1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
{
"metadata": {
"name": "",
"signature": "sha256:9aca5229d39ed9fee3ce40f1f1dab6ba8b884ebc52bfe9bb1467df97ee1f15bb"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 4:Torsion"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.2 page number 183"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"dia = 10 #diameter of shaft(A-C)\n",
"c = dia/2 #mm - Radius\n",
"T = 30 #N/mm -Torque in the shaft \n",
"#Caliculations\n",
"\n",
"J = 3.14*(dia**4)/32 #mm4\n",
"shear_T = T*c*pow(10,3)/J # The torsion shear in the shaft AC\n",
"import numpy as np \n",
"print \"The maximum shear due to torsion is \",round(shear_T,2),\"Mpa\"\n",
"arr_T = np.zeros((3,3))\n",
"arr_T[0][1]=round(shear_T,1) #arranging the elements in array\n",
"arr_T[1][0]=round(shear_T,1)\n",
"print \"stress tensor matrix\",ceil(arr_T),\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum shear due to torsion is 152.87 Mpa\n",
"stress tensor matrix [[ 0. 153. 0.]\n",
" [ 153. 0. 0.]\n",
" [ 0. 0. 0.]]\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.3 page number 184"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"dia_out = 20 #mm- outer diameter of shaft\n",
"dia_in = 16 #mm- inner diameter of shaft \n",
"c_out = dia_out/2 #mm - outer Radius of shaft \n",
"c_in = dia_in/2 #mm - inner radius of shaft \n",
"T = 40 #N/mm -Torque in the shaft \n",
"#caliculations\n",
"\n",
"J = 3.14*((dia_out**4)- (dia_in**4))/32 #mm4\n",
"shear_T_max = T*c_out*pow(10,3)/J # The maximum torsion shear in the shaft\n",
"shear_T_min = T*c_in*pow(10,3)/J # The maximum torsion shear in the shaft\n",
"print \"The maximum shear due to torsion is \",round(shear_T_max,2),\"Mpa\"\n",
"print \"The minimum shear due to torsion is \",round(shear_T_min,2),\"Mpa\"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum shear due to torsion is 43.15 Mpa\n",
"The minimum shear due to torsion is 34.52 Mpa\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.4 page number 187"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"hp = 10 # horse power of motor \n",
"f = 30 # given \n",
"shear_T = 55 #Mpa - The maximum shearing in the shaft \n",
"#caliculations\n",
"\n",
"T = 119*hp/f # N.m The torsion in the shaft \n",
"#j/c=T/shear_T=K\n",
"k = T*pow(10,3)/shear_T #mm3\n",
"#c3=2K/3.14\n",
"c = pow((2*k/3),0.33) #mm - The radius of the shaft \n",
"diamter = 2*c #mm - The diameter of the shaft\n",
"print \"The Diameter of the shaft used is\",round(diamter,2),\"mm\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Diameter of the shaft used is 15.26 mm\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.5 page number 188"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"hp = 200 #Horse power\n",
"stress_sh = 10000 #psi- shear stress\n",
"rpm_1 = 20.0 # The rpm at which this shaft1 operates \n",
"rpm_2 = 20000.0 # The rpm at which this shaft2 operates\n",
"T_1= hp*63000.0/rpm_1 #in-lb Torsion due to rpm1\n",
"T_2= hp*63000/rpm_2 #in-lb Torsion due to rpm1\n",
"#caliculations \n",
"\n",
"#j/c=T/shear_T=K\n",
"k_1= T_1/stress_sh #mm3\n",
"#c3=2K/3.14\n",
"c_1= pow((2*k_1/3),0.33) #mm - The radius of the shaft \n",
"diamter_1 = 2*c_1 #mm - The diameter of the shaft\n",
"print \"The Diameter of the shaft1 is\",round(diamter_1,2),\"mm\"\n",
"\n",
"#j/c=T/shear_T=K\n",
"k_2= T_2/stress_sh #mm3\n",
"#c3=2K/3.14\n",
"c_2= pow((2*k_2/3),0.33) #mm - The radius of the shaft \n",
"diamter_2 = 2*c_2 #mm - The diameter of the shaft\n",
"print \"The Diameter of the shaft2 is\",diamter_2,\"mm\"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Diameter of the shaft1 is 6.87 mm\n",
"The Diameter of the shaft2 is 0.702590481015 mm\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.7 page number 193"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"T_ab = 0 #N.m - torsion in AB \n",
"T_bc = 150 #N.m - torsion in BC\n",
"T_cd = 150 #N.m - torsion in CD\n",
"T_de = 1150 #N.m - torsion in DE\n",
"l_ab = 250 #mm - length of AB\n",
"l_bc = 200 #mm - length of BC\n",
"l_cd = 300 #mm - length of cd \n",
"l_de = 500.0 #mm - length of de\n",
"d_1 = 25 #mm - outer diameter \n",
"d_2 = 50 #mm - inner diameter\n",
"G = 80 #Gpa -shear modulus\n",
"#Caliculations \n",
"\n",
"J_ab = 3.14*(d_1**4)/32 #mm4\n",
"J_bc = 3.14*(d_1**4)/32 #mm4\n",
"J_cd = 3.14*(d_2**4 - d_1**4)/32 #mm4\n",
"J_de = 3.14*(d_2**4 - d_1**4)/32 #mm4\n",
"rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G) # adding the maximum radians roteted in each module\n",
"print \"The maximum angle rotated is \",rad,\"radians \" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum angle rotated is 0.0232628450106 radians \n"
]
}
],
"prompt_number": 37
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.9 Pagenumber 196"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given \n",
"#its a statistally indeterminant \n",
"#we will take of one of the support \n",
"#Given \n",
"T_ab = 0 #N.m - torsion in AB \n",
"T_bc = 150 #N.m - torsion in BC\n",
"T_cd = 150 #N.m - torsion in CD\n",
"T_de = 1150 #N.m - torsion in DE\n",
"l_ab = 250 #mm - length of AB\n",
"l_bc = 200 #mm - length of BC\n",
"l_cd = 300 #mm - length of cd \n",
"l_de = 500.0#mm - length of de\n",
"d_1 = 25 #mm - outer diameter \n",
"d_2 = 50 #mm - inner diameter\n",
"#Caliculations \n",
"\n",
"J_ab = 3.14*(d_1**4)/32 #mm4\n",
"J_bc = 3.14*(d_1**4)/32 #mm4\n",
"J_cd = 3.14*(d_2**4 - d_1**4)/32 #mm4\n",
"J_de = 3.14*(d_2**4 - d_1**4)/32 #mm4\n",
"G = 80 #Gpa -shear modulus\n",
"rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G) \n",
"#now lets consider T_A then the torsion is only T_A\n",
"# T_A*(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) +rad = 0\n",
"# since there will be no displacement \n",
"T_A =-rad/(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) #Torsion at A\n",
"T_B = 1150 - T_A #n-m F_X = 0 torsion at B\n",
"print \"The Torsion at rigid end A is\",round(T_A,2),\"N-m\"\n",
"print \"The Torsion at rigid end B is\",round(T_B,2),\"N-m\"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Torsion at rigid end A is -141.72 N-m\n",
"The Torsion at rigid end B is 1291.72 N-m\n"
]
}
],
"prompt_number": 39
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.12 Pagenumber 202"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"dai_bc = 240 #mm- daimeter of '8'bolt circle \n",
"dia = dai_bc/8 #Diameter of each bolt\n",
"A = 0.25*(dia**2)*3.14 # Area of a bolt\n",
"S_allow = 40 #Mpa - The maximum allowable allowable shear stress \n",
"P_max = (S_allow)*A #N - The maximum allowable force \n",
"D = 120.0 #mm - the distance from central axis \n",
"T_allow =P_max*D*8 #N-m The allowable torsion on the 8 bolt combination \n",
"print \"The allowable torsion on the 8 bolt combination\",T_allow ,\"N-m\"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The allowable torsion on the 8 bolt combination 27129600.0 N-m\n"
]
}
],
"prompt_number": 49
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.15 page number 211"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"#AISC MANUALS\n",
"#approximated by three narrow tubes \n",
"#J = Bbt^3\n",
"B = 0.33 # constant mentiones in AISC\n",
"#three rods \n",
"\n",
"#rod_1\n",
"t_1 = 0.605 #inch - Thickness \n",
"b = 12.0 #inches - width \n",
"J_1 = B*b*(t_1**3) #in4 - Torsion constant \n",
"\n",
"#rod_2\n",
"t_2 = 0.605 #inch - Thickness \n",
"b = 12 #inches - width \n",
"J_2 = B*b*(t_2**3) #in4 - Torsion constant \n",
"\n",
"#rod_3\n",
"t_3 = 0.390 #inch - Thickness \n",
"b = 10.91 #inches - width \n",
"J_3 = B*b*(t_3**3) #in4 - Torsion constant \n",
"\n",
"#Equivalent\n",
"J_eq = J_1+J_2+J_3 #in4 - Torsion constant \n",
"print \"the Equivalent Torsion constant is \",round(J_eq,2), \"in4\"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the Equivalent Torsion constant is 1.97 in4\n"
]
}
],
"prompt_number": 57
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.16 page number 214"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"dia_out = 10 #mm- outer diameter of shaft\n",
"dia_in = 8 #mm- inner diameter of shaft \n",
"c_out = dia_out/2 #mm - outer Radius of shaft \n",
"c_in = dia_in/2 #mm - inner radius of shaft \n",
"T = 40 #N/mm -Torque in the shaft \n",
"#caliculations\n",
"\n",
"J = 3.14*((dia_out**4)- (dia_in**4))/32 #mm4\n",
"shear_T_max = T*c_out*pow(10,3)/J # The maximum torsion shear in the shaft\n",
"shear_T_min = T*c_in*pow(10,3)/J # The maximum torsion shear in the shaft\n",
"print \"The maximum shear due to torsion is \",round(shear_T_max,2),\"Mpa\"\n",
"print \"The minimum shear due to torsion is \",round(shear_T_min,2),\"Mpa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum shear due to torsion is 345.23 Mpa\n",
"The minimum shear due to torsion is 276.18 Mpa\n"
]
}
],
"prompt_number": 58
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|