1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
{
"metadata": {
"name": "",
"signature": "sha256:f3ccf4fb6d13add26a342446f0908b75d3a6a82c442b340e601708c15ec3ca4f"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2:Axial strains and Deformations in bars "
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.1 page number 77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"l_ob = 2000 #mm - length of rod ob\n",
"l_bc = 1000 #mm - length of rod bc\n",
"l_cd = 1500 #mm - length of rod cd\n",
"p_ob = 100 #kN - Force in rods \n",
"p_bc = -150 #KN\n",
"p_cd = 50 #KN \n",
"A_ob = 1000 #mm2 - Area of rod ob\n",
"A_bc = 2000 #mm2 - Area of rod bc \n",
"A_cd = 1000 #mm2 - Area of rod cd\n",
"E = 200.0 #GPA \n",
"# the total deflection is algebraic sums of `deflection in each module \n",
"e_1 = p_ob*l_ob/(A_ob*E)\n",
"e_2 = p_bc*l_bc/(A_bc*E)\n",
"e_3 = p_cd*l_cd/(A_cd*E)\n",
"#All units are satisfied \n",
"e_total = e_1+ e_2 + e_3\n",
"print \"The total deflection is :\",round(e_total,3) ,\"mm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total deflection is : 1.0 mm\n"
]
}
],
"prompt_number": 77
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.4 page number 80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"p_app = 3 #Kips - applied force \n",
"P_A = 2.23 #Kips \n",
"p_B = -2.83 #kips - compressive force\n",
"l_ab = 6.71 #inch\n",
"l_bc = 8.29 #inch\n",
"s_ab = 17.8 #ksi - tensile stress\n",
"s_bc = -12.9 #ksi - compressive stress\n",
"E = 10.6 * pow(10,3) #ksi -youngs modulus \n",
"e_ab = s_ab*l_ab/E\n",
"\n",
"e_bc = s_bc*l_bc/E\n",
"x = e_ab/e_bc #the Ratio of cosines of the deflected angles \n",
"# t_1 and t_2 be deflected angles \n",
"#t_2 = 180-45-26.6-t_1 the sum of angles is 360\n",
"#t_1 = 52.2 degress\n",
"import math\n",
"e = e_ab/math.acos(math.radians(52.2)) #inch\n",
"k = p_app/e # kips/in vertical stiffness of the combination\n",
"print \"The vertical stiffness of the combination is\",round(k,3),\"kips/inch\"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0.0112677358491\n",
"The vertical stiffness of the combination is 113.14 kips/inch\n"
]
}
],
"prompt_number": 36
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.6 page number 83"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"dia = 50 #mm - diameter of aluminium \n",
"p = 100 # KN - instant force applid\n",
"dia_c = 0.1215 #mm- change in diameter \n",
"l_c = 0.219 #mm - change in length\n",
"l = 300 #mm - length \n",
"strain_dia = dia_c/dia # lateral strain \n",
"strain_l = l_c/l #longitudinal strain \n",
"po = strain_dia/strain_l # poission ratio \n",
"area = 3.14*dia*dia/4 #mm2 area\n",
"E = p*l/(area*l_c) #N/mm2 youngs modulus \n",
"print \"The lateral strain is:\",strain_dia,\"no units\"\n",
"print \"The longitudinal strain is:\",strain_l,\"no units\"\n",
"print \"The poissions ratio is:\",po,\"no units\"\n",
"print \"Youngs modulus:\",round(E,2),\"N/mm2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The lateral strain is: 0.00243 no units\n",
"The longitudinal strain is: 0.00073 no units\n",
"The poissions ratio is: 3.32876712329 no units\n",
"Youngs modulus: 69.8 N/mm2\n"
]
}
],
"prompt_number": 34
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.7 page number 86"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"T = 12.9*pow(10,-6) #/F\n",
"t = 100.00 # F \n",
"e_ab = T*t*l_ab #in-elongation \n",
"e_bc = T*t*l_bc #in-elongation\n",
"k = e_ab/e_bc # ratio of cosines of deflected angles \n",
"# t_1 and t_2 be deflected angles \n",
"#t_2 = 180-45-26.6-t_1 the sum of angles is 360\n",
"t_1 = 26.6\n",
"import math\n",
"e = e_ab/math.acos(math.radians(26.6))\n",
"print \"The displacement in point B is :\",e ,\"in\"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The displacement in point B is : 0.00795578950395 in\n"
]
}
],
"prompt_number": 78
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.11 page number "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"mass = 4 #kg \n",
"dist = 1 #mt freely falling distance\n",
"l = 1500 #mm length of rod\n",
"d = 15 #mm diameter\n",
"E = 200 #GPA youngs modulus \n",
"k = 4.5 # N/mm stiffness costant\n",
"F = mass*9.81# The force applying\n",
"Area = 3.14*(d**2)/4 \n",
"# Two cases \n",
"#youngs modulus \n",
"e_y = F*l/(Area*E*pow(10,3))\n",
"# stiffness\n",
"e_f = F/k \n",
"#total\n",
"e = e_y +e_f\n",
"k = 1+(2/(e*pow(10,-3)))\n",
"stress_max_1 = F*(1+pow(k,0.5))/Area\n",
"print \"The maximum stress is:\",stress_max_1,\"Mpa\"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum stress is: 3.59377281766 Mpa\n"
]
}
],
"prompt_number": 56
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.12 page number 103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"flex_a = 1#f\n",
"flex_b = 2#f\n",
"#removing lower support and solving FBD\n",
"e = -2 -(2+1)#fp\n",
"#e_1 = (2+1+1)*R\n",
"#e_1 = -e Making the elongations zero since the both ends are fixed\n",
"R = e/(2+1+1.0) #p\n",
"print \"The reactions at bottom is\",R,\"p\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reactions at bottom is -1.25 p\n"
]
}
],
"prompt_number": 75
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.19 page number 113"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"l = 30 #in - The length of the rod\n",
"p_1 = 80 #kips - The Force on the end\n",
"p_2 = 125 #kips - The force on the other end\n",
"A_s = 0.5 #in2 - The crossection of the steel rod\n",
"A_a = 0.5 #in2 - The crossection of the aluminium \n",
"E_a = 10*(10**6) #psi - The youngs modulus of the aluminium \n",
"E_s = 30*(10**6) #psi - The youngs modulus of the steel\n",
"#Internally stastically indeterminant \n",
"p_a = p_1/4 #From solving we get p_s = 3*P_a\n",
"#From material properties point of view \n",
"#stress_steel = stress_aluminium\n",
"e = p_a*l*(10**3)/(A_a*E_a) #The end deflection \n",
"print \"The end deflection is\",e,\"in\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The end deflection is 0.12 in\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|