1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
{
"metadata": {
"name": "",
"signature": "sha256:aaf5a5f62a391d916c40aa2d720de6a3e7681d1c9c64ec2fdbeff148819b3c75"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Chapter 12:Energy and Virtual-work Methods"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.1 page number 645 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#Virtual loading\n",
"p_ab = -0.833 #lb The recorded virtual loading\n",
"p_bc = + 0.833 #lb The recorded virtual loading\n",
"F_ab = 2500 #lb\n",
"F_bc = -2500 #lb\n",
"l_ab = 60 #in - The length of the rod\n",
"l_bc = 60 #in - The length of the rod\n",
"A_ab = 0.15 #in2 the areaof ab\n",
"A_bc = 0.25 #in2 the areaof bc\n",
"E = 30*(10**6) #psi The youngs modulus of the material\n",
"#Part_a\n",
"e_a =p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E) #in the deflection\n",
"if e_a<0:\n",
" print \"a) The deflection is downwards\",round(-e_a,3),\"in\"\n",
"else:\n",
" print \"a) The deflection is upwards\",round(e_a,3),\"in\"\n",
"#part-b\n",
"x = 0.125 #Shortening of member Ab\n",
"e_b = p_ab*(-x) + p_bc*0 #in - in\n",
"if e_b<0:\n",
" print \"b) The deflection is downwards\",round(-e_b,3),\"in\"\n",
"else:\n",
" print \"b) The deflection is upwards\",round(e_b,3),\"in\"\n",
"#Part-c\n",
"S = 6.5*(10**-6) #Thermal specific heat\n",
"T = 120 #F - The cahnge in temperature\n",
"e_t = -S*T*l_ab #in - The change in length of member\n",
"e_c = p_bc*e_t #in the deflection\n",
"if e_c<0:\n",
" print \"c) The deflection is downwards\",round(-e_c,3),\"in\"\n",
"else:\n",
" print \"c) The deflection is upwards\",round(e_c,3),\"in\"\n",
"\n",
"\n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The deflection is downwards 0.044 in\n",
"b) The deflection is upwards 0.104 in\n",
"c) The deflection is downwards 0.039 in\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.3 page number 648"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#Virtual loading\n",
"#Two parts \n",
"#Part -1 \n",
"p_ab = 5 #KN The recorded virtual loading\n",
"p_bc = -4 #KN The recorded virtual loading\n",
"F_ab = 10 #KN\n",
"F_bc = -8 #KN\n",
"l_ab = 2.5 #mt - The length of the rod\n",
"l_bc = 2 #mt - The length of the rod\n",
"A_ab = 5*(10**-4) #mt2 the areaof ab\n",
"A_bc = 5*(10**-3) #mt2 the areaof bc\n",
"E = 70 #Gpa The youngs modulus of the material\n",
"e_a =(p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E))*(10**-6) #KN-m\n",
"#Part -2 due to flexure\n",
"I = 60*10**6 #mm4 - the moment of inertia \n",
"#After solving the integration \n",
"e_b = 0.01525 #KN-m\n",
"#Total\n",
"e = (e_a+e_b)*1 #m\n",
"print \"The point C deflects\",round(e,3),\"mt down\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The point C deflects 0.019 mt\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.5 page number 651"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#Virtual loading Without f_d\n",
"p_ab = -0.833 #lb The recorded virtual loading\n",
"p_bc = + 0.833 #lb The recorded virtual loading\n",
"F_ab = 2500 #lb\n",
"F_bc = -2500 #lb\n",
"l_ab = 60 #in - The length of the rod\n",
"l_bc = 60 #in - The length of the rod\n",
"A_ab = 0.15 #in2 the areaof ab\n",
"A_bc = 0.25 #in2 the areaof bc\n",
"E = 30*(10**6) #psi The youngs modulus of the material\n",
"#Part_a\n",
"e_a =p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E) #lb-in the deflection\n",
"#With f_d\n",
"p_bd = 1 #lb The recorded virtual loading \n",
"F_bd = 1 #lb\n",
"l_bd = 40 #in - The length of the rod\n",
"A_bd = 0.1 #in2 the areaof ab\n",
"e_a_1 =p_ab*p_ab*l_ab/(A_ab*E) + p_bc*p_bc*l_bc/(A_bc*E) +p_bd*p_bd*l_bd/(A_bd*E) #lb-in the deflection\n",
"#Since the produced defelection should compensate the other one\n",
"x_d = e_a/e_a_1\n",
"print \"The reaction force at D is\",round(-x_d,2),\"lb\"\n",
"\n",
"#Part - B\n",
"e_b = -x_d*l_bd/(A_bd*E ) #in - The deflection of nodal point B\n",
"print\"The deflection of nodal point B\",round(e_b,4),\"in\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reaction force at D is 1578.98 lb\n",
"The deflection of nodal point B 0.0211 in\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.6 page number 655"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#Virtual loading\n",
"p_ab = -0.833 #lb The recorded virtual loading\n",
"p_bc = + 0.833 #lb The recorded virtual loading \n",
"l_ab = 60 #in - The length of the rod\n",
"l_bc = 60 #in - The length of the rod\n",
"A_ab = 0.15 #in2 the areaof ab\n",
"A_bc = 0.25 #in2 the areaof bc\n",
"E = 30*(10**6) #psi The youngs modulus of the material\n",
"K_1 = A_ab*E/l_ab #k/in - Stiffness\n",
"K_2 = A_bc*E/l_bc #k/in - Stiffness\n",
"#soving for e_1 and e_2 gives a liner euations to solve\n",
"# 128*e_1 + 24*e_2 = 0\n",
"#24*e_1 + 72*e_2 = -3\n",
"#Solving for e_1,e_2\n",
"a = np.array([[128,24], [24,72]])\n",
"b = np.array([0,-3])\n",
"x = np.linalg.solve(a, b)\n",
"e_1 = x[0] #in\n",
"e_2 = x[1] #in\n",
"u_1 = 0.8*e_1 - 0.6*e_2 #Taking each components\n",
"F_1 = K_1*u_1*(10**-3) #k The reaction at A Force = stiffness x dislacement \n",
"u_2 = 0.8*e_1 + 0.6*e_2 #Taking each components\n",
"F_2 = K_2*u_2*(10**-3) #k The reaction at B Force\n",
"print \"The reaction at A \",F_1,\"k\"\n",
"print \"The reaction at B \",F_2,\"k\"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reaction at A 2.5 k\n",
"The reaction at B -2.5 k\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.7 page number 655"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Virtual loading\n",
"p_ab = -0.833 #lb The recorded virtual loading\n",
"p_bc = + 0.833 #lb The recorded virtual loading \n",
"l_ab = 60 #in - The length of the rod\n",
"l_bc = 60 #in - The length of the rod\n",
"A_ab = 0.15 #in2 the areaof ab\n",
"A_bc = 0.25 #in2 the areaof bc\n",
"E = 30*(10**6) #psi The youngs modulus of the material\n",
"K_1 = A_ab*E/l_ab #k/in - Stiffness\n",
"K_2 = A_bc*E/l_bc #k/in - Stiffness\n",
"p_bd = 1 #lb The recorded virtual loading \n",
"F_bd = 1 #lb\n",
"l_bd = 40 #in - The length of the rod\n",
"A_bd = 0.1 #in2 the areaof ab\n",
"K_3 = A_ab*E/l_ab #k/in - Stiffness\n",
"#soving for e_1 and e_2 gives a liner euations to solve\n",
"# 128*e_1 + 24*e_2 = 0\n",
"#24*e_1 + 72*e_2 = -3\n",
"#Solving for e_1,e_2\n",
"a = np.array([[128,24], [24,147]])\n",
"b = np.array([0,-3])\n",
"x = np.linalg.solve(a, b)\n",
"e_1 = x[0] #in\n",
"e_2 = x[1] #in\n",
"u_1 = 0.8*e_1 - 0.6*e_2 #Taking each components\n",
"F_1 = K_1*u_1*(10**-3) #k The reaction at A Force = stiffness x dislacement \n",
"u_2 = 0.8*e_1 + 0.6*e_2 #Taking each components\n",
"F_2 = K_2*u_2*(10**-3) #k The reaction at B Force\n",
"u_3 = e_2 #Taking each components\n",
"F_3 = K_3*u_3*(10**-3) #k The reaction at D Force\n",
"print \"The reaction at A \",round(F_1,2),\"k\"\n",
"print \"The reaction at B \",round(F_2,2),\"k\"\n",
"print \"The reaction at D \",round(F_3,2),\"k\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reaction at A 1.18 k\n",
"The reaction at B -1.18 k\n",
"The reaction at D -1.58 k\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.8 page number 659"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#First we will solve part B\n",
"u_1 =5 #L/AE, elastic elongation\n",
"u_2 =25 #L/AE,elastic elongation\n",
"f_1 = u_1#, Units got neutralized , Constitutive relation for elastic bars\n",
"f_2 = u_2# Units got neutralized\n",
"#u_1 = 0.8*e_1 - 0.6*e_2\n",
"#u_2 = 0.8*e_1 + 0.6*e_2\n",
"#u = A*e Matric multiplication \n",
"A = np.array([[0.8,-0.6],[0.8,0.6]]) #The matrix form of A\n",
"F = np.array([[f_1],[f_2]])\n",
"P = np.dot((A.T),F) #Nodal forces matrix\n",
"print \"b) The vertical component of the nodal force is\",P[1],\"\"\n",
"print \"b) The vertical component of the nodal force is\",P[0],\"\"\n",
"#Part A\n",
"#F_1 = (5/8.0)*P_1 - (5/6.0)*p_2 , From statics\n",
"#F_1 = (5/8.0)*P_1 + (5/6.0)*p_2\n",
"#F = BP ,Matric multiplication \n",
"B = np.array([[(5/8.0),-(5/6.0)],[(5/8.0),(5/6.0)]]) #The matrix form of A\n",
"U = np.array([[u_1],[u_2]])\n",
"e = P = np.dot((B.T),U) #L/AE, Nodal forces matrix\n",
"print \"a) The components of displacement of point B are\",round(e[0],2),\"L/AE and\",round(e[1],2),\"L/AE\" \n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"b) The vertical component of the nodal force is [ 12.] \n",
"b) The vertical component of the nodal force is [ 24.] \n",
"a) The components of displacement of point B are 18.75 L/AE and 16.67 L/AE\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.10 page number 667"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"A_1 = 0.125 #in2 , The area of the crossection of AB\n",
"A_2 = 0.219 #in2 , The area of the crossection of BC\n",
"l_1 = 3*(5**0.5) #in , The length of AB\n",
"l_2 = 6*(2**0.5) #in , The length of BC\n",
"p = 3 #k , Force acting on the system \n",
"E = 10.6*(10**3) #Ksi - youngs modulus of the material\n",
"p_1 = (5**0.5)*p/3 #P, The component of p on AB\n",
"p_2 = -2*(2**0.5)*p/3 #P, The component of p on AB\n",
"\n",
"e = p_1*l_1*p_1/(p*E*A_1) + p_2*l_2*p_2/(p*E*A_2) #in, By virtual deflection method \n",
"print \"The deflection is\",round(e,3),\"in\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The deflection is 0.018 in\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|