBEvCxp6GDAMcC8iFgraU66/TsRsUjSSZIeBzYD55axTuB04AJJLwNb\nyF7MjpJ0I3Ac8DplB2JeQvYpsNLMZTN1UoK5TI4GPgY8LGnozeNi4I1QqjltWCflmNP9gOsl7UL2\nx+0PIuKekv1/b1gj5ZjLagEw2rn0AYBmZpZLt+yqMjOzknDjMDOzXNw4zMwsFzcOMzPLxY3DzMxy\nceMwM7Nc3DjMGlB2OvJfSJqYLk9Ml9/Ygse+b/QVmnWWj+Mwa4KkvwDeEhFzJH0H+EVEXF50XWZF\n8BaHWXO+CUyX9Odk5//5Wq1Bkm6VtEzZFyWdn657k6SfS3ptOqPqvZJOSLdtSv/uJ2mJsi/bWS3p\nfR16Xma5eYvDrEmSPgjcAbw/Iu6pM2ZiRDybzl/0EHBsuvxx4IPAUuD3I+KCNP7FiNhL0kXArhHx\nlXR+oz3qnGHXrHDe4jBr3onAr4Apw4z5dPqOhvvJzjJ6MEBEzAP+AzAH+GyN+z0EnCvpEuCdbhpW\nZm4cZk2Q9C7gBOC9wH+RtG+NMQPA8cD09D0NK4Fd0227kzWSAPaqvm/6tsNjyE5nfZ2kP2vPMzEb\nPTcOswbSrqOryb746Engb6mdcUwAno2I30p6GzC94rbLgR+QneH3mhrreCPwm4j4HtlXfE5t7bMw\nax03DrPGzgc2VOQa3wYOkXRM1bgfAWMlrQEuJdtdhaTjgMOByyPin4CXJJ2d7jMUMv4hsFLScuAj\nwLfa9mzMRsnhuJmZ5eItDjMzy8WNw8zMcnHjMDOzXNw4zMwsFzcOMzPLxY3DzMxyceMwM7Nc3DjM\nzCyX/w/0OTZCPXzVtAAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x9e8f1d0>"
       ]
      }
     ],
     "prompt_number": 126
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.14 page number 255"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "l = 1.0 #l - The length of the beam\n",
      "p = 1.0 #W - The total load applied\n",
      "#since it is triangular distribution \n",
      "l_com = 0.66*l#l - The distance of force of action from one end\n",
      "#F_Y = 0\n",
      "#R_A + R_B = p\n",
      "#M_a = 0 Implies that R_B = 2*R_A\n",
      "R_A = p/3.0\n",
      "R_B = 2.0*p/3\n",
      "\n",
      "#Taking Many sections \n",
      "\n",
      "#Section 1----1\n",
      "l = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
      "M = [0,0,0,0,0,0,0,0,0,0,0]\n",
      "v = [0,0,0,0,0,0,0,0,0,0,0]\n",
      "for i in range(10):\n",
      "    v[i] = p*(l[i]**2) - p/3.0\n",
      "    M[i] = p*(l[i]**3)/(3.0)- p*l[i]/3.0\n",
      "\n",
      "v[10] = R_B #again concluded Because the value is tearing of  \n",
      "\n",
      "\n",
      "#Graph\n",
      "import numpy as np\n",
      "values = M\n",
      "y = np.array(values)\n",
      "t = np.linspace(0,1,11)\n",
      "poly_coeff = np.polyfit(t, y, 2)\n",
      "import matplotlib.pyplot as plt\n",
      "plt.plot(t, y, 'o')\n",
      "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
      "plt.show()\n",
      "import numpy as np\n",
      "values = v\n",
      "y = np.array(values)\n",
      "t = np.linspace(0,1,11)\n",
      "poly_coeff = np.polyfit(t, y, 2)\n",
      "import matplotlib.pyplot as plt\n",
      "plt.plot(t, y, 'o')\n",
      "plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
      "plt.show()\n",
      "\n",
      "\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEACAYAAABcXmojAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcjfX///HHyzAz2ZNIKDUYFZUWKuLIMsMISYkSfSrV\n52PGL30kVKaF1k+ytEoiWSplG2UmmfBNSYnIWKYIMUW2LGOW1+8Pp4npjBlz5pzrnDOv++3m1rW8\nr+s8u24z5zXv630toqoYY4wxAGWcDmCMMSZwWFEwxhiTx4qCMcaYPFYUjDHG5LGiYIwxJo8VBWOM\nMXm8LgoiEisiaSKySUSGFNBmrHv9ahFp6l5WV0QWi8g6EVkrIgneZjHGGOMdr4qCiIQB44FY4GKg\nl4hclK9NJ6C+qjYA+gOvuVdlAQ+q6iXANcB/8m9rjDHGv7ztKTQDNqvqFlXNAmYAXfO16QJMBlDV\nr4GqIlJTVXep6vfu5X8C64FzvcxjjDHGC94WhdrAthPmt7uXFdamzokNRKQe0BT42ss8xhhjvOBt\nUSjqMzKkoO1EpCLwITDQ3WMwxhjjkLJebr8DqHvCfF2O9wRO1aaOexkiUg6YBUxV1dmePkBE7OFM\nxhhTDKqa/w/yQnnbU1gJNBCReiISDvQE5uZrMxe4E0BErgH2qWqGiAgwEfhRVV8+1Yeoqv1TZcSI\nEY5nCJR/dizsWNixOPW/4vKqp6Cq2SIyAFgIhAETVXW9iNznXv+Gqi4QkU4ishk4BNzl3rwFcAew\nRkRWuZcNVdVPvclkjDGm+Lw9fYSqfgJ8km/ZG/nmB3jYbhl285wxxgQU+1IOIi6Xy+kIAcOOxd/s\nWPzNjoX3xJtzT/4gIhroGY0xJtCICOrAQLMxxpgQYkXBGGNMHisKxhhj8lhRMMYYk8eKgjHGmDxB\nURTW/77e6QjGGFMqBEVReOKLJ5yOYIwxpUJQFIXFWxaz9re1TscwxpiQFxRFYfB1g623YIwxfhAU\nReGBqx5g2S/LWL1rtdNRjDEmpAVFUagQXoGHr3uYxC8SnY5ijDEhLSiKAsD9V93Pih0r+G7nd05H\nMcaYkBU0ReGMcmcwpMUQElMTnY5ijDEhK2iKAkD/K/vz3c7vWPnrSqejGGNMSAqqohBZNpJh1w9j\nROoIp6MYY0xICqqiAHB307v5IeMHvtr+ldNRjDEm5ARdUYgoG8Hw64fb2IIxxviA10VBRGJFJE1E\nNonIkALajHWvXy0iTU9nW0/uanoXabvT+HLbl97GN8YYcwKvioKIhAHjgVjgYqCXiFyUr00noL6q\nNgD6A68VdduChIeF82irR21swRhjSpi3PYVmwGZV3aKqWcAMoGu+Nl2AyQCq+jVQVUTOKeK2AMTE\nPEpS0pKTlvW9rC/pf6SzZOsST5sYY0yplJS0hJiYR4u9vbdFoTaw7YT57e5lRWlzbhG2BSA5+WkG\nDlx4UmEoF1aOx1o9Zr0FY4xxS0pawsCBC0lOfrrY+/C2KGgR24mXn0N6+kjGjUs5aVmfy/qwbf82\nFv+82NvdG2NM0Bs7Npn09JFe7cPborADqHvCfF2O/8V/qjZ13G2Ksq1bIpBIWtpSUlNT85aWLVOW\nx1s/zojUEagWtT4ZY0zoSU1NZcOGZfz1fVlc3haFlUADEaknIuFAT2BuvjZzgTsBROQaYJ+qZhRx\nW7dEIJFGja7H5XKdtKZ3k95kHMpg0c+LvPxfMcaY4OVyuYiObomjRUFVs4EBwELgR2Cmqq4XkftE\n5D53mwXATyKyGXgD+Pepti3os6KihhEf3/4fy8uWKcuI1iOst2CMKfUSEjoQFTXcq31IoH+RiojG\nxDxKfHx74uJaeWyTk5tDk9eaMDpmNDH1Y/yc0BhjAkdS0hLGjUth4cKnUdXTHs8NiqJQlIwz185k\n9FejWX73ckS8Htc2xpigJiLFKgpB95iLgtxyyS38eexPPtn8idNRjDEmaIVMUSgjZUh0JdrYgjHG\neCFkigJA94u6cyznGPM3znc6ijHGBKWQKgplpAyJra23YIwxxRVSRQGgW6NuAMzZMMfhJMYYE3xC\nriiICE+4nmBE6ghyNdfpOMYYE1RCrigAdG7YmfCwcD5a/5HTUYwxJqiEZFH4q7eQmJpovQVjjDkN\nIVkUADrW70jF8Ip8sO4Dp6MYY0zQCNmikNdb+CKRnNwcp+MYY0xQCNmiANAhqgPVzqjGzHUznY5i\njDF+s2XflmJvG9JF4a/ewhNfPEF2brbTcYwxxi/+s+A/xd42pIsCQNsL2lKzQk2m/zDd6SjGGONz\nyenJbNyzsdjbh3xREBGebPOk9RaMMSEvOzebQQsH8UL7F4q9j5AvCgCuei7qVqnLu6vfdTqKMcb4\nzNur3qZ6+ep0je5a7H2EzPsUCrNk6xL6ze7HhgEbKBdWrgSSGWNM4DiQeYDo8dEk9U7iilpX2PsU\nCtPq/FZEVYti8urJTkcxxpgS98zSZ4iJiuGKWld4tZ9S01MA+HLbl/Se1ZuN8RsJDwsvkX0aY4zT\ntuzbwpVvXsma+9dQu3JtwKE3r4lINRFJEZGNIpIsIlULaBcrImkisklEhpyw/AURWS8iq0XkIxGp\n4k2ewlxX9zoaVW/EpFWTfPkxxhjjV0MXDSWhWUJeQfCGt6ePHgFSVLUhsMg9fxIRCQPGA7HAxUAv\nEbnIvToZuERVLwM2AkO9zFOoJ1xPMHLpSDKzM339UcYY43PLty1n6dal/Pe6/5bI/rwtCl2Av07S\nTwa6eWjTDNisqltUNQuYAXQFUNUU1bwn1n0N1PEyT6Ga12lOk5pNmLhqoq8/yhhjfEpVGZQ8iJE3\njKRCeIUS2ae3RaGmqma4pzOAmh7a1Aa2nTC/3b0sv38BC7zMUyRPuJ5g1NJRHM0+6o+PM8YYn5i5\nbibHco7R57I+JbbPsoU1EJEU4BwPq4afOKOqKiKeRoQLHSUWkeHAMVWd5ml9YmJi3rTL5cLlchW2\ny1O66tyruKLWFbz57ZskNE/wal/GGOOEI1lHeOSzR5jcbTJlpAypqamkpqZ6vV+vrj4SkTTApaq7\nRKQWsFhVG+Vrcw2QqKqx7vmhQK6qPuee7wfcC7RV1X/86V6SVx+daNXOVcRNiyM9IZ0zyp1R4vs3\nxhhfenbZs6zYsYKPenp+mZhT9ynMBfq6p/sCsz20WQk0EJF6IhIO9HRvh4jEAoOBrp4Kgi81rdWU\na+pcw+srX/fnxxpjjNcy/szgxS9f5Ll2z5X4vr3tKVQD3gfOA7YAt6rqPhE5F5igqnHudh2Bl4Ew\nYKKqPuNevgkIB/5w73K5qv4732f4pKcAsCZjDTFTY9gcv7nEBmmMMcbX7pt3HxXCK/BSzEsFtilu\nT6FU3bzmyS0f3ELz2s1L7HIuY4zxpR8yfqDtlLZsGLCBM884s8B2VhSKae1va2k7pS3pCelUDK/o\ns88xxhhvqSoxU2O4seGNxDePP2Vbe/ZRMTWu0Zg29drwyopXnI5ijDGn9OnmT9m6fyv3X3W/zz6j\n1PcUANb/vp7W77QmPSGdShGVfPpZxhhTHNm52Vz62qU81+45boy+sdD21lPwwkVnX0T7qPaMWzHO\n6SjGGOPRm9++Sa1KtejcsLNPP8d6Cm4bdm+g5aSWbI7fTJVInz6XzxhjTsu+o/uIHh/NwjsWcvk5\nlxdpG+speCm6ejQd63dkzNdjnI5ijDEnGbV0FDc2vLHIBcEb1lM4waY9m7h24rVsTthM1UiPTwE3\nxhi/+mnvT1w94WrWPrCWWpVqFXk76ymUgAZnNaBLdBdGLx/tdBRjjAFgyGdDePCaB0+rIHjDegr5\n/FWVN8VvotoZ1fz2ucYYk9+yX5bRe1Zv0gakUb5c+dPa1noKJeTCMy+ke6PuvLS84NvHjTHG13I1\nl0ELBzGq7ajTLgjesKLgwfBWw3lt5WvsPrzb6SjGmFJq+g/TAejdpLdfP9dOHxXg/vn3c2bkmbTM\n7MjYsclkZpYlIiKbhIQOxMW18nseY0zpcTjrMI3GN2LazdNoeV7LYu2juKePCn3JTmk17PphNB7X\nhOkzjrB13ct5y9PTj79byAqDMcZXXlr+Es3rNC92QfCGnT4qwHlVzqPq9gZsPbfcScvT00cyblyK\nQ6mMMaFu58GdjP5qtE/elVAUVhROofbPreCKiVAh46TlR4+GOZTIGBPqHlv8GHc3vZsLz7zQkc+3\nonAKlSkPq/tAy5MrdmRkjkOJjDGhbPWu1czbOI9h1w9zLIMVhVNISOjA+duBy9+BytsBiIoaRnx8\ne0dzGWNCj6oyKHkQI1qPcPSJCjbQfAp/DSYP/HgV+/q048rNPUiIj7VBZmNMiZu/cT47D+6k/5X9\nHc1hl6QWQWZ2Jpe/cTlPt3mamy++2dEsxpjQk5WTRePXGjM6ZjSdGnQqkX36/Y5mEakmIikislFE\nkkXEY39HRGJFJE1ENonIEA/rHxKRXBEJ2GdKRJSN4K0b3yLh0wT2HtnrdBxjTIh5feXr1Ktaj471\nOzodxasxhUeAFFVtCCxyz59ERMKA8UAscDHQS0QuOmF9XaA9sNWLHH7R4rwWdIvuxuCUwU5HMcaE\nkL1H9vLUkqd4sf2LiJz2H/Ylzpui0AWY7J6eDHTz0KYZsFlVt6hqFjAD6HrC+peAh73I4FfPtHuG\n5PRkPv/5c6ejGGNCxFNLnuKmRjfRpGYTp6MA3hWFmqr61wX8GUBND21qA9tOmN/uXoaIdAW2q+oa\nLzL4VeWIyrwa9yr95/XncNZhp+MYY4Lcpj2bmLx6Mk+2edLpKHlOefWRiKQA53hYNfzEGVVVEfE0\nGuxxhFhEzgCGcfzUUd7ignIkJibmTbtcLlwuV4GZfa1zw85MXTOVJ1Kf4Ln2ztxxaIwJDUM+G8J/\nr/0vNSt6+pv69KSmppKamur1fop99ZGIpAEuVd0lIrWAxaraKF+ba4BEVY11zw8FcoEkjo9D/PXn\ndh1gB9BMVX/Ltw/Hrz7KL+PPDC59/VI+uf0Trqh1hdNxjDFB6IstX9B3dl/SBqQRWTayxPfvxPsU\n5gJ93dN9gdke2qwEGohIPREJB3oCc1V1rarWVNULVPUCjp9WuiJ/QQhUNSvW5Pl2z3PP3HvIzs12\nOo4xJsjkai6DkgfxbLtnfVIQvOFNUXgWaC8iG4Eb3POIyLkikgSgqtnAAGAh8CMwU1XXe9hXYHUF\niuDOy+7krPJn2ct4jDGn7d3V7xIeFk7PS3o6HeUf7OY1L/y09yeaTWjGV/d8Rf1q9Z2OY4wJAoeO\nHSJ6fDQf3PIB19a91mefY6/jdMCFZ17IsOuH0X9efwK1cBljAsuLX75Iy/Na+rQgeMOKgpcSmidw\n8NhB3l71ttNRjDEBbseBHYxdMZZn2z3rdJQC2emjErB612rav9ue1fevplalWk7HMcYEqH6z+1Gr\nYi2eafeMzz+ruKePrCiUkGGLhrHpj018cMsHTkcxxgSgb3/9lrhpcWyM30jliMo+/zwbU3DY460f\nZ03GGmaneboy1xhTmqkqDyU/xBOuJ/xSELxhRaGERJaN5M3ObzJgwQD2H93vdBxjTACZnTabPUf2\ncPcVdzsdpVB2+qiE3TfvPkSE1zu/7nQUY0wAOJZzjItfuZhX416lQ1QHv32unT4KEM+3f575G+ez\nZOsSp6MYYwLAKyteoeFZDf1aELxhRaGEVYmswvhO47l33r0czT7qdBxjjIP2HN7DqGWjeLHDi05H\nKTIrCj7QrVE3mtRowlNfPOV0FGOMg5784kluufgWLj77YqejFJmNKfjIzoM7uez1y0jpk8Jl51zm\ndBxjjJ9t2L2BFm+3YP1/1nN2hbP9/vk2phBgalWqxTNtn+GeefYkVWNKo8EpgxnSYogjBcEbVhR8\n6F9N/0Wl8EqM/Xqs01GMMX606KdFrP1tLfHN452OctqsKPiQiPDmjW8yaukoftr7k9NxjDF+kJOb\nw0PJD/Fcu+cC7l0JRWFFwcfqV6vPwy0e5v7599uTVI0pBd75/h0qhlekx8U9nI5SLFYU/GDQtYPY\nfXg3U1ZPcTqKMcaHdh/ezWOLH+OlmJcQOe0x3oBgVx/5yXc7vyN2aiw/PPBDibyk2xgTWFSV5mNa\n8NuPSr2NMUREZJOQ0IG4uFaO5Cnu1UdlfRHG/NMVta6g3+X9+H8L/x/Tb57udBxjTAm7b1ICa9K3\nkvn2z2zNCQcgPX04gGOFoTjs9JEfJboS+WbHN8zfON/pKMaYErTy15W889PbZL63FNwFASA9fSTj\nxqU4mOz0FbsoiEg1EUkRkY0ikiwiVQtoFysiaSKySUSG5FsXLyLrRWStiDxX3CzBony58rx545s8\nkPQABzIPOB3HGFMCDmQe4LYPb6PBhk6w98J/rD96NMyBVMXnTU/hESBFVRsCi9zzJxGRMGA8EAtc\nDPQSkYvc69oAXYBLVbUxEDwPB/HCDRfcQIcLOzBs0TCnoxhjvKSq3D//ftpe0JY6B6I9tomMzPFz\nKu94UxS6AJPd05OBbh7aNAM2q+oWVc0CZgBd3eseAJ5xL0dVf/ciS1B5scOLfLT+I/7vl/9zOoox\nxguTvp/Emow1jI4dTUJCB6Kihp+0PipqGPHx7R1KVzzeDDTXVNUM93QG4OmSmtrAthPmtwPN3dMN\ngFYiMgo4CvxXVVd6kSdonHnGmYztOJZ7593LqvtWEVE2wulIxpjT9OPvPzLksyGk9k2lfLnyeYPJ\n48Y9xtGjYURG5hAfHxtUg8xQSFEQkRTgHA+rTiqHqqoi4um60VNdS1oWOFNVrxGRq4H3gX+ekAMS\nExPzpl0uFy6X61Sxg8LNF93M1DVTGbV0FE+0ecLpOMaY03Ak6wg9P+zJM22f4ZIal+Qtj4tr5VgR\nSE1NJTU11ev9FPs+BRFJA1yquktEagGLVbVRvjbXAImqGuueHwrkqupzIvIJ8KyqfuFetxlorqp7\n8u0jJO5T8GTHgR1c/sblLO67mMY1GjsdxxhTRPfPv5/9mfuZ1n1awN6k5sRTUucCfd3TfQFPb6xf\nCTQQkXoiEg70dG+Hu/0NACLSEAjPXxBCXe3KtXm6zdPcM/cecnKDazDKmNLqg3Uf8NlPn/FG5zcC\ntiB4w5ui8CzQXkQ2cvzL/VkAETlXRJIAVDUbGAAsBH4EZqrqevf2bwMXisgPwHTgTi+yBK17r7yX\n8LBwXvnmlQLbJCUtISbmUVyuRGJiHiUpyV71aYwTft77M/9Z8B9m9JhB5YjKTsfxCXvMRQD462Uc\n3/b/lvOrnn/SuqSkJQwcuJD09JF5y6KihjNmTEzQDWAZE8yycrJoOaklPS/pyaBrBzkdp1D2kp0g\nFl09mkHXDuKBpAf+8STVsWOTTyoIEJx3SRoT7B79/FHOLn82D17zoNNRfMqKQoAYfN1gth/YzrQf\npp20PDPT8wViwXaXpDHB7NPNnzJt7TTe6fZOSI4jnMiKQoAoF1aOt7q8xUPJD/H7ob/v44uI8Pwq\nz2C7S9KYYLXz4E7umnMXU2+aSvXy1Z2O43NWFAJIs9rN6N2kN4OS/z5fGSp3SRoTjHJyc7jj4zu4\n78r7aF2vtdNx/MIGmgPMoWOHaPxaY16Le43Y+rHA8cHmceNSTrhLsr0NMhvjByOXjCTlpxQW3bmI\nsDLBdcq2uAPNVhQCUHJ6Mv3n9Wftv9dSMbyi03GMKZWW/bKMHu/34Nv+31K7cm2n45w2u/oohHSI\n6kDreq159PNHnY5iTKn0x5E/6D2rNxO7TAzKguAN6ykEqD2H99D4tcbM7jmb5nWaF76BMaZEqCrd\nZnYj6swoXop5yek4xWY9hRBzVvmzGB0zmnvm3cOxnGNOxzGm1Bi/Yjw7Duzg2XbPOh3FEVYUAljP\nS3pyfpXzeW5ZyL+UzpiAsGrnKp5c8iQzeswgPCy88A1CkBWFACYivBr3KmO+HsP639cXvoExptgO\nZh6k54c9GRs7lvrV6jsdxzE2phAEXlnxCtPXTmfJXUsoI1bHjfGFOz++k/CwcN7q8pbTUUqEjSmE\nsAeufoBczeWVFQU/SdUYU3yTv5/Myl9XMiZ2jNNRHGc9hSCxYfcGrp90PTN6zOCGC25wOo4xIWPD\n7g20nNSSz+/8nCY1mzgdp8RYTyHERVePZmaPmdz24W2s/W2t03GMCQlHs49y64e38nSbp0OqIHjD\nikIQaXNBG0bHjCZuWhy/HvzV6TjGBL3/Jv+X6LOi6X9lf6ejBAzPz2U2Aev2S29n6/6txE2LY0m/\nJVSKqOR0JGOC0kfrP2LBpgV8d993If847NNhYwpBSFW5f/79bN2/lXm95lEurJzTkYwJKlv3beXq\nCVczr9e8kH1igI0plCIiwitxrxBWJszj29qMMQXLysmi16xeDL5ucMgWBG8UuyiISDURSRGRjSKS\nLCJVC2gXKyJpIrJJRIacsLyZiKwQkVUi8o2IXF3cLKVR2TJlmdljJqt2rWLk0pGFb2CMAWBE6giq\nRFbhoesecjpKQPKmp/AIkKKqDYFF7vmTiEgYMB6IBS4GeonIRe7VzwOPqWpT4HH3vDkNFcMrMr/X\nfN767i2mrJ7idBxjAl5KegpTVk9hcrfJdiNoAbw5Kl2Aye7pyUA3D22aAZtVdYuqZgEzgK7udTuB\nKu7pqsAOL7KUWrUq1WLB7QsYnDKYRT8tcjqOMQEr488M+s7uy5SbplCjQg2n4wQsb4pCTVXNcE9n\nADU9tKkNbDthfrt7GRzvWfxPRH4BXgCGepGlVLv47It5v8f79JrVix8yfnA6jjEBJ1dz6fNxH+5u\nerfd/FmIU16SKiIpwDkeVp300mBVVRHxNNp5qhHQiUCCqn4sIrcAbwMeXzycmJiYN+1yuXC5XKeK\nXSq1rteal2NfJm5aHMvvXl7qXgxizKk8/3/PcyT7CCNcI5yO4jOpqamkpqZ6vZ9iX5IqImmAS1V3\niUgtYLGqNsrX5hogUVVj3fNDgVxVfU5EDqhqZfdyAfapapV8H2OXpJ6mZ5c9y4y1M1hy1xIqR1R2\nOo4xjlu+bTndZnZj5b0rqVulrtNx/MaJS1LnAn3d032B2R7arAQaiEg9EQkHerq3A9gsIq3d0zcA\nG73IYtyGtBjCtXWupcf7PcjKyXI6jjGO2ntkL71m9WLCjRNKVUHwhjc9hWrA+8B5wBbgVlXdJyLn\nAhNUNc7driPwMhAGTFTVZ9zLrwJeASKAI8C/VXWVh8+xnsJpys7NptuMbtSoUIOJXSba3ZqmVFJV\nenzQgzqV6jCmY+l7+mlxewp2R3OI+vPYn7jecdEluguPt37c6TjG+N2r37zKW9+9xfK7lxNRNsLp\nOH5ndzSbk1QMr8j83vOZ9P0kJn8/ufANjAkhq3etZkTqCGb2mFkqC4I37IF4IeyciuewoPcCXJNd\nnFvpXNpHeby4y5iQcujYIXp+2JPRMaNpcFYDp+MEHTt9VAos2bqEHu/34LM7P+PSmpc6HccYn7pr\nzl0ATOo6yeEkzrLTR6ZArc5vxdiOY4mbFsf2A9udjmOMz0xdM5Xl25YzruM4p6MELTt9VErc1vg2\nftn/C53e68TSu5ZSJfIft4QYE9Q27N7Agwsf5LM+n1ExvKLTcYKW9RRKkcHXDeb6866nxwc9OJZz\nzOk4xpSYH3//kXbvtuP5ds9z2TmXOR0nqNmYQimTnZtN95ndqXZGNSZ1nWT3MJig9+2v39J5emde\naP8Cd1x6h9NxAobdp2CK7NCxQ7gmu4hrEEeiK7HI2yUlLWHs2GQyM8sSEZFNQkIH4uJa+S6oMYVY\nunUpN79/M2/e+CbdGnl6UHPpVdyiYGMKpVCF8ArM7zWfaydey/lVzueupncVuk1S0hIGDlxIevrf\nL/RJTz/+XEQrDMYJn27+lDs/vpNpN0+j3YXtnI4TMmxMoZSqWbEmn9z+CUMXDSU5PbnQ9mPHJp9U\nEADS00cyblyKryIaU6APf/yQvrP7Mue2OVYQSpgVhVIsuno0H976IXd8dAerd60+ZdvMTM+dyqNH\nw3wRzZgCTVo1iYRPEki+I5lr617rdJyQY0WhlGt5XkvGdxpP5+md2bZ/W4HtIiKyPS6PjMzxVTRj\n/mHMV2NI/CKRxX0X21VGPmJFwXDrJbcysPlAOk3rxP6j+z22SUjoQFTUSe9WIipqGPHx9ugM43uq\nylNfPMX4b8azpN8SoqtHOx0pZNnVRwY4/ksX/0k8abvTWHD7AsLDwv/RJilpCePGpXD0aBiRkTnE\nx7e3QWbjc6rK4JTBJKcnk9wnmXMqenoZpMnPLkk1XsvJzaH7+92pGlmVd7q+Y/cwGMfl5ObwQNID\nrMlYw4LbF1DtjGoe29nl0v9kRcGUiMNZh2kzuQ0xUTE82eZJp+OYUiwrJ4s+H/fh98O/M7vnbCpF\nVPLYztPl0lFRwxkzJqZUFwZ7IJ4pEeXLlWder3m898N7TPxuotNxTCl1JOsIN828icNZh0nqnVRg\nQQC7XLqkWVEw/1CjQg0W9F7A8M+Hs3DzQqfjmFLmQOYBOr7XkSqRVZh16ywiy0aesr1dLl2yrCgY\nj6KrRzPr1ln0+bgPq3b+49XZxvjEnsN7aDelHY2qN+Ldm96lXFi5Qrexy6VLVrGLgohUE5EUEdko\nIskiUrWAdm+LSIaI/FCc7Y1zWpzXglfjXuXG6Tfyy/5fnI5jQtzOgztp/U5r2tRrw2txr1FGivb1\nZJdLl6xiDzSLyPPAblV9XkSGAGeq6iMe2l0P/AlMUdUmxdjeBpod9tLyl3h71dss+9cyqkZa7TYl\nb8u+LbSb0o5/Nf0XQ1sOPe0r3+xy6X/y+9VHIpIGtFbVDBE5B0hV1UYFtK0HzMtXFIq0vRUF56kq\nAz8dyNrf1vLpHZ96vIfBmOJK251Gh3c78HCLhxnQbIDTcUKGE1cf1VTVDPd0BlDTz9sbPxERRseM\npkpkFe6eeze5mut0JBMivtv5HW0mt+HpG562ghAgTvnobBFJATzdPnjSCTxVVREp9p/zhW2fmJiY\nN+1yuXC5XMX9KFNMYWXCeK/7e3R6rxOxU2OZctMUu7PUeGXZL8voPrM7b3R+g5suusnpOEEvNTWV\n1NRUr/fJXzH9AAAO4klEQVTj7ekjl6ruEpFawOJinD4qdHs7fRRYsnOzefKLJ5nw3QTe7vI2HRt0\ndDqSCUILNy+kz8d9eK/7e7SPsgFhX3Di9NFcoK97ui8w28/bGweULVOWJ9s8yfSbp9N/fn8GLRxE\nZnam07FMEJn14/FLnT/u+bEVhADkTU+hGvA+cB6wBbhVVfeJyLnABFWNc7ebDrQGzgJ+Ax5X1UkF\nbe/hc6ynEKD2HN7DPfPuYeu+rUy/ebo9udIUavL3k3lk0SMs6L2AprWaOh0npNmzj4wjVJU3vn2D\nxxY/xvPtnqff5f3sQXrGo3Ffj+OFL18guU8yjap7PNNsSpAVBeOotb+tpdesXjSu0ZjX416nSmQV\npyOZAKGqjFo6iknfT+KzOz+jXtV6TkcqFeyBeMZRjWs0ZsU9K6gWWY3L37ic5duWOx3JBABVZchn\nQ5ixbgZL71pqBSEIWE/BlLjZabO5b/59JDRL4JGWjxBWxh5MVhrl5ObwnwX/YdWuVXxy+ycFvgvB\n+IadPjIBZfuB7dzx0R2ICFNvmkrtyrWdjmT8KCsni76z+7Lzz53MvW3uKR99bXzDTh+ZgFKnch0W\n3bmIthe05Yo3r2BO2hynIxk/OZJ1hO7vd+fgsYMs6L3ACkKQsZ6C8bkvt33J7R/dTqf6nXixw4uc\nUe4MpyMZHzmYeZCuM7pSs2JNpnSbUqRHXxvfsJ6CCVjX1b2OVfetYveR3TR7qxnrflvndCTjA38c\n+YN277ajfrX6TL1pqhWEIGVFwfhF1ciqzLh5Bg9e8yCuyS5eX/k61gMMHbv+3IXrHRetzmvFG53f\nsIsLgpidPjJ+l7Y7jV6zenFB1Qt4q8tbdlVKEMvVXGb9OIuHP3uYu5vezfDrh9vNiwHCrj4yQSUz\nO5NHPnuEWetnMbX7VFqdX7QXoiQlLWHs2GQyM8sSEZFNQkKHUv8yFSeoKgvTFzL88+EIwqi2o+gQ\n1cHpWOYExS0Kp3x0tjG+ElE2gtGxo2kf1Z6eH/ak/xX9eaz1Y5QtU/CPZFLSEgYOXEh6+si8Zenp\nx5/iboXBf5b9soxhi4bx++HfebrN03S/qLv1DkKI9RSM43Ye3Mmds+/kSNYR3uv+HudXPd9ju5iY\nR0lOftrD8sf49NOnfB2z1Pt+1/cM/3w4635bR6IrkTsuveOURdw4y64+MkGrVqVaLLxjIV2ju3L1\nhKv5YN0HHttlZnr+Ajp61AY1fWnjno3c9uFtdHyvIx3rd2TDgA30u7yfFYQQZUXBBIQyUobBLQaT\n1DuJoYuGcu/cezl07NBJbSIisj1uGxmZ44+Ipc62/du4d+69tHi7BZfVvIzN8ZsZ0GwAEWUjnI5m\nfMiKggkoV9e+mlX3rSIzJ5OrJlzF6l2r89YlJHQgKuqkN8ESFTWM+Hh7UUtJ+v3Q7wxaOIjL37ic\nsyuczcYBGxl6/VAqhFdwOprxAxtTMAFr6pqpPLjwQR5r9RjxzeIREZKSljBuXApHj4YRGZlDfHx7\nG2QuIfuP7ud/y//HK9+8Qu/GvRneari9hzuI2SWpJiRt/mMzvWf1pkaFGkzqOomzK5ztdKSQcyTr\nCONXjOeFL1+gU4NOJLoS7RHXIcAGmk1Iql+tPsv+tYxLzr6Ey9+4nEU/LXI6UsjIysni9ZWv02Bc\nA77e8TWp/VJ5p9s7VhBKOa96Cu73LM8EzufU71l+G4gDflPVJicsfwHoDBwD0oG7VHV/vm2tp2AA\nSElPod+cfvS5tA9PtXnKnq1TTDm5OcxYO4PHUx+nfrX6jLxhJFede5XTsUwJc+T0kYg8D+xW1edF\nZAhwpqo+4qHd9cCfwJR8RaE9sEhVc0XkWYD821tRMCf6/dDv9JvTjx9//5GbGt1E1+iutDivhV0e\nWQSqyryN8xj++XAqhVdiVNtRuOq5vN6v3WUemJwqCmlAa1XNEJFzgFRV9fhGbhGpB8w7sSjkW38T\ncLOq3pFvuRUFcxJVZXXGauakzWHOhjn8sv8X4hrG0TW6Kx2iOlAxvKLTEQPO5z9/zrBFwzicdZiR\nN4ykc8POJXIXsqe7zKOihjNmTIwVBoc5VRT2quqZ7mkB/vhr3kPbepy6KMwDpqvqtHzLrSiYU/pl\n/y/M3TCXORvm8PX2r2l1fiu6RHehS3SXUn/1zIodKxj++XB+3vszT7V5ip6Ne1JGSm4o0e4yD1w+\ne/aRiKQAnn6zTrpgXFVVRIr17S0iw4Fj+QuCMUVxXpXzGNBsAAOaDWDf0X18sukT5myYw5DPhhB9\nVjRdo7vStVFXLqp+Ual5Rs+639bx2OLHWLFjBY+3fpy7Lr/LJ2Mwdpd56Cm0KKhqgXcGiUiGiJyj\nqrtEpBbw2+kGEJF+QCegbUFtEhMT86ZdLhcul+t0P8aUElUjq9KrSS96NenFsZxjpG5JZe6GucRM\njSGybOTxAhHdlevqXheSz/z/ee/PjEgdwcL0hTx83cO81/09n77pzu4yDxypqamkpqZ6vZ+SGGje\no6rPicgjQFVPA83utvXId/pIRGKB/3F8XGJ3AdvZ6SPjNVVl1a5VeeMQOw7uoHPDznnjEOXLlXc6\nold2HtzJ00ueZsa6GcQ3i2fQtYOoHFHZ55/reUxhGGPGxNqYgsOcGlOoBrwPnMcJl6SKyLnABFWN\nc7ebDrQGzuJ4b+JxVZ0kIpuAcOAP9y6Xq+q/832GFQVT4rbs25I3DvHNjm9w1XPRNborN0bfSI0K\nNZyOV6hczWX34d3sOLCDmetmMuG7CfS7rB9Drx9K9fLV/ZrF7jIPTHZHszHFtPfIXhZsWsCcDXNI\nTk/mkhqX5J1miq4e7fc82bnZ7PpzF9sPbGfHgR1sP7D9+L+Df8//evBXKoZXpHbl2lxX5zqGtxpO\nncp1/J7VBC4rCsaUgMzsTFK3pDJnwxzmbphLxfCKdI3uSpfoLlxT55q8cYjiXpt/NPsovx789e8v\n+r+++A/+Pf3bod+oXr46dSrXoU7lOtSuVDtvuk7lOtSuXJvalWr7dKzABD8rCsaUMFXl253f5o1D\nZBzKoHODztT+sz5Tn9zLzxufz2sbFTWcZ166nsbXnn/8y/3g33/hnzh9IPMA51Y69x9f9idOn1Px\nHLtb23jNioIxPvbT3p+Yu2EuT77/Mnsj9sK2FlAmGypvh0o7CCt3hKgaF/z9V32l43/Vn/jFf3aF\ns0v0PgFjCmJFwRg/cbkS+WJFAtRLhazycKAOHKhDq+aj+SL1CafjGQP48OY1Y8zJIiKy4Ug1WN/9\npOVnROb6NYc9c8j4ghUFY05TQkIH0tOH/+Pa/Pj4WL9l8HR/QHr68YcMWGEw3rDTR8YUg9PX5tsz\nh0xh7PSRMX4UF9fK0b/I7ZlDxlfsMghjgpA9c8j4ihUFY4JQQkIHoqJOelCxe1yjwOdXGlMkNqZg\nTJByelzDBDa7T8EYY0ye4hYFO31kjDEmjxUFY4wxeawoGGOMyWNFwRhjTB4rCsYYY/JYUTDGGJPH\nioIxxpg8xS4KIlJNRFJEZKOIJItI1QLavS0iGSLyQwHrHxKRXBGpVtwsxhhjSoY3PYVHgBRVbQgs\ncs97Mgnw+ExhEakLtAe2epGj1EhNTXU6QsCwY/E3OxZ/s2PhPW+KQhdgsnt6MtDNUyNVXQrsLWAf\nLwEPe5GhVLEf+L/ZsfibHYu/2bHwnjdFoaaqZrinM4Cap7OxiHQFtqvqGi8yGGOMKUGnfJ+CiKQA\n53hYddLjGVVVRaTIDygSkfLAMI6fOspbXNTtjTHG+EaxH4gnImmAS1V3iUgtYLGqNiqgbT1gnqo2\ncc83AT4DDrub1AF2AM1U9bd829rT8Iwxphj8/ea1uUBf4Dn3f2cXdUNV/YETTjeJyM/Alar6h4e2\n1oMwxhg/8WZM4VmgvYhsBG5wzyMi54pI0l+NRGQ68CXQUES2ichdHvZlvQFjjAkAAf8+BWOMMf4T\nMHc0i0isiKSJyCYRGVJAm7Hu9atFpKm/M/pLYcdCRG53H4M1IvJ/InKpEzn9oSg/F+52V4tItoh0\n92c+fyri74hLRFaJyFoRSfVzRL8pwu9IdRH5VES+dx+Lfg7E9LnCbg52tzm9701VdfwfEAZsBuoB\n5YDvgYvytekELHBPNwe+cjq3g8fiWqCKezq2NB+LE9p9DswHbnY6t4M/F1WBdUAd93x1p3M7eCwS\ngWf+Og7AHqCs09l9cCyuB5oCPxSw/rS/NwOlp9AM2KyqW1Q1C5gBdM3XJu9mOVX9GqgqIqd1b0SQ\nKPRYqOpyVd3vnv2a41dvhaKi/FwAxAMfAr/7M5yfFeVY9AZmqep2AFXd7eeM/lKUY7ETqOyergzs\nUdVsP2b0Cz31zcFQjO/NQCkKtYFtJ8xvdy8rrE0ofhkW5Vic6G5ggU8TOafQYyEitTn+hfCae1Go\nDpIV5eeiAVBNRBaLyEoR6eO3dP5VlGMxAbhERH4FVgMD/ZQt0Jz296Y3l6SWpKL+Iue/PDUUvwBO\n5ybANsC/gBa+i+OoohyLl4FHVFVFRAjdmyCLcizKAVcAbYHywHIR+UpVN/k0mf8V5VgMA75XVZeI\nRAEpInKZqh70cbZAdFrfm4FSFHYAdU+Yr8vxinaqNn/d8BZqinIscA8uTwBiVfVU3cdgVpRjcSUw\n43g9oDrQUUSyVHWufyL6TVGOxTZgt6oeAY6IyBLgMiDUikJRjsV1wEgAVU133wsVDaz0S8LAcdrf\nm4Fy+mgl0EBE6olIONCT4zfHnWgucCeAiFwD7NO/n70USgo9FiJyHvARcIeqbnYgo78UeixU9UJV\nvUBVL+D4uMIDIVgQoGi/I3OAliIS5n6UTHPgRz/n9IeiHIs0oB2A+xx6NPCTX1MGhtP+3gyInoKq\nZovIAGAhx68smKiq60XkPvf6N1R1gYh0EpHNwCHA001wQa8oxwJ4HDgTeM39F3KWqjZzKrOvFPFY\nlApF/B1JE5FPgTVALjBBVUOuKBTx52IUMElEVnP8j9+H1cMTE4Kd++bg1kB1EdkGjOD4acRif2/a\nzWvGGGPyBMrpI2OMMQHAioIxxpg8VhSMMcbksaJgjDEmjxUFY4wxeawoGGOMyWNFwRhjTB4rCsYY\nY/L8f6G/NIrkiT5JAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x80c3f98>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH4tJREFUeJzt3Xl0VdX99/H3lzDEEUTEAVAEFRkcaAXUthgFJIoKYhVR\nRARHauRp7a8qTllOLW39PTXRUhQUFBUHHMAgCSIh1gdRJrEICFEskxZQhgqEDN/njwQIIYHk3uSe\nO3xea2V5z7373vP1rNxPNmefs7e5OyIikjjqBV2AiIhEloJfRCTBKPhFRBKMgl9EJMEo+EVEEoyC\nX0QkwYQd/GaWambLzGyFmd1TyevNzGy6mS0ys3+Z2ZBw9ykiIqGzcK7jN7MkYDnQE1gLfAYMdPel\n5dqkA43c/T4za1bW/lh3LwqncBERCU24Pf6uwEp3X+XuhcAkoG+FNuuBI8seHwlsUuiLiASnfpjv\nbwGsLre9BuhWoc1zwIdmtg44ArgmzH2KiEgYwu3xV+c80UhgkbufAJwNPGNmR4S5XxERCVG4Pf61\nQKty260o7fWXdz7wOIC755vZN0A7YF75RmamSYNERELg7laT9uH2+OcBp5pZazNrCAwAplRos4zS\nwV/M7FhKQ//ryj7M3fXjzsMPPxx4DdHyo2OhY6FjceCfUITV43f3IjO7E8gGkoBx7r7UzG4re30M\n8ATwgpl9Tukfmj+4+w/h7FdEREIX7qke3P194P0Kz40p93gjcHm4+xERkdqhO3ejUEpKStAlRA0d\ni710LPbSsQhPWDdw1SYz82ipRUQkVpgZHuHBXRERiTEKfhGRBKPgFxFJMAp+EZEEo+AXEUkwCn4R\nkQSj4BcRSTAKfhGRBKPgFxFJMAp+EZEEo+AXEUkwCn4RkQSj4BcRSTAKfhGRBKPgFxFJMAp+EZEY\nlJWVR+/eD4T0Xi3EIiISY7Ky8hgxIpv8/McBLcQiIhL3MjJySkP/8PUhvV/BLyISYwoK6kOLuXDH\nWSG9X8EvIhJjdh21FgZeAe+8ENL7FfwiIjFk+cblLO/yNscuOB9W9AnpM+rXck0iIlJHvt38Lb1e\n6sVfLvkzx551CpkNHiQ7u+afo6t6RERiwPpt6+k+vjtpXdO4q9tde54301U9IiJxZ9P2TfR6qRdD\nzhqyT+iHSj1+EZEotrVgKz1e7MFFrS/iTz3/hNm+nftQevwKfhGRKLW9cDupE1Pp1LwTz1z6zH6h\nDwGd6jGzVDNbZmYrzOyeKtqkmNlCM/uXmeWGu08RkXhXUFRA/9f607pJa56+9OlKQz9UYfX4zSwJ\nWA70BNYCnwED3X1puTZNgI+B3u6+xsyaufvGSj5LPX4REaCopIgBbw7A3Xn96tepX6/qCzCD6PF3\nBVa6+yp3LwQmAX0rtLkOmOzuawAqC30RESlV4iUMfXcoP+36iVevevWAoR+qcIO/BbC63PaasufK\nOxVoamazzGyemd0Q5j5FROKSu5M2LY1Vm1fx1oC3aFS/UZ3sJ9w/JdU5N9MA+BnQAzgUmGNmn7j7\nijD3LSISN9yd+2bex9y1c5k5eCaHNji0zvYVbvCvBVqV225Faa+/vNXARnffAewwszzgLGC/4E9P\nT9/zOCUlhZSUlDDLExGJDX/85x9576v3mD1kNo2TG1fZLjc3l9zc3LD2Fe7gbn1KB3d7AOuAT9l/\ncPd04GmgN9AImAsMcPcvK3yWBndFJCFlzM0gY24GH930EccfcXyN3hvK4G5YPX53LzKzO4FsIAkY\n5+5Lzey2stfHuPsyM5sOLAZKgOcqhr6ISKJ6YeELPDnnSfKG5NU49EOlG7hERALyxpI3GDF9BLlD\ncjnt6NNC+oyI9/hFRCQ001ZM48737yRnUE7IoR8qBb+ISITlrsplyDtDmDpwKmcdF9oqWuHQ7Jwi\nIhE0d81crnnjGl779Wt0a9ktkBoU/CIiEbL4+8VcMekKXuj7AheefGFgdSj4RUQi4KtNX5E6MZXM\nSzLpc1poSybWFgW/iEgd271k4mMXPcY1Ha8JuhwFv4hIXVq/bT09X+rJ3efdzdDOQ4MuB1Dwi4jU\nmdpeMrG26AYuEZE6cLAlE2uLll4UEYkC1VkysbYo+EVEAlZQVEDfSX1pflhzxvcbTz2r2zPqCn4R\nkQDVZMnE2qK5ekREAlLiJQybMoyfdv3Eu9e+G5HQD1X0ViYiEiN2L5n4zY/fMH3Q9DpbMrG2KPhF\nRMI0cubIiCyZWFsU/CIiYXjioyeY+tXUgy6ZGE0U/CIiNZCVlUdGRg4FBfX5/qQ5bGm/hPm/+Yyj\nDz066NKqTXfuiohUU1ZWHiNGZJOT8xizt5zEsqOX0uDVvizIWxF0aTWi4BcRqaaMjBzy8x+HM16B\nHvfDizP49+JnyMycEXRpNaLgFxGppoKC+vDzZ6HXH+ClHNjUDoCdO5MCrqxmdI5fRKSa1p/8T2ic\nD+Nz4YdT9jyfnFwcXFEhUI9fROQg3J2HZj3E9tNXcNKHl+0T+m3bjiQtrVeA1dWcpmwQETmAEi/h\nd9m/Y/a3s8kelM1nucvIzJzBzp1JJCcXk5bWiz59ugdWn+bqERGpRcUlxdw69VaWblzKtOun0SS5\nSdAl7Udz9YiI1JJdxbsY9NYgftz5Izk35HB4w8ODLqnWKPhFRCrYUbiDq16/ioZJDZk6cCrJ9ZOD\nLqlWaXBXRKScrQVbueTlS2h6SFPeuPqNuAt9UPCLiOyxafsmerzYg/bN2vPilS/SIKlB0CXVCQW/\niAiwftt6Lhh/ARe1voi/9/l7na+cFaSw/8/MLNXMlpnZCjO75wDtuphZkZn1D3efIiK1adXmVfzq\nhV9x3RnX1enC6NEirOA3syTgaSAV6AAMNLP2VbQbBUwH4vuIikhMWb5xOd1f6M6IbiMY+auRcR/6\nEH6Pvyuw0t1XuXshMAnoW0m7NOBNYEOY+xMRqTWLvltEyoQUHrnwEdK6pQVdTsSEG/wtgNXltteU\nPbeHmbWg9I/B6LKndJeWiARuzuo59J7Ym8xLMhly9pCgy4mocK/jr06I/w24193dSv8NVeW/o9LT\n0/c8TklJISUlJczyRET2N/PrmVw7+Vpe7Pcil5x6SdDl1Ehubi65ublhfUZYUzaY2blAurunlm3f\nB5S4+6hybb5mb9g3A7YDt7j7lAqfpSkbRKTOTVk+hZun3Myb17xJ95OCm2OntkR8rh4zqw8sB3oA\n64BPgYHuvrSK9i8AU939rUpeU/CLSJ165YtX+F3273jvuvc454Rzgi6nVkR8rh53LzKzO4FsIAkY\n5+5Lzey2stfHhPP5IiK15dn5z/LI7Ef4YPAHdGreKehyAqXZOUUk7v3l478wet5oZtwwg7ZN2wZd\nTq3S7JwiIuXsXkDlzaVvkndTHi2PbBl0SVFBwS8icanES/jt9N+S9+88Zg+ZTfPDmgddUtRQ8ItI\n3CkuKeaWqbewfNNyZt04KyoXUAmSgl9E4so+C6gMyuGwhocFXVLUUfCLSNzYXridX7/+67hdQKW2\nxO+8oyKSUBJhAZXaouAXkZi3ewGVDs06xPUCKrVFwS8iMS2RFlCpLTpCIhKzEm0BldqiwV0RiRlZ\nWXlkZORQUFCfoibf8VW3t3nwogcSai792qDgF5GYkJWVx4gR2eTnPw7HLYTrL+WYWV1pc+ZZQZcW\nc3SqR0RiQkZGTmnot5wDN/SG9zPZMGMqmZkzgi4t5qjHLyIxoaCgPnR4A/oMh7dfhJWlC6js3JkU\ncGWxR8EvIlHP3VnTdhb87Hl4KQe+67znteTk4gAri0061SMiUW1H4Q4GTh5I/fYbOWnGlfuEftu2\nI0lL6xVgdbFJPX4RiVrrtq2j76S+nHb0aSwcMY8P239GZuaD7NyZRHJyMWlpqfTpE/vLJ0aaFmIR\nkag0f918+r3WjzvOuYP7fnmfrtGvghZiEZG48MaSNxg+bThjLhtD//b9gy4n7ij4RSRquDuP5j3K\n2AVjyRmUQ+fjOx/8TVJjCn4RiQo7Cndw07s3sWrzKubePJfjjzg+6JLilq7qEZHArdu2ju7ju5NU\nL4lZN85S6NcxBb+IBGr+uvl0G9uNK0+/kolXTuSQBocEXVLc06keEQmMBnGDoeAXkYjTIG6wFPwi\nElEaxA2ezvGLSMTsHsStZ/U0iBsgBb+IRMTuQdx+7frxcv+XNYgbIJ3qEZE6p0Hc6BJ2j9/MUs1s\nmZmtMLN7Knn9ejP73MwWm9nHZnZmuPsUkdjg7jwy+xHuzrmbnEE5Cv0oEVaP38ySgKeBnsBa4DMz\nm+LuS8s1+xro7u5bzCwVeBY4N5z9ikj00yBu9Aq3x98VWOnuq9y9EJgE9C3fwN3nuPuWss25QMsw\n9ykiUU6DuNEt3OBvAawut72m7LmqDAOmhblPEYliGsSNfuEO7lZ7An0zuxAYCvyiqjbp6el7Hqek\npJCSkhJGaSISabsHcf/R5x9c1eGqoMuJS7m5ueTm5ob1GWEtxGJm5wLp7p5atn0fUOLuoyq0OxN4\nC0h195VVfJYWYhGJUeXvxH332nd1J24EBbEQyzzgVDNrDawDBgADKxR1IqWhP6iq0BeR2KVB3NgT\n1jl+dy8C7gSygS+B19x9qZndZma3lTV7CDgKGG1mC83s07AqFpGooUHc2KQ1d0UkJLvXxL3957cz\n8lcjtSZuQLTmrojUiaysPDIycigoqE+jRkX8bFADxn73tAZxY5SCX0QOKCsrjxEjssnPfxxwuOBR\nPvziSZ7s8qRCP0ZpkjYROaCMjJzS0G+wHa66Dk6dRtHoZUwb923QpUmIFPwickAFBfWh+RdwSxco\nqQ/jZ8F/j2fnzqSgS5MQ6VSPiFTJ3fn+pDnQ9RnI+St8PhgoHUdMTi4OtjgJmXr8IlKpDT9t4IpJ\nV1DU6Vtazfg1fH4ju0O/bduRpKX1CrZACZl6/CKynw++/oAh7wzhujOuY/I1k5nR4RMyMx9k584k\nkpOLSUtLpU+f7kGXKSHSdfwisseu4l08+OGDTPxiIuP7jqdXW/Xqo52u4xeRkK38YSUDJw/k2MOO\nZdFtizjmsGOCLknqiM7xiyQ4d+fFz1/kvHHnMfjMwUwdOFWhH+fU4xdJYFsLtnJH1h0sXL+QmYNn\ncuaxWhk1EajHL5KgPlnzCZ3HdOaIhkcw79Z5Cv0Eoh6/SIIpLilm1MejeGruU4zuM1oLoCcgBb9I\nAlmzdQ03vH0D7s78W+fT8kgtgZ2IdKpHJEG8s+wdfv7sz+l5ck9mDp6p0E9g6vGLxLnthdu5O/tu\nsvOzeWfAO5zX6rygS5KAqccvEse++P4LujzXhS0FW1h420KFvgAKfpG45O48/enTXPTiRdzzi3t4\nuf/LNE5uHHRZEiV0qkckzmzcvpGh7w5l/X/XM2fYHE5pekrQJUmUUY9fJI7M/HomZ//jbNo3a8/H\nQz9W6Eul1OMXiQO7infx0KyHeGnxS0zoN4GebXoGXZJEMQW/SIzbPbnacYcfp8nVpFp0qkckhr30\n+UucN+48bjzrRqZcO0WhL9WiHr9IDNpasJXhWcNZ+J0mV5OaU/CLRLmsrDwyMnIoKKhPo0ZFXDy0\nBX///q9c3OZiPrvlMw5tcGjQJUqM0QpcIlEsKyuPESOyyc9/HKwYfjmKpPMf555O9/H4oAeCLk+i\nQCgrcOkcv0gUy8jIKQ39I9bC4J7QNofi0cuZP7Eg6NIkhin4RaLYzoJ6cM5ouL0zfN0TJsyErS3Z\nuTMp6NIkhoUd/GaWambLzGyFmd1TRZuMstc/N7PO4e5TJBHMWzePRV3GwhmvwoQP4aP7wUsDPzm5\nOODqJJaFFfxmlgQ8DaQCHYCBZta+QptLgVPc/VTgVmB0OPsUiXebd27mN1m/4fJXL2dYpyG0yfsl\n/KfTntfbth1JWlqvACuUWBfuVT1dgZXuvgrAzCYBfYGl5dpcAUwAcPe5ZtbEzI519+/D3LdIXHF3\nXv7iZf4w4w/0bdeXJcOX0PSQpvRolkdm5oPs3JlEcnIxaWmp9OnTPehyJYaFG/wtgNXlttcA3arR\npiWg4Bcps3TDUoZPG86WnVt4e8DbdGu592vUp093Bb3UqnCDv7rXX1a81KjS96Wnp+95nJKSQkpK\nSkhFicSK7YXbeXT2o4xdOJaHuj/E8C7DSaqngVupWm5uLrm5uWF9RljX8ZvZuUC6u6eWbd8HlLj7\nqHJt/gHkuvuksu1lwAUVT/XoOn5JNFOWT+Gu9+/i/Fbn8+TFT3L8EccHXZLEoFCu4w+3xz8PONXM\nWgPrgAHAwAptpgB3ApPK/lBs1vl9SWSrNq9ixPQRLNu4jHFXjKNHmx5BlyQJJqyrety9iNJQzwa+\nBF5z96VmdpuZ3VbWZhrwtZmtBMYAw8OsWSQm7SrexZ/++SfOefYcup7QlcW3L1boSyA0ZYNIBMz6\nZhbDpw2nzVFtyLwkkzZHtQm6JIkTQZzqEZED+P6/3/P7Gb8n79s8nkp9ir7t+mJWo++oSK3TlA0i\ndaC4pJi/f/Z3Oo3uxAmHn8CS4Uvod3o/hb5EBfX4RWrZvHXzuCPrDg6pfwizbpxFp+adDv4mkQhS\n8IvUks07N3P/zPt5a9lbjOo5ihvOvEE9fIlKOtUjEiZ3Z+LiibR/pj3FXsyS4UsYfNZghb5ELfX4\nRcJQfqqFdwa8s89UCyLRSj1+kRBsL9zOfR/cR/fx3el/en8+veVThb7EDPX4RWqo/FQLi29frKkW\nJOYo+EWqUHGR8wG3ncG7u17RVAsS8xT8IpXYZ5HzpF1w3v/ywWc3cX2b61l8++s0qt8o6BJFQqZz\n/CKVKF3k/DE4bSrcfhac+BElY/7FfyYfp9CXmKcev0gF7s7aw/Ph1nOgXhF8MAqWXw6YFjmXuKDg\nFynj7rz31Xukz07n27Zr4L3RsKwf+N5/GGuRc4kHCn5JeOUDv6ikiIcveJgGJzTlt2/NIN/772lX\nush5aoCVitQOBb8krMoCv9/p/ahn9aA91LN6WuRc4pLm45eEc8DAF4kxmo9f5AAU+CKlFPwS9xT4\nIvtS8EvcUuCLVE7BL3HH3clakUV6bjqFJYUKfJEKFPwSNxT4ItWj4JeYp8AXqRkFv8QsBb5IaBT8\nEnMU+CLhUfBLzFDgi9QOBb9EpfKLoDRsVMh5g48g66c3FfgitUBTNkjU2bsIymNwWhakpNMweTW/\n75LGo9ePVOCLlKMpGyQuPPnMFPKbtoFenQGH2Q+za1k/5l/8MPUGKfRFwhVW8JtZU+A14CRgFXCN\nu2+u0KYV8CLQHHDgWXfPCGe/En/cndnfzmbcwnHk/ewNWN4XZvwZvu65Zz58LYIiUjvC7fHfC8xw\n9z+b2T1l2/dWaFMI/NbdF5nZ4cB8M5vh7kvD3LfEgfXb1jN+0XieX/Q8yfWTGdZ5GGsWHkPutP/d\nr60WQRGpHeEG/xXABWWPJwC5VAh+d/8O+K7s8X/NbClwAqDgT1BFJUVMWzGttHf/bR5Xd7iaiVdO\npGuLrpgZpw7PY/Xy+0sXOi+jRVBEak9Yg7tm9qO7H1X22IAfdm9X0b41MBvo6O7/rfCaBnfj3IpN\nK3h+4fNM+HwCJx91Mjd3vpmrO17N4Q0P369tVlYemZkzyi2C0kuLoIhUIpTB3YMGv5nNAI6r5KX7\ngQnlg97MfnD3plV8zuGU/ovgMXd/p5LXFfxxaEfhDiYvnczYBWNZunEpN5x5A8M6D6P9Me2DLk0k\nLtTJVT3u3usAO/zezI5z9+/M7HjgP1W0awBMBiZWFvq7paen73mckpJCSkrKwcqTKLVg/QLGLRjH\npCWT6NqiK2ld07i83eU0TGoYdGkiMS03N5fc3NywPiPcUz1/Bja5+ygzuxdo4u73VmhjlJ7/3+Tu\nvz3AZ6nHH+N+3PEjr3zxCuMWjuOHHT8wtPNQhpw9hBMbnxh0aSJxq05O9Rxkh02B14ETKXc5p5md\nADzn7n3M7JdAHrCY0ss5Ae5z9+kVPkvBH4N2X4Y5dsFY3vvqPVJPSWVY52H0aNNDN1qJREDEg782\nKfhjy7pt65iwaALjFo7jkAaHcHPnmxl05iCOPvTooEsTSSgKfqlTuy/DHLtgLB/9+yOu7nA1wzoP\n23MZpohEnoJfwlZ+crRGjYq4666LOe3c43l+4fOM/3w8bY5qc8DLMEUkshT8Epa9k6M9Dg22Q/vJ\nJJ//AMkttzGsy1BdhikShRT8EpYLLhtB3trO0DYb2ubA2q6w4GZ6nTSfnPefCLo8EamEZueUGiko\nKuCf//4n01dOJzs/m6Vnr4BDL4P83pDzV9jWAoBdzb8IuFIRqU0K/gTi7ny16Suy87PJzs/mo28/\nomPzjvRu25sxl43hoZun8kHO/j17TY4mEl8U/HFuy84tfPjNh3t69UUlRfRu25shZw3hpStfoukh\ne2fY+D93FfJNviZHE4l3OscfZ0q8hPnr5u/p1S/6bhHntzqf3m1707ttbzoc0+GAl15qcjSR2KLB\n3QS1ftt6cvJzmJ4/nQ++/oDmhzXfE/TdT+rOIQ0OCbpEEakjCv4EsXtQdnevfvWW1fRo02NP2Ldq\n3CroEkUkQhT8Ma6ym6f69OmOu7PihxV7ztOXH5Tt3bY3XVp0oX49DdeIJCIFfwzb5+YpgEZbOPa8\nYXS+upBlhYspLC4sDfpTetOzTc99BmVFJHEp+GPUruJdXHhVGv9vZQ9o/i9oPQuOWwSrz6dd/RIm\nj/rbQQdlRSQx6QauKLereBcrNq1gyYYlfLnhS5ZsWMKS/yzhm83fYO0Og+QNsKED5D0A33aHokM4\n7oJ0OjbvGHTpIhJHFPx14EABf2LjE+l4TEc6HtOR/qf358HuD9Lu6HZc0edRcnIe2++zdPOUiNQ2\nneoJQ3UDvsMxHejYvCPtjm5Ho/qNKv2s/c7xU3rz1FNPpeo6ehGpks7xh6iqq2l2q82AP1gdunlK\nRGoi5oP/4ovv3y9069o+Pe2kXdB0Bcee8QAXDWhC4VH/3RPwJzU+qTTYj+lIx+alIR9qwIuI1JaY\nD35w2ra9n6ee6l3j8C8oKmBLwRa2Fmzd52fLzn2fq9hmwZJlbNt1GDTaCo22webWsKEDbY7YwOMj\nfqOAF5GoFvtX9Ry/gPziXjw48Rl+aPntAQO74nPuTuPkxhzZ6EgaNyr97+6f8tstj2xZ+lxZ27vf\nfJUFc/4HdjaGgsZQ3BCAVhekc22nawM+ICIitS+6gv+Km6HgSP59+Hqy8xscMLArhnqoPfJmhR/A\nD6fs97yuphGReBVdwT9mAQDn9H6QiZmPRmSXd911MfmailhEEkh0BT+RD93dYwmZmQ+Wu5pGl1CK\nSPyKqsHd3r0f0CWMIiI1EPNX9URLLSIisSKU4K9XV8WIiEh0UvCLiCQYBb+ISIIJOfjNrKmZzTCz\nr8wsx8yaHKBtkpktNLOpoe5PRERqRzg9/nuBGe5+GjCzbLsqI4AvAY3eVkNubm7QJUQNHYu9dCz2\n0rEITzjBfwUwoezxBKBfZY3MrCVwKTAW0BJS1aBf6r10LPbSsdhLxyI84QT/se7+fdnj74Fjq2j3\nf4H/AUrC2JeIiNSSA965a2YzgOMqeen+8hvu7qWza+73/suA/7j7QjNLCadQERGpHSHfwGVmy4AU\nd//OzI4HZrn76RXaPAHcABQBycCRwGR3H1zJ5+n8v4hICCJ2566Z/RnY5O6jzOxeoIm7VznAa2YX\nAL9398tD2qGIiNSKcM7x/wnoZWZfAReVbWNmJ5hZVhXvUa9eRCRgUTNXj4iIREbE79w1s1QzW2Zm\nK8zsniraZJS9/rmZdY50jZFysGNhZteXHYPFZvaxmZ0ZRJ11rTq/E2XtuphZkZn1j2R9kVTN70dK\n2Q2R/zKz3AiXGDHV+H40M7PpZrao7FgMCaDMiDCz583sezP74gBtqp+b7h6xHyAJWAm0BhoAi4D2\nFdpcCkwre9wN+CSSNUbZsTgPaFz2ODUej0V1jkO5dh8C7wFXBV13gL8TTYAlQMuy7WZB1x3gsUgH\n/rj7OACbgPpB115Hx+NXQGfgiyper1FuRrrH3xVY6e6r3L0QmAT0rdBmz41h7j4XaGJmVd0jEMsO\neizcfY67bynbnAu0jHCNkVCd3wmANOBNYEMki4uw6hyL6yi9Mm4NgLtvjHCNkVKdY7Ge0isFKfvv\nJncvimCNEePuHwE/HqBJjXIz0sHfAlhdbntN2XMHaxOPgVedY1HeMGBanVYUjIMeBzNrQemXfnTZ\nU/E6MFWd34lTgaZmNsvM5pnZDRGrLrKqcyyeAzqa2Trgc0qnhklUNcrNSC+9WN0vbMVrUuPxi17t\n/yczuxAYCvyi7soJTHWOw9+Ae93dzcyI36k/qnMsGgA/A3oAhwJzzOwTd19Rp5VFXnWOxUhgkbun\nmFlbYIaZneXu2+q4tmhV7dyMdPCvBVqV225F6V+mA7VpWfZcvKnOsaBsQPc5INXdD/RPvVhVnePw\nc2BSaebTDLjEzArdfUpkSoyY6hyL1cBGd98B7DCzPOAsIN6CvzrH4nzgcQB3zzezb4B2wLyIVBhd\napSbkT7VMw841cxam1lDYABQ8cs7BRgMYGbnApt975xA8eSgx8LMTgTeAga5+8oAaoyEgx4Hd2/j\n7ie7+8mUnue/Iw5DH6r3/XgX+GXZVOeHUjqQ92WE64yE6hyLZUBPgLLz2e2AryNaZfSoUW5GtMfv\n7kVmdieQTemo/Th3X2pmt5W9Psbdp5nZpWa2EvgJuCmSNUZKdY4F8BBwFDC6rLdb6O5dg6q5LlTz\nOCSEan4/lpnZdGAxpRMfPufucRf81fy9eAJ4wcw+p7QT+wd3/yGwouuQmb0KXAA0M7PVwMOUnvYL\nKTd1A5eISILR0osiIglGwS8ikmAU/CIiCUbBLyKSYBT8IiIJRsEvIpJgFPwiIglGwS8ikmD+P2jq\nbKRBM81FAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0xa487c18>"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.16 page number 259"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "l = 6.0      #a - length of the rod\n",
      "F = 1.0      #p - force applies in x direction \n",
      "d = 1.0      #a \n",
      "M = 1.0      #pa - torque applies on the rod\n",
      "l_ab = 4.0   #a application of torque point from A\n",
      "#M = 0 implies that\n",
      "R_A =  F/6.0 #p - The reaction at A\n",
      "R_B = - R_A  #F_Y = 0\n",
      "\n",
      "#Caliculations \n",
      "\n",
      "#Taking sections \n",
      "#Section 1---1\n",
      "l_1 = 1 #a - the length of the section \n",
      "M_1 = - R_A*l_1  #M = 0\n",
      "\n",
      "#Section 2---2\n",
      "l_2 = 4 #a - the length of the section \n",
      "M_2 = - R_A*l_2  #M = 0\n",
      "\n",
      "l_4 = 2 #a - the length of the section \n",
      "M_4 = 1/3.0 #pa #M = 0 '-M' because there is moment couple in between\n",
      "\n",
      "\n",
      "#Section 3---3\n",
      "l_3 = 1 #a - the length of the section \n",
      "M_3 = 1/6.0#pa M = 0 '-M' because there is moment couple in between\n",
      "print R_A\n",
      "\n",
      "#GRAPH\n",
      "#Since the symmetry exists the graphs are also symmetry\n",
      "%matplotlib inline\n",
      "import math \n",
      "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
      "#Drawing of shear and bending moment diagram\n",
      "print \"Given problem is for drawing diagram, this diagram is drawn by step by step manner. \"\n",
      "X = [0,1,4,4.00001,5,6] # For graph precision \n",
      "M = [0,M_1,M_2,M_4,M_3,0];\t\t\t#Bending moment matrix\n",
      "plot(X,M);\t\t\t#Bending moment diagram\n",
      "suptitle( 'Shear and bending moment diagram')\n",
      "xlabel('X axis')\n",
      "ylabel( 'Y axis') ;\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "0.166666666667\n",
        "Given problem is for drawing diagram, this diagram is drawn by step by step manner. \n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEhCAYAAACKklw+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHmxJREFUeJzt3XuYHHWZ9vHvTUIQIpCgbggSDauGMxqCiAdiKwdBfCPJ\nuiDrISIiuCq4GoTdLGR43QtMVlQOyroRdNxF8ZUlLgqRBMwIKgaQAAkJBNZk5RjJGlBwlQDP+0f9\nBjuTrpmepLurq/v+XNdcU9X9666nppO+u+rpqlJEYGZmVss2RRdgZmbtyyFhZma5HBJmZpbLIWFm\nZrkcEmZmlsshYWZmuRwSHU7SbEkrJN0laZmk16fb10rapej6hpJXp6SnmrS8b0r6qzQ9X9LezVhO\nO5D0WklH1zm2T9KBafpaSTs1tzprFyOLLsCaR9IbgWOAyRGxMb3ZbpfuDkANXt7IiHi2kc9JVudw\nbm/E8gIgIk5u0jLaxWRgCrCwjrEv/L0j4phGLFzSiIh4rhHPZc3jLYnOtiuwPiI2AkTEbyPi0ar7\nPynpl5LulrQngKTRki6XtFTSHZKmpdsnSropjf9lCiAkVSTdLOk/gXsGFiDpq5JuS1szPVW3r5XU\nU2P5L5G0KI2fzyBBJumLadwNkl6abnuVpIWSbk/19j/vNyVdKOlnkv6ramtBki6RdK+kxcBfVD1/\n9afnpyT9k6Q7Jd0i6S+qlveLtA7/JOn3NeqcmJ7/G5Luk3SFpCNTLaurtu52kfT9tNV3i6T90+09\nknrT+qyVNEPSF9IyF0oamcZNSTXfLulHknatWo/Pp9f0PklvkbQt8H+B49MW5l8PqHl7SVdKWinp\namD7Aa/dLml6QVreCkknV405KS1radoiu7jqdfgXSb8A5kp6vaSfp39rP5M0KY37UPpbLJK0RtIn\nJM1K426RNDbv34U1WET4p0N/gNHAMuA+4CvA1Kr71gAfT9MfA+an6fOA96XpMemxO5C9SWyXbn8N\ncFuargBPAa/MqWFs+j0CWALsN8TyLwL+MU2/E3ge2KXG8z4PnJCmzwYuTtM3Aq9O028AbkzT3wS+\nm6b3Bu5P0zOARWRhNB7YAMxI9y0BDqxa3jFpei4wO03/EDg+TZ8C/L5GrROBjcC+aTm3A5el+6YB\nC9L0xcDZafptwLI03QPclP6GBwB/AN6R7rsaeDewLfBz4CXp9uOrlrEE+Oc0fTSwOE3PBC7Ked0+\nDXw9Te+f6u//W6zpf02qXt/tgeXAWGC3NGYM2d6Km/qXk16HawCl+R2BEWn6cOCqNP0h4H6yf8Mv\nBZ4EPpru+yJwetH/v7rlx7ubOlhEPC1pCnAo2ZvOdyWdFRG9acjV6fcdZG+WAEcC/0fSrDS/HTAB\neAy4RNJrgefIgqLfrRHx3zllHJ8+YY4kexPeB1gxyPIPBaan+q+TtCHneZ8Hvpum/x24WtJo4E3A\n96QXNkBG9f85gO+n510laVy6fSrw7cjefR6V9OOc5T0TEdem6V8CR6TpQ8je6AG+A3wh5/FrIuIe\nAEn3ADek21eQhQjAm0l/h4hYkraqdky1L4yI5yStALaJiOvTY5anx08iC6Eb0rqPAB6pWn7137p/\neSJ/S+1Q4MJUy3JJd+eMO13SsWl691THeOAnEfFEWt/vpdtJ6/K99PeGLEi+JenV6b7q96QlEfE0\n8LSkJ4AfVK3zATn1WIM5JDpcRDwP/AT4iaTlZJ8e+0PiT+n3c2z6b2FGRNxf/TzKdhU9GhEfkDQC\n+GPV3U/XWrakPYDPAAdFxJOSvgG8qGpI3vKH2ysR2RvMNsCGiJicM+6ZGsuotzezsWr6eYb/f+dP\nVdPPV9Uy8LnyankGstdTUq1aBNwTEW8aYvkD/9aDGfTvIqkCHAYcEhF/lLSE7PUd2C8a+Dx/qJr+\nHNnW3nRJrwT6atQM2Xr+qWra710t4p5EB5M0SVL1J/7JwNohHnY9cFrVc/S/4e5EtjUB8EGyT6pD\n2YksQH6XPrnX802am4C/Scs+mmz3RS3bAP370f8GuDkifg+skfSe9HhJGuoT501kWzvbSBpPtsU1\nHL8A3pOm3zvMxw50M/A+eOEN+PG0TvWE2H3AyyQdkh6/raR9hnjM78h299RS/TrsR+1P7juRhfIf\nJe1FtlUVwG3AWyWNSf2SvyL/iwY78ectnhOHqLdfQ79wYYNzSHS2FwPflHSPpLuAvcj2b8Om/2mj\nav5zwLapKboCODfd/lVgpqQ7gT3J+hDVj99MRNxF1hO5F7gC+GlOndXLPxeYmpY9HcjbjfU0cHDa\nOqqQNWEhe5M9KdW5gj/vCqq1zkTEArJ93yvJtrB+PkiNter9FPDptLxXke07H+rxNWshe22mpNfq\nPLKtvoHLq/lckX054T1kzeA7yf7ubxyiliXAPrUa18ClwIslrSR7TW6v8Tw/AkamMecDt6RiHkn1\n30r2mq9h079Ldf3zgPMl3UH2wSOqxuSt88D7rIn0512DZjZckraPiP9N0+8la2JPL7iswkkanXpi\nI8n6IZdFxH8WXZcNn/frmW2dKZIuIdsFsgH4cMH1tIseSYeT9Siud0CUl7ckzMwsl3sSZmaWyyFh\nZma5HBJmZpbLIWFmZrkcEmZmlsshYWZmuRwSZmaWq9CQkHSUsvPs3y/pzEHGvV7Ss5Jm5I0xM7PG\nKywk0plELwGOIjt99AmqcanING4u2XlifGIvM7MWKnJL4mDggYhYm05OdiXZxVMG+iRwFfB4K4sz\nM7NiQ+LlwINV8w+l214g6eVkwXFpusnnEDEza6EiQ6KeN/wvA2elq1gNdhUtMzNrgiLPAvsw2WUx\n+00g25qoNgW4Ml2O8aXA0ZI2RsQ11YMkeQvDzGwLRMSgH76L3JK4HXiNpImSRpFduH2TN/+I+MuI\n2CMi9iDrS3xsYEBUje3Ynzlz5hReg9fN6+f167yfehS2JRERz0r6BNnlMkeQXZRklaRT0v1fK6o2\nMzPLFHrRoYhYCCwccFvNcIiIeq9/a2ZmDeIjrkugUqkUXULTdPK6gdev7Dp9/erREVemkxSdsB5m\nZq0kiWjjxrWZmbU5h4SZmeVySJiZWS6HhJmZ5XJImJlZLoeEmW2R+++HH/4Q/MXCzuaQMLMtsmAB\nTJ8OU6fC0qVFV2PN4pAwsy122mlw4okwYwaccAKsWVN0RdZoDgkz22IjRsCHPwyrV8Pee8NBB8EZ\nZ8ATTxRdmTWKQ8LMttro0XDOObBiRRYQe+4JF10EzzxTdGW2tRwSZtYw48fD/Plwww2wcCHsuy9c\nfbWb22XmkDCzhtt//ywkvvIV6Olxc7vMHBJm1jRHHgnLlrm5XWYOCTNrKje3y80hYWYt4eZ2OTkk\nzKyl3NwuF4eEmRXCze1ycEiYWaHc3G5vDgkzK1yt5vZnP+vmdjtwSJhZ26hubm/Y4OZ2O3BImFnb\ncXO7fTgkzKxt1Wpu33pr0VV1F4eEmbW96ub29OlZc3vt2qKr6g4OCTMrhYHN7SlT3NxuBYeEmZWK\nm9ut5ZAws1Jyc7s1Cg0JSUdJulfS/ZLOrHH/+yTdJeluST+TdEARdZpZ+3Jzu7kKCwlJI4BLgKOA\nfYATJO09YNivgKkRcQDwOeBfW1ulmZWFm9vNUeSWxMHAAxGxNiI2AlcC764eEBG3RMSTaXYpsHuL\nazSzEnFzu/GKDImXAw9WzT+UbstzEnBdUysys47g5nbjFBkSdbeXJL0N+DCwWd/CzCxPreb2ggVu\nbg/HyAKX/TAwoWp+AtnWxCZSs3o+cFREbMh7sp6enhemK5UKlUqlUXWaWcn1N7cXLYJZs+CLX4QL\nLoCDDy66stbq6+ujr69vWI9RFBSpkkYC9wGHAY8AtwInRMSqqjGvAH4MvD8ifjHIc0VR62HWrebN\ng/Xrs99l8txz0NsLZ5+dfRPq/PNh4sSiqyqGJCJCg40pbHdTRDwLfAK4HlgJfDciVkk6RdIpadg5\nwFjgUknLJPmLbWa2VdzcHp7CtiQayVsSZq1X1i2JgR59NGtyX3MNzJ4Np54Ko0YVXVVrtPWWhJlZ\nO3Bze3AOCTMzNj1ye84cH7ndzyFhZlal/8jtD33IR26DQ8LMbDMjRsBJJ7m5DQ4JM7NcPnLbIWFm\nNqSBze399uue5rZDwsysTv3N7Usu6Z7mtkPCzGyYuum05A4JM7Mt0C1HbjskzMy2Qqc3tx0SZmYN\n0KnNbYeEmVkDdVpz2yFhZtYEndLcdkiYmTVJJzS3HRJmZk1W5ua2Q8LMrEXK2Nx2SJiZtViZmtsO\nCTOzgpShue2QMDMrULs3tx0SZmZtoFZz++KLi29uOyTMzNpIdXP7uuuKb247JMzM2lC7NLcdEmZm\nbazo5rZDwsyszRXZ3HZImJmVRBHNbYeEmVnJtLK57ZAwMyupVjS3HRJmZiXXzOa2Q8LMrAM0q7ld\naEhIOkrSvZLul3RmzpiL0v13SZrc6hrNzMqk0c3twkJC0gjgEuAoYB/gBEl7DxjzTuDVEfEa4KPA\npS0v1MyshBrV3C5yS+Jg4IGIWBsRG4ErgXcPGDMN6AWIiKXAGEnjWlummVl5bW1ze2TzShvSy4EH\nq+YfAt5Qx5jdgXXNLc3MrLP0N7d7e7Pm9tSp9T2uyJCod6NH9Txuv/16OOwwGDsWKpUKlUplq4oz\nM+s0N9/cx69/3cfMmfVvTRQZEg8DE6rmJ5BtKQw2Zvd022aOO66HCy+Ek06C172uoXWamXWEgR+g\npXOHfEyRPYnbgddImihpFHA8cM2AMdcAHwSQdAjwRETU3NVU1ouMm5m1s8JCIiKeBT4BXA+sBL4b\nEasknSLplDTmOuBXkh4Avgb87WDPOfAi4/vuC1df3d4XGTcza2eKDngHlRS11mPRIpg1C3beGb7w\nBXjDwLa4mW2xefNg/frst5WTJCJiYN93Ex19xHX1oeozZmSHqq9ZU3RVZmbl0dEhAZsfqn7QQe11\nkXEzs3bW8SHRr9ah6m5um5kNrmtCop+b22Zm9eu6kOjXf6j6V74CPT3Z0YdLlxZdlZlZe+nakOjn\n5raZWb6uDwlwc9vMLI9Dooqb22Zmm3JI1ODmtplZxiExCDe3zazbOSTq4Oa2mXUrh0Sd3Nw2s27k\nkBgmN7fNrJs4JLaQm9tm1g0cElupVnN7OBcZNzNrZw6JBqlubk+fnjW3164tuiozs63jkGiggc3t\nKVPc3DazcnNINIGb22bWKRwSTeTmtpmV3ZAhIek4STul6bMlLZB0YPNL6xxubptZWdWzJXF2RPxO\n0luAw4DLgEubW1ZncnPbzMqmnpB4Lv1+FzA/In4IjGpeSZ3NzW0zK5N6QuJhSf8KHA9cK+lFdT7O\nBuHmtpmVQT1v9scB1wNHRsQTwFjgjKZW1UXc3DazdpYbEv3NamA7YAnwP5J2Af4E3N6C2rqKm9tm\n1o4G25L4Tvp9B/DLGj/WBLWa2z4tuZkVJTckIuKY9HtiROwx8Kd1JXaf6ub2Xnv5tORmVpx6jpM4\nacD8SElzmleS9Rs9GubMcXPbzIpTT+P6cEnXSdpN0n7ALcBOQz1oKJJ2kbRY0mpJiySNqTFmgqQl\nku6RtELSaVu73DJyc9vMijJkSETECcC3gLuBa4G/i4jPNGDZZwGLI2IScGOaH2hjWt6+wCHAxyXt\n3YBll5Kb22bWavXsbpoEnAZcDfwaeL+k0Q1Y9jSgN033AscOHBARj0XEnWn6KWAVsFsDll1qPnLb\nzFqlnt1N1wDnRMRHgbcC9wO3NWDZ4yJiXZpeB4wbbLCkicBkYGkDll16PnLbzFphZB1j3hARTwJE\nxPPABZJ+UM+TS1oM7FrjrtnVMxERknL3sEt6MXAVcHraothMT0/PC9OVSoVKpVJPiaXXf+T2ySdn\nv/fcE2bPhlNPhVE+eYqZVenr66Ovr29Yj1HU0f2UtD+wD/AiIAAi4lvDL3GT57wXqETEY5LGA0si\nYq8a47YFfggsjIgv5zxX1LMe3WD58myL4oEHYO7cbHeUVHRV1onmzYP167PfVk6SiIhB3yHq6Un0\nABcBFwMVYB5ZP2FrXQPMTNMzge/XWLbIzjq7Mi8gbFNubptZI9XTk3gPcDjwaEScCLwW2Ozrqlvg\n88ARklYDb0/zpK/aXpvGvBl4P/A2ScvSz1ENWHbHc3PbzBqhnpD434h4DnhW0s7Ab4AJW7vgiPht\nRBweEZMiov/kgUTEI1VHe/80IraJiNdFxOT086OtXXa3cHPbzLZWPSFxm6SxwHyyE/stA37e1Kqs\noXxacjPbUvUcTPe3EbEhIv4FOBKYmXY7Wcn4yG0zG65hXTwoItZExF3NKsZaw81tM6uXrzDXxdzc\nNrOhDHbRoYWSfErwDufmtpkNZrAticuB6yXNTge0WQdzc9vMahnsokPfAw4EdgZulzRL0mfSz6db\nVqG1lJvbZlZtqJ7ERuApstNx7Ai8OP3s2OS6rGBubpsZDHKCv3Rk8xeBHwCTI+IPLavK2kZ/c7u3\nN2tuT50K558PEycWXZmZtcJgWxKzgb+OiDMdEN3NzW2z7jVYSEyNiHtaVom1PTe3zbrPYI1rtyqt\nJje3zbqHD6azLebmtlnnc0jYVvOR22adyyFhDeHmtllnckhYQ7m5bdZZHBLWFG5um3UGh4Q1lZvb\nZuXmkLCWcHPbrJwcEtYybm6blY9DwlrOzW2z8nBIWGHc3DZrfw4JK5yb22btyyFhbcPNbbP245Cw\ntuLmtll7cUhYW3Jz26w9OCSsrbm5bVYsh4SVgpvbZsUoJCQk7SJpsaTVkhZJGjPI2BGSlkn6QStr\ntPbk5rZZaxW1JXEWsDgiJgE3pvk8pwMrAe9gMMDNbbNWKiokpgG9aboXOLbWIEm7A+8Evg6oNaVZ\nWbi5bdZ8RYXEuIhYl6bXAeNyxn0JOAN4viVVWSm5uW3WPCOb9cSSFgO71rhrdvVMRISkzf47S3oX\n8JuIWCapMtTyenp6XpiuVCpUKkM+xDpMf3N70SKYNQu+9CW44AI4+OCiKzNrD319ffT19Q3rMYoC\nPm5JuheoRMRjksYDSyJirwFjzgM+ADwLvAjYCfiPiPhgjeeLItbD2tdzz0FvL5x9dvZNqPPPh4kT\ni66qs8ybB+vXZ7+tnCQREYPuyi9qd9M1wMw0PRP4/sABEfEPETEhIvYA3gv8uFZAmNXi5rZZYxQV\nEp8HjpC0Gnh7mkfSbpKuzXmMNxVs2NzcNts6hYRERPw2Ig6PiEkRcWREPJFufyQijqkx/icRMa31\nlVqncHPbbMv4iGvrKrWO3F66tOiqzNqXQ8K6UvWR2zNmZEdur1lTdFVm7cchYV2rurm9115w0EFu\nbpsN5JCwrjd6NMyZ4+a2WS0OCbPEzW2zzTkkzAZwc9vszxwSZjnc3DZzSJgNys1t63YOCbM6uLlt\n3cohYTYMbm5bt3FImG0BN7etWzgkzLaCm9vW6RwSZlvJzW3rZA4JswZxc9s6kUPCrMHc3LZO4pAw\naxI3t60TOCTMmszNbSszh4RZC7i5bWXlkDBrITe3rWwcEmYFcHPbysIhYVYgN7et3TkkzNqAm9vW\nrhwSZm3CzW1rRw4Jszbj5ra1E4eEWZtyc9vagUPCrM25uW1FckiYlYSb21YEh4RZibi5ba1WSEhI\n2kXSYkmrJS2SNCZn3BhJV0laJWmlpENaXatZO3Jz21qlqC2Js4DFETEJuDHN13IhcF1E7A0cAKxq\nUX1mpeDmtjVbUSExDehN073AsQMHSNoZODQiLgeIiGcj4snWlWhWHm5uW7MUFRLjImJdml4HjKsx\nZg/gcUnfkHSHpPmSdmhdiWbl4+a2NVrTQiL1HJbX+JlWPS4iAqi1cTwSOBD4akQcCDxN/m4pM0vc\n3LZGGtmsJ46II/Luk7RO0q4R8Zik8cBvagx7CHgoIm5L81cxSEj09PS8MF2pVKhUKltStlnH6G9u\nf/SjcM45WXN79mw49VQYNaro6qwIfX199PX1DesxigI6XJLmAf8TEXMlnQWMiYjNAkDSTcBHImK1\npB5g+4g4s8a4KGI9zMpk+fJsi+KBB2DuXJg+HaQtf75582D9+uy3lZMkImLQfwVF9SQ+DxwhaTXw\n9jSPpN0kXVs17pPAFZLuIvt203ktr9SsQ7i5bVuiabubBhMRvwUOr3H7I8AxVfN3Aa9vYWlmHa+/\nud3bmzW3p06F886DPfYoujJrRz7i2qwLublt9XJImHUxH7ltQ3FImJmP3LZcDgkze4Gb2zaQQ8LM\nNuMjt62fQ8LManJz28AhYWZDcHO7uzkkzKwuA5vb555bdEXWCoWclqPRfFoOs9a78UZ42cvggAOK\nrsS2VD2n5XBImJl1qXY+d5OZmZWAQ8LMzHI5JMzMLJdDwszMcjkkzMwsl0PCzMxyOSTMzCyXQ8LM\nzHI5JMzMLJdDwszMcjkkzMwsl0PCzMxyOSTMzCyXQ8LMzHI5JMzMLJdDwszMcjkkzMwsl0PCzMxy\nFRISknaRtFjSakmLJI3JGff3ku6RtFzStyVt1+pazcy6WVFbEmcBiyNiEnBjmt+EpInAycCBEbE/\nMAJ4bwtrbBt9fX1Fl9A0nbxu4PUru05fv3oUFRLTgN403QscW2PM74CNwA6SRgI7AA+3prz20sn/\nUDt53cDrV3advn71KCokxkXEujS9Dhg3cEBE/Ba4APg18AjwRETc0LoSzcxsZLOeWNJiYNcad82u\nnomIkBQ1Hv8q4FPAROBJ4HuS3hcRVzShXDMzq0ERm70/N3+h0r1AJSIekzQeWBIRew0YczxwRER8\nJM1/ADgkIj5e4/lavxJmZh0gIjTY/U3bkhjCNcBMYG76/f0aY+4Fzpa0PfBH4HDg1lpPNtRKmpnZ\nlilqS2IX4P8BrwDWAsdFxBOSdgPmR8QxadxnyULkeeAO4CMRsbHlBZuZdalCQsLMzMqh1EdcSzpK\n0r2S7pd0ZtH1NJKkyyWtk7S86FqaQdIESUvSwZIrJJ1WdE2NJOlFkpZKulPSSknnF11To0kaIWmZ\npB8UXUujSVor6e60fjV3c5eZpDGSrpK0Kv37PCR3bFm3JCSNAO4j61U8DNwGnBARqwotrEEkHQo8\nBXwrHUzYUSTtCuwaEXdKejHwS+DYTnn9ACTtEBF/SMf5/BSYFRE/LbquRpH0aWAKsGNETCu6nkaS\ntAaYkr6K33Ek9QI/iYjL07/P0RHxZK2xZd6SOBh4ICLWpj7FlcC7C66pYSLiZmBD0XU0S0Q8FhF3\npumngFXAbsVW1VgR8Yc0OYrsjAEd84YjaXfgncDXgU794khHrpeknYFDI+JygIh4Ni8goNwh8XLg\nwar5h9JtVjLpFCyTgaXFVtJYkraRdCfZAaNLImJl0TU10JeAM8i+VNKJArhB0u2STi66mAbbA3hc\n0jck3SFpvqQd8gaXOSTKuZ/MNpF2NV0FnJ62KDpGRDwfEa8DdgemSqoUXFJDSHoX8JuIWEaHftoG\n3hwRk4GjgY+n3b+dYiRwIPDViDgQeJoa58/rV+aQeBiYUDU/gWxrwkpC0rbAfwD/HhG1jpXpCGlT\n/lrgoKJraZA3AdPSfvvvAG+X9K2Ca2qoiHg0/X4cWEC2e7tTPAQ8FBG3pfmryEKjpjKHxO3AayRN\nlDQKOJ7sID0rAUkCLgNWRsSXi66n0SS9tP8U+OmA0COAZcVW1RgR8Q8RMSEi9iA7M/OPI+KDRdfV\nKJJ2kLRjmh4NHAl0zLcMI+Ix4EFJk9JNhwP35I0v6ojrrRYRz0r6BHA9WVPwsg77Zsx3gLcCL5H0\nIHBORHyj4LIa6c3A+4G7JfW/ef59RPyowJoaaTzQK2kbsg9j/xYRNxZcU7N02q7fccCC7HMMI4Er\nImJRsSU13CeBK9IH7P8CTswbWNqvwJqZWfOVeXeTmZk1mUPCzMxyOSTMzCyXQ8LMzHI5JMzMLJdD\nwszMcjkkzIaQTmv+K0lj0/zYNP+KBjz3z7a+QrPm8XESZnWQdAbw6og4RdLXgF9FxNyi6zJrNm9J\nmNXnS8Ahkj5Fdu6iL9QaJGlBOnPoiv6zh0p6paTVkl6Szgx7s6TD031Ppd/jJd2ULnKzXNJbWrRe\nZoPyloRZnSS9A1gIHJF3ig1JYyNiQzpf063A1DR/EvAOsotj/WVEfCyN/31E7CjpM8B2EXFeOq/V\n6E47K66Vk7ckzOp3NPAIMNiVAk9P15C4hewU4ZMAIuIyYGfgFGBWjcfdCpwoaQ5wgAPC2oVDwqwO\nkl5HdrbMNwJ/ly6/OnBMBTgMOCRdR+JOYLt03w5koRHAjgMfm65EeCjZKfC/KekDzVkTs+FxSJgN\nIe3+uZTswkgPAv9M7Z7ETsCGiPijpL2A6ovLzwX+DZgDzK+xjFcAj0fE18kuCTq5sWthtmUcEmZD\nOxlYW9WH+Cqwd42rlf0IGClpJXA+2S4nJL0VmALMjYhvA89Impke098UfBtwp6Q7gOOAC5u2NmbD\n4Ma1mZnl8paEmZnlckiYmVkuh4SZmeVySJiZWS6HhJmZ5XJImJlZLoeEmZnlckiYmVmu/w/9pUNg\nWRkRIwAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x9e65940>"
       ]
      }
     ],
     "prompt_number": 150
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}