1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 10:Deflections of beams "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.1 page number 501"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The maximum bending stress developed in the saw 300.0 Mpa\n"
]
}
],
"source": [
"#Given \n",
"dia = 400 #mm - The diameter of a pulley\n",
"E = 200 #Gpa - Youngs modulus\n",
"t = 0.6 #mm - The thickness of band\n",
"c = t/2 #mm - The maximum stress is seen \n",
"#Caliculations\n",
"\n",
"stress_max = E*c*(10**3)/(dia/2) #Mpa - The maximum stress on the crossection occurs at the ends\n",
"print \"The maximum bending stress developed in the saw \",stress_max,\"Mpa\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.3 page number 512"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a) The maximum displacement in y direction is -0.0130208333333 W(l**4)/EI \n",
"a) The maximum deflection occured at 0.5 L\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEACAYAAABYq7oeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucTfX+x/HXZ8g1l5LEiORSUkiRTmgSGkWU04lc0o2S\n6lzquPxMBoU61XHrHCqZTKI7k1IumeRILsctkUtzlJlQiEwuY+b7+2M2TTODuezZa8/e7+fjMY/H\nrL2/a+23ZWZ95ru+a32XOecQERHJKsLrACIiEnxUHEREJAcVBxERyUHFQUREclBxEBGRHFQcREQk\nB78UBzOLNrPNZrbFzAbl8v4lZrbMzI6Y2V9zeT/CzP5rZgn+yCMiIoVT6OJgZhHAJOAmoBHQw8wu\nzdZsL/AI8I9TbOYx4OvCZhEREf/wR8+hBbDVObfDOZcGzAK6ZG3gnPvJObcaOJ59ZTOrCdwMvOKH\nLCIi4gf+KA6RwPdZlnf6XsurfwJPALpVW0QkSHg6IG1mtwC7nXNrAfN9iYiIx0r6YRvJQK0syzV9\nr+XFdcCtZnYzUBaoYGbTnXN9sjc0M/UsREQKwDmX7z+8/dFzWAnUM7PaZlYK6A6c7qqjkyGdc0Od\nc7Wccxf71vs0t8KQpb2+nGP48OGeZwiWL+0L7Qvti9N/FVShew7OuXQzGwjMJ7PYTHXObTKz/plv\nu5fMrBqwCqgAZJjZY8BlzrlDhf18ERHxP3+cVsI59zFwSbbXpmT5fjdw4Rm28RnwmT/yiIhI4egO\n6WIoKirK6whBQ/viN9oXv9G+KDwrzDmpQDIzV1yyiogECzPDeTQgLSIiIUbFQUREclBxEBGRHFQc\nREQkBxUHERHJQcVBRERyUHEQEZEcVBxERCQHFQcREclBxUFERHJQcRARkRxUHEREJAe/TNktEo6S\nknYQExNHcnIGkZERjBrVlzp1ansdS8QvNCurSAEkJe2gffuJbN8+AigPpFK37nAWLHhEBUKCSkFn\nZVVxEMmHtPQ0Nv64kQdHPsmXO6tA5Bqo9B3sbgzJTWl1cQrxY5+ldqXamOX791HE71QcRPzMOce2\nfdtYkbyClSkrWZmykrW71lK7Um32fXUWu//7ACS3gAO1oNp6qLGS85pMp+RFB0nPSKd5ZHOa12hO\ni8gWNK/RnKrlq3r9T5IwpOIgUkjJB5Mzi0DySlakrGBVyioqlq74uwP8VTWuomLpivTqNYIZMx4n\n85TSCan07Pkc8fFPkvxLMiuTMwvKiuTMbVUuU/nkdppHNueq6ldRoXQFr/65EiY8LQ5mFg2MI/Pq\np6nOuWeyvX8JMA1oBgx1zr3ge70mMB2oBmQALzvnJpziM1QcxG/2H97PqpRVv+sVHD1+9HcH7+Y1\nmlPt7Gq5rp/fMYcMl/FbL8RXNNbtXsdFlS/6XfFpXK0xpUuWLtp/vIQVz4qDmUUAW4AbgRRgJdDd\nObc5S5vzgNpAV2B/luJwAXCBc26tmZ0NrAa6ZF03yzZUHKRADqcdZs2uNb8VguSV/HDoB5pVb/a7\nA/NFlS/K1zjBiauVUlIyqFEj/1crpaWn8dWer072LlamrGTbvm00qtroZIFqEdmCS6pcQomIEgX4\nl4t4WxxaAsOdcx19y4MBl7334HtvOPDLieKQy/uzgYnOuUW5vKfiICed6jLS4xnHMw+4WU7pbNm7\nhcuqXva7XkHD8xoG5QE39Vgqa3atOXlqa2XySvak7qFZ9Wa/y591wFuX1MrpeFkcugE3Oef6+ZZ7\nAS2cc4/m0vaUxcHMLgISgcudc4dyeV/FQYCsp3Ri4dwfIHIplS6bRL02xuafN1OrUq3fDQY3rtaY\nMiXLeB27wPb+updVKatOnv5akbzi5IB3vbL1eeuf37Fr9Qvw60XoklrJrqDFIShugvOdUnoHeCy3\nwiCSVUxMHNuPt4eHW0CpQ5DcggM7b6Pymm2kTPqUiqUreh3Rr6qUq8JN9W7ipno3AZlXUZ0Y8B42\n+QV21SkJ1zWFb9vBvPFs3z6CmJjneP314R4nl+LMH8UhGaiVZbmm77U8MbOSZBaGeOfcnNO1jY2N\nPfl9VFQUUVFR+ckpIWDvr3tZdPZs6PYyzJsAm24DMv8oyig1POQKQ27MjJoVa1KzYk0mrF/L14kj\noOQRaD0aHmoCibEkpxz3OqZ4JDExkcTExEJvxx/FYSVQz8xqAz8A3YEep2mfvXvzKvC1c278mT4o\na3GQ8OKc4/X1r/PEgieoXLY2u15cCUerZ2mRSo0a4TdVWGRkBJAKx8vD4pGwoQd0vp8N1f7H2l3d\naHpBU68jSoBl/8N5xIgRBdqOPy9lHc9vl7KONbP+ZA5Mv2Rm1YBVQAUyL1k9BFwGNAGWABsA5/sa\n6pz7OJfP0JhDmNq6dysPfvgg+w/vZ0qnKZx37HxNXeGT2yW1F9d9kn7/uoDn1/2DPk36EBsVy9ml\nzvY6qnhEN8FJyDl6/CjP/udZxn85nqGth/LoNY9SMiKzs1vYy0hDyan2xZ7UPTw+/3GW7FjCpJsn\n0alBJ6+jigdUHCSkLNmxhP5z+1P/3PpM7DiR2pXD88DvDwu/XchDHz5Ek2pNGB89nsiKkV5HkgAq\naHEIv5O0EtT2/rqX++bcx13v3sXTbZ9mTvc5KgyF1O7idmx4aAOXVb2MJpObMGnFJNIz0r2OJUFO\nPQcJClkHnP/U6E881fapsLjyKNA2/biJ/nP7c+T4EV7q/JIGrMOATitJsZV9wLl5ZHOvI4W0DJdB\n3No4Bi8crAHrMKDTSlLsHD1+lFGfjeLaqddyS/1bWPHAChWGAIiwCO698l6+GvAVe1L3cPm/Lmfu\nlrlex5Igo56DeEIDzsFDA9ahTT0HKRZODDj3fK8no9uO1oBzEMg6YN10SlMNWAugnoMESNYB5zsb\n3cmotqM04ByENGAdejQgLUFLA87FiwasQ4tOK0nQ0YBz8aQBawH1HKSIaMA5dGjAunhTz0GCggac\nQ48GrMOTeg7iFxpwDg8asC5+NCAtAZHb84qPVzymAecwktuA9Y/Je/Uc6yCl4iBFLsezA0rs45zO\nneGaTQy7ftjvptSW0HdiSvBPt39K+gfN2bXkdcL9+RrBSMVBilyvXiOYMeNxoDzUXgKd+sO+i+lS\nqgGz4/7pdTzxyI0P9OHTsstgd1OYNx5+iQRS6dlTz7EOBhqQliKXnJwBlIcrX4U/dodPn4aZczn4\nncYWwlnGtjrw76/gx4bQ72qo+jVQnpSUDK+jSSHoHIDkWWRkBFw+DW6IgbhE2NuAcH12s/wmMjIC\njqfD4lGZPxO9O0DcR/q5KOb0vyd51uqBCyhxy0B4/f2ThaFu3eGMGtXX42TipVGj+lK37nAgFdb3\nhs8GUfLe1jw4qJ3X0aQQ/DLmYGbRwDgyi81U59wz2d6/BJgGNAOGOudeyOu6WdppzMFD87bOo++c\nvrwS9SpvjlulZzfL72R/jnWdHunM3P4GS+5ZQo0KNbyOF9Y8G5A2swhgC3AjkAKsBLo75zZnaXMe\nUBvoCuw/URzysm6Wbag4eGRx0mLufOdOEnok0LJmS6/jSDEx5vMxxK+P57O+n1G1fFWv44QtLwek\nWwBbnXM7nHNpwCygS9YGzrmfnHOrgeP5XVe8tez7Zdz5zp28fcfbKgySL0NaD+H2hrfTPr49+w/v\n9zqO5JM/ikMk8H2W5Z2+14p6XSliq1NW03VWV+Jvi+f6i673Oo4UQ6NuGEXbOm2JnhHNwaMHvY4j\n+VCsrlaKjY09+X1UVBRRUVGeZQl1G3Zv4JY3buHlzi9zU72bvI4jxZSZ8XyH5xnw4QA6vdGJeT3n\nUb5Uea9jhbTExEQSExMLvR1/jDm0BGKdc9G+5cGAy21g2cyGA79kGXPIz7oacwiQb376hrbT2/JC\nhxe48/I7vY4jISDDZXDPnHv44ZcfSOiRQJmSZbyOFDa8HHNYCdQzs9pmVgroDiScpn3WkPldV4pY\n0v4k2se35+m2T6swiN9EWARTb53KOWXP4Y637+BY+jGvI8kZ+PNS1vH8djnqWDPrT2Yv4CUzqwas\nAioAGcAh4DLn3KHc1j3FZ6jnUMR2HtxJm2ltePwPjzOg+QCv40gISktPo9tb3ShTsgxvdHtDc3EF\ngOZWkkLZfWg3beLa0K9ZP/72h795HUdC2JHjR7h15q1ccPYFxHWNI8J0L25R0txKUmB7f91Lu/h2\n9LqilwqDFLkyJcswu/tsdhzYwYAPB6A/+oKTikOY+/nIz3R4vQO31L+FYW2GeR1HwkS5s8oxt8dc\n1u5ay18/+asKRBBScQhjh44d4uYZN3Pdhdcx5sYxmOW75ylSYBVKV2Bez3kk7kgkZnGM13EkGxWH\nMHU47TCdZ3amUdVGjIsep8Ignjin7DnM7zWf9za9x9NLnvY6jmSh4hCGjh4/yu1v3U6NCjWY3Gmy\nBgTFU1XLV2VRn0XErYtj3PJxXscRH11HFmbS0tPo8W4Pyp1Vjte6vkaJiBJeRxKheoXqLOqziDbT\n2lC2ZFn6X93f60hhT8UhjKRnpHP37Ls5mn6U9+98X9eYS1CpVakWi/os4vq46yl7Vln6NOnjdaSw\npqNDmMhwGTzwwQPsTt3N3B5zKVWilNeRRHKoe25dFvReQNvpbSlbsix3NLrD60hhS8UhDDjneHTe\no3yz9xs+6fUJZc8q63UkkVNqWLUhH/f8mA6vd6BMyTJ0vqSz15HCkkYiQ5xzjkELB7F853I+uusj\nzi51tteRRM6oyQVN+KDHB9yXcB8Lti/wOk5YUnEIcSM/G8nH2z7mk16fUKlMJa/jiORZi8gWvHfn\ne9z13l0s2bHE6zhhR8UhhD37n2eZ+dVMFvReQJVyVbyOI5JvrWq1Yma3mfzxrT/y5c4vvY4TVlQc\nQtSkFZOYsnoKi/osotrZ1byOI1Jg7S5ux6tdXuXWWbeydtdar+OEDRWHEPTqmld59j/PsrD3QiIr\n6qmrUvx1atCJF29+kY4zOvL1j197HScs6GqlEDNzw0xiFsew+O7F1DmnjtdxRPzmj5f9kSPHj9Ah\nvgOJfROpd249ryOFNBWHEPL+pvf5yyd/YWGfhTSo0sDrOCJ+16txL35N+5V209vxWd/PqF25tteR\nQpaKQ4iYt3Ue/ef25+NeH3P5+Zd7HUekyPS7qh+/pv3KjdNvZMk9S6hRoYbXkUKSikMIWJy0mLtn\n382c7nNoVr2Z13FEityfW/6Zw2mHT/Ygqpav6nWkkKMB6WJu2ffLuPOdO3nrjre49sJrvY4jEjBD\nWg+hW8NutI9vz/7D+72OE3L8UhzMLNrMNpvZFjMbdIo2E8xsq5mtNbOmWV4fYmYbzWy9mc0wM036\nk0erU1bTdVZX4m+LJ+qiKK/jiATcyBtGcmOdG4meEc3Bowe9jhNSrLCP5zOzCGALcCOQAqwEujvn\nNmdp0xEY6Jy7xcyuAcY751qaWW1gMXCpc+6Ymb0JfOicm57L57hwf5RgUtIOYmLiSE7OoFydH1lx\nydu80uUVulzaxetoIp5xzjHgwwFs/HEj/75uCmNGvkVycgaRkRGMGtWXOnXCe9DazHDO5ftpXv4Y\nc2gBbHXO7fAFmQV0ATZnadMFmA7gnPvSzCqZWTXgIHAMKG9mGUA5MguMZJOUtIP27SeyffsIqLIT\nmt3A+QuuofGfmp55ZZEQZma8eMuL3PH6HTR/viOH31wNx6sAqSxfPpwFCx4J+wJREP44rRQJfJ9l\neafvtdO1SQYinXP7geeB73yv/eycW+iHTCEnJiYuszBU3gN92sOnT7Nn0ZvExMR5HU3EcxEWQelP\nGnF431VwR18ocQwoz/btI/Q7UkCeXq1kZhcDfwFqAweAd8zsLufcG7m1j42NPfl9VFQUUVFRAUgZ\nHJKTM6BESejeFZb9DdbeA0BKSobHyUSCww/JBktmQY9b4YYYWPgMUD7sfkcSExNJTEws9Hb8URyS\ngVpZlmv6Xsve5sJc2lwP/Mc5tw/AzN4D/gCcsTiEm8jICIgaBgdqw5eP+l5NpUYNXXAmAr7fkYxj\n8P50eKgxbOkM310Zdr8j2f9wHjFiRIG244+9thKoZ2a1fVcadQcSsrVJAPoAmFlLMk8f7Qa+AVqa\nWRkzMzIHtTf5IVPI6frIFZS4+l+QMA4wIJW6dYczalRfb4OJBIlRo/pSt+5w+LUczJ0MXftQ55Ih\n+h0poEL3HJxz6WY2EJhPZrGZ6pzbZGb9M992LznnPjKzm81sG5AK3ONbd52ZTQdWA+nAGuClwmYK\nNanHUhmyYhATop9n2c54UlIyqFEjglGjNNAmckKdOrVZsOARYmKeIyUlgx0lK9Jy+D79jhRQoS9l\nDZRwvpT14Q8f5uCxg8TfFu91FJFi48CRAzSe3JgpnaYQXS/a6zieKeilrOF1Mq4Ymr99PglbEpjY\ncaLXUUSKlUplKjGtyzTuT7iffYf3eR2n2FFxCGL7D+/nvoT7ePXWV6lcprLXcUSKnbZ12tKtYTcG\nfjTQ6yjFjopDEHv040e5tcGttK/b3usoIsXWmHZjWP3Dat7a+JbXUYoVzcoapN79+l2W71zO2v56\nLKJIYZQ7qxzxt8XTeWZnWtdqTfUK1b2OVCyo5xCEdh3axcMfPcz0rtMpX6q813FEir0WkS3of1V/\n7v/gfsL1wpb8UnEIMs45+n3Qj3uvvFdTcIv40bA2w/jhlx+Yumaq11GKBRWHIBO3No7vDnxHbFSs\n11FEQkqpEqWIvy2eIYuGkLQ/yes4QU/FIYj87+f/8feFf2f6bdMpVUKPtRDxt0bnN2LQdYO4e/bd\npGekex0nqKk4BIkMl8E9c+7h8Wsfp3G1xl7HEQlZf2n5FwDGLR/ncZLgpuIQJCZ8OYFj6cd4/A+P\nex1FJKSViChBXNc4xv5nLBv3bPQ6TtBScQgCm37cxFNLnuK1rq9RIqKE13FEQt7F51zM6Laj6TO7\nD2npaV7HCUoqDh5LS0+jz+w+jLphFPXOred1HJGwcX+z+6lWvhpPLXnK6yhBScXBY2OWjqFK2So8\nePWDXkcRCStmxtRbpzJ59WRWJq/0Ok7QUXHw0KqUVUxaMYmpt04l83EWIhJI1StUZ0L0BHq/35vD\naYe9jhNUVBw8cjjtMH3e78O46HFEVsz+yG0RCZQ7L7+TK6tfyZBFQ7yOElRUHDwy7NNhNDq/ET0u\n7+F1FJGw9+LNL/LO1++wOGmx11GChoqDBz7732fM/Gom/77l3zqdJBIEzi17Li93fpm+c/py4MgB\nr+MEBRWHADt49CB95/Tlpc4vcV6587yOIyI+Het3pGO9jvz5kz97HSUo6DGhAXZ/wv0AvHLrKx4n\nEZHsDh07RJPJTXihwwt0ubSL13H8wtPHhJpZtJltNrMtZjboFG0mmNlWM1trZk2zvF7JzN42s01m\nttHMrvFHpmA0d8tcFiUt4oWbXvA6iojk4uxSZ/Na19d48MMH+TH1R6/jeKrQxcHMIoBJwE1AI6CH\nmV2arU1HoK5zrj7QH5ic5e3xwEfOuYZAE2BTYTMFo59+/Yl+H/QjrkscFUtX9DqOiJxCq1qt6N24\nN/3n9g/rZz/4o+fQAtjqnNvhnEsDZgHZ+2NdgOkAzrkvgUpmVs3MKgKtnXPTfO8dd84d9EOmoOKc\n46EPH6LH5T24/qLrvY4jImcw8oaRbN23ldfXv+51FM/4ozhEAt9nWd7pe+10bZJ9r9UBfjKzaWb2\nXzN7yczK+iFTUJn51Uw27tnI0zc+7XUUEcmDMiXLML3rdP42/298f+D7M68Qgrx+hnRJoBnwsHNu\nlZmNAwYDw3NrHBsbe/L7qKgooqKiAhCxcJIPJvPnj//MvJ7zKFOyjNdxRCSPrqx+JY9d8xj3JtzL\nJ70+IcKKx8WdiYmJJCYmFno7hb5aycxaArHOuWjf8mDAOeeeydJmMrDYOfemb3kzcOL8yhfOuYt9\nr7cCBjnnOufyOcXuaiXnHB1ndOTamtcyPCrXeiciQex4xnFavZo5BvFwi4e9jlMgXl6ttBKoZ2a1\nzawU0B1IyNYmAegDJ4vJz8653c653cD3ZtbA1+5G4Gs/ZAoKU1ZPYe/hvQxtPdTrKCJSACUjSvJa\n19cYnjicLXu3eB0noPxyn4OZRZN51VEEMNU5N9bM+pPZg3jJ12YSEA2kAvc45/7re70J8ApwFvCt\n770ctygWt57Dtn3baPlKSz6/53MaVm3odRwRKYSJX07kja/e4PN7PqdkhNdn4/OnoD0H3QRXBNIz\n0mkT14Y7LruDP7fU3ZYixV2Gy6BDfAfa1mlb7M4EeHoTnPzec8ueo1SJUjx6zaNeRxERP4iwCKZ1\nmca45eNYu2ut13ECQsXBz9bvXs9zXzxHXJe4YnN1g4ic2YWVLuS5Ds/R+/3eHD1+1Os4RU5HLz86\nln6MPu/34dl2z1K7cm2v44iIn/Vu3Jv659ZneGLoX32o4uBHIxJHUKtSLfo27et1FBEpAmbGlE5T\neG3dayz9bqnXcYqUioOffPH9F0xdM5WXO7+sZzSIhLCq5asy+ZbJ3D37bg4dO+R1nCKj4uAHqcdS\nuXv23bx484tUO7ua13FEpIh1ubQLrWu15on5T3gdpcjoUlY/GPjRQA4cPUD8bfFeRxGRADlw5ACN\nJzdmSqcpRNeL9jrOKelSVo8s2L6AOd/MYWLHiV5HEZEAqlSmEtO6TOP+hPvZd3if13H8TsWhEH4+\n8jP3JdzHq7e+SuUylb2OIyIB1rZOW7o17MbAjwZ6HcXvVBwK4dF5j9K5QWfa123vdRQR8ciYdmNY\n/cNq3tr4ltdR/Kp4TRISRN7b9B5f7PyCtf3D425JEcldubPKEX9bPJ1ndqZ1rdZUr1Dd60h+oZ5D\nAew+tJsBHw5getfplC9V3us4IuKxFpEt6NesHw988EDIPFpUxSGfnHP0m9uPe6+8l2svvNbrOCIS\nJGKujyHllxSmrpnqdRS/0KWseZCUtIOYmDiSkzM4cuk6DjTcwtqH11KqRClP8ohIcNq4ZyNtXm1D\n6829ObCjEpGREYwa1Zc6dbybTqegl7JqzOEMkpJ20L79RLZvHwGVfoLmV1Fz+i0kd/7B0/9wEQk+\n5VLPxpZdzpwqq+CzJeAOs3z5cBYseKTYHS90WukMYmLiMguDlYWu98CyJ9i5+l/ExMR5HU1EgkxM\nTBx7534AFgEtxwHl2b59RLE8Xqg4nEFycgZQHi57G0ofgGWPA+VJScnwOpqIBJnk5AxwFWH2NGg9\nGsrvobgeL1QcziAyMgIifoa2w2DhM+BKAKnUqKFdJyK/FxkZAaTC/rqwvie0eYrierzQgPQZJCXt\noMWA+/mpajrEfwqkUrdu8TyHKCJF63djlOVT4eGG1PrkdhLfH+bZ8cLTZ0ibWTQwjsyeyFTn3DO5\ntJkAdARSgb7OubVZ3osAVgE7nXO3nuIzPCkOqcdSuXjcxTT7pgtHk6pTo4b3Vx+ISPA6cXVjSkoG\nP13+GXWbn8v7vd/zLI9nxcF3YN8C3AikACuB7s65zVnadAQGOuduMbNrgPHOuZZZ3v8LcBVQMdiK\nw5jPx7Bm1xreuiO0bo0XkaL3y9FfqD+xPvN7z6dxtcaeZPByVtYWwFbn3A7nXBowC+iSrU0XYDqA\nc+5LoJKZVQMws5rAzcArfsjiV/sO7+P5L57nqbZPeR1FRIqhCqUrMKTVEIYuGup1lHzzR3GIBL7P\nsrzT99rp2iRnafNP4Akg6AY/xi4dS7eG3WhQpYHXUUSkmHrw6gf5as9XfL7jc6+j5IunN8GZ2S3A\nbufcWjOLAk7b9YmNjT35fVRUFFFRUUWWbefBnUxdM5X1D64vss8QkdBXumRpRt4wksGLBrP0nqVF\n/hjhxMREEhMTC70df4w5tARinXPRvuXBgMs6KG1mk4HFzrk3fcubgeuBx4BewHGgLFABeM851yeX\nzwnomMMDCQ9QpVwVxrYbG7DPFJHQlJ6RTtMpTRnddjSdL+kc0M/2csxhJVDPzGqbWSmgO5CQrU0C\n0AdOFpOfnXO7nXNDnXO1nHMX+9b7NLfCEGibf9rM7G9mM+i6QV5HEZEQUCKiBKPbjmbIoiGkZ6R7\nHSdPCl0cnHPpwEBgPrARmOWc22Rm/c2sn6/NR0CSmW0DpgADCvu5RWnYp8N4/NrHOafsOV5HEZEQ\n0alBJyqXqcyMDTO8jpInugkumxXJK7j9zdvZ8sgWyp1Vrsg/T0TCx9LvltLrvV58M/AbSpcsHZDP\n9PK0UshwzjF44WCevP5JFQYR8btWtVpxRbUrmLxqstdRzkjFIYsF3y4g+Zdk7r3yXq+jiEiIGt12\nNKOXjubg0YNeRzktFQefDJfBkEVDeOqGpygZocdciEjRuKLaFdxU9yaeX/a811FOS8XB5+2Nb2MY\nf7zsj15HEZEQN/KGkUxaOYk9qXu8jnJKKg5AWnoawxYPY2y7sUV+g4qIyEWVL6LXFb14aknwTs2j\n4gBMXTOViypfRLuL23kdRUTCxP+1+T9mbJhB0v4kr6PkKuwvZU09lkr9ifVJ6JHA1TWu9vv2RURO\nJTYxlu37txN/W3yRfYYuZS2gCV9OoFWtVioMIhJwf7v2byzYvoD1u4NvDrew7jnsO7yPBhMbsOy+\nZZp5VUQ8MX75eBZ8u4C5d80tku2r51AAmpJbRLwWrFN6h23PYefBnTSZ3IQND22gRoUaftuuiEh+\nTV83nSmrpxTJlN7qOeTTiMQRPNDsARUGEfFczyt6cvDoQeZuKZpTSwURlsVBU3KLSDAJxim9w7I4\naEpuEQk2wTald9gVhxXJK1i+czmPXPOI11FERE4yM8a2G8uTi5/k6PGjXscJr+KgKblFJJidmNL7\n36v+7XWU8CoOmpJbRILd6LajGbN0jOdTeodNcchwGQxeOFhTcotIUAuWKb3Dpji8vfFtIixCU3KL\nSNAbETXC8ym9/VIczCzazDab2RYzy/X6UDObYGZbzWytmTX1vVbTzD41s41mtsHMHvVHnuw0JbeI\nFCd1zqnj+ZTehS4OZhYBTAJuAhoBPczs0mxtOgJ1nXP1gf7AiQeoHgf+6pxrBFwLPJx9XX/QlNwi\nUtx4PaVwgdfZAAAKMUlEQVS3P3oOLYCtzrkdzrk0YBbQJVubLsB0AOfcl0AlM6vmnNvlnFvre/0Q\nsAmI9EOmk1KPpTLys5GMuXGMPzcrIlKkzi9/Po+0eIQnE5/05PP9URwige+zLO8k5wE+e5vk7G3M\n7CKgKfClHzKdpCm5RaS4+uu1f2X+9vmeTOkdFJftmNnZwDvAY74eRK5iY2NPfh8VFUVUVNRpt7vv\n8D6e/+J5lt23zD9BRUQCqGLpigxtNZShi4bmeUrvxMREEhMTC/3ZhZ6V1cxaArHOuWjf8mDAOeee\nydJmMrDYOfemb3kzcL1zbreZlQTmAvOcc+NP8zn5npX17wv+zoEjB5jSeUq+/10iIsHg6PGjXDLp\nEuJvi6d17db5Xt/LWVlXAvXMrLaZlQK6AwnZ2iQAfeBkMfnZObfb996rwNenKwwFsfPgTqaumcrw\nqOH+3KyISECVLlmakTeMZPCiwQTyEQuFLg7OuXRgIDAf2AjMcs5tMrP+ZtbP1+YjIMnMtgFTgIcA\nzOw6oCfQ1szWmNl/zSy6sJlAU3KLSOjwYkrvkHzYz+afNtN6Wmu2DNyimVdFJCR88M0HDFk0hHUP\nrqNERIk8r6eH/WShKblFJNScmNL79fWvB+TzQq44aEpuEQlFJ6b0Hp44PCBTeodUcdCU3CISygI5\npXdIFQdNyS0ioS5QU3qHTHHQlNwiEg4CNaV3yBQHTcktIuEiEFN6h0Rx0JTcIhJOAjGld0gUB03J\nLSLhpqin9C72N8GlHkul/sT6JPRI0MyrIhJWYhNj2b5/O/G3xZ+yTdjeBKcpuUUkXBXllN7Fuuew\n7/A+GkxswLL7ltGgSgOPkomIeGf88vEs+HbBKaf0Dsuew9ilY+nWsJsKg4iErQevfpCv9nzF5zs+\n9+t2i23PYefBnTSZ3IQND23QzKsiEtamr5vOlNVTWHrP0hxXbIZdz0FTcouIZDoxpfcHWz7w2zaL\nZXHY/NNmZn8zm0HXDfI6ioiI50pElGB029EMXTSU9Ix0v2yzWBYHTcktIvJ7/p7Su9gVB03JLSKS\nk7+n9C5WxUFTcouInFqrWq24/PzL/TKlt1+Kg5lFm9lmM9tiZrkOBJjZBDPbamZrzaxpftY9QVNy\ni4ic3ugb/TOld6GLg5lFAJOAm4BGQA8zuzRbm45AXedcfaA/MDmv62alKblFRE6vcbXGdKjbodBT\nevvjKNsC2Oqc2wFgZrOALsDmLG26ANMBnHNfmlklM6sG1MnDuift+N8urmrf3A+RRURC18iokTSb\n3IyNcb8WeBv+OK0UCXyfZXmn77W8tMnLuifte+slOnSYRFLSjkIFFhEJaT9H4NbV4d0fDxV4E14N\nSBfsoQvfdmL79hHExMT5N42ISAiJiYnjwNx34Yq3CrwNfxSHZKBWluWavteyt7kwlzZ5WTeLWOAf\n/Oc/n5KYmFjQvCIiISsxMZGlSz+F1NfglQ4F3o4/isNKoJ6Z1TazUkB3ICFbmwSgD4CZtQR+ds7t\nzuO6WcQCT3DddW2JioryQ3QRkdASFRVFq1ZtgSdg38wCb6fQxcE5lw4MBOYDG4FZzrlNZtbfzPr5\n2nwEJJnZNmAKMOB0657601KpW3c4o0b1LWxsEZGQNWpUX+rWHQ6kFngbxWpW1p49Yxk1qi916tT2\nOo6ISFBLStpBTEwcM2bEFmhW1mJVHIpLVhGRYBF2U3aLiEjRUXEQEZEcVBxERCQHFQcREclBxUFE\nRHJQcRARkRxUHEREJAcVBxERyUHFQUREclBxEBGRHFQcREQkBxUHERHJQcVBRERyUHEQEZEcVBxE\nRCQHFQcREclBxUFERHJQcRARkRwKVRzM7Bwzm29m35jZJ2ZW6RTtos1ss5ltMbNBWV5/1sw2mdla\nM3vXzCoWJo+IiPhHYXsOg4GFzrlLgE+BIdkbmFkEMAm4CWgE9DCzS31vzwcaOeeaAltzW19ySkxM\n9DpC0NC++I32xW+0LwqvsMWhC/Ca7/vXgK65tGkBbHXO7XDOpQGzfOvhnFvonMvwtVsO1CxknrCg\nH/zfaF/8RvviN9oXhVfY4nC+c243gHNuF3B+Lm0ige+zLO/0vZbdvcC8QuYRERE/KHmmBma2AKiW\n9SXAAcNyae4KEsLM/g9Ic869UZD1RUTEv8y5Ah3PM1c22wREOed2m9kFwGLnXMNsbVoCsc65aN/y\nYMA5557xLfcFHgDaOueOnuazCh5URCSMOecsv+ucsedwBglAX+AZ4G5gTi5tVgL1zKw28APQHegB\nmVcxAU8AbU5XGKBg/zgRESmYwvYczgXeAi4EdgB/cs79bGbVgZedc5187aKB8WSOcUx1zo31vb4V\nKAXs9W1yuXNuQIEDiYiIXxSqOIiISGgKujukT3XDXLY2E8xsq+/muaaBzhgoZ9oXZnaXma3zfS01\nsyu8yFnU8vIz4WvX3MzSzOz2QOYLpDz+fkSZ2Roz+8rMFgc6Y6Dk4fejipnN8x0nNvjGN0OSmU01\ns91mtv40bfJ33HTOBc0XmcVqG1AbOAtYC1yarU1H4EPf99eQeSrK8+we7YuWQCXf99GhuC/ysh+y\ntFsEzAVu9zq3hz8TlYCNQKRv+Tyvc3u4L4YDY07sBzJPX5f0OnsR7Y9WQFNg/Snez/dxM9h6Dqe8\nYS6LLsB0AOfcl0AlM6tG6DnjvnDOLXfOHfAtLif3+0eKu7z8TAA8ArwD7AlkuADLy764C3jXOZcM\n4Jz7KcAZAyUv+2IXUMH3fQVgr3PueAAzBoxzbimw/zRN8n3cDLbikJcb5rK3Sc6lTSjI682DJ9xP\naN5EeMb9YGY1gK7OuX+TeR9OqMrLz0QD4FwzW2xmK82sd8DSBVZe9sXLQCMzSwHWAY8FKFswyvdx\ns7CXskoQMLMbgHvI7FqGo3FA1nPOoVwgzqQk0AxoC5QHvjCzL5xz27yN5YkhwDrn3A1mVhdYYGaN\nnXOHvA5WHARbcUgGamVZrul7LXubC8/QJhTkZV9gZo2Bl4Bo59zpupXFVV72w9XALDMzMs8tdzSz\nNOdcQoAyBkpe9sVO4Cfn3BHgiJktAZqQeX4+lORlX1wHPA3gnNtuZknApcCqgCQMLvk+bgbbaaWT\nN8yZWSkyb5jL/gueAPSBk3df/+x88zuFmDPuCzOrBbwL9HbObfcgYyCccT845y72fdUhc9xhQAgW\nBsjb78ccoJWZlTCzcmQOPm4KcM5AyMu+2AS0A/CdX28AfBvQlIFlnLrXnO/jZlD1HJxz6WY2kMyp\nvE/cMLfJzPpnvu1ecs59ZGY3m9k2IJXM0ykhJy/7AogBzgX+5furOc0518K71P6Xx/3wu1UCHjJA\n8vj7sdnMPgHWA+nAS865rz2MXSTy+HMxBphmZuvIPGj+3Tm3z7vURcfM3gCigCpm9h2ZV2qVohDH\nTd0EJyIiOQTbaSUREQkCKg4iIpKDioOIiOSg4iAiIjmoOIiISA4qDiIikoOKg4iI5KDiICIiOfw/\n/vJBW0Moy/YAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xbc673c8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"b) The above graph is bending moment graph\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEACAYAAACkvpHUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+x/HXB3FfyN3EXUvLUnOl0sLMRDO1bjc1LXFJ\n07R+tyy1QlBa9Fa3LK1rpWml2R5kuaakLZrpdc0FjUxBzSVNcUP4/P5gMiSQZQYOM/N5Ph7zaObw\n/Z55nxOcj+d7NlFVjDHGmNwKcDqAMcYY72KFwxhjTJ5Y4TDGGJMnVjiMMcbkiRUOY4wxeWKFwxhj\nTJ54pHCISJiIbBORHSIyJps2L4tIvIisF5EWOfUVkX+LyFZX+49FpIInshpjjHGP24VDRAKAqUAX\noCnQV0SaZGrTFWioqpcBw4D/5qLvYqCpqrYA4oFx7mY1xhjjPk/scbQF4lV1t6qmAPOAnpna9ATe\nBlDV1UCQiFS/WF9VXaqqaa7+q4BaHshqjDHGTZ4oHMHAngyf97qm5aZNbvoCDAIWuJ3UGGOM25w6\nOC65bijyBJCiqnMLMI8xxphcCvTAPBKBOhk+13JNy9ymdhZtSlysr4iEA92Am7L7chGxm20ZY0w+\nqGqu/xGfkSf2ONYAjUSkroiUAPoAsZnaxAL3AohICHBUVQ9crK+IhAGPAj1U9czFAqiqvVSJjIx0\nPENRedm6sHVh6+LiL3e4vcehqqkiMpL0s6ACgBmqulVEhqX/WF9X1S9FpJuI7ASSgYEX6+ua9Suk\n75EsERGAVao6wt28xhhj3OOJoSpUdSHQONO06Zk+j8xtX9f0yzyRzRhjjGfZleM+JDQ01OkIRYat\ni7/YuviLrQvPEHfHupwmIurty2CMMYVNRFAHD44bY4zxI1Y4jDHG5IkVDmOMMXlihcMYY0yeWOEw\nxhiTJ1Y4jDHG5IkVDmOMMXlihcMYY0yeWOEwxhiTJ1Y4jDHG5IkVDmOMMXlihcMYY0yeWOEwxhiT\nJ1Y4jDHG5IkVDmOMMXlihcMYY0yeWOEwxhg/8/up393q75HCISJhIrJNRHaIyJhs2rwsIvEisl5E\nWuTUV0QqishiEdkuIotEJCi77z92+pgnFsMYY/zCs98861Z/twuHiAQAU4EuQFOgr4g0ydSmK9BQ\nVS8DhgH/zUXfscBSVW0MLAPGZZfhpVUvubsYxhjjF/af2M+b6950ax6e2ONoC8Sr6m5VTQHmAT0z\ntekJvA2gqquBIBGpnkPfnsBs1/vZQK/sAjy7bDL/27bBA4tijDG+bdyXj1Nt3+VuzcMThSMY2JPh\n817XtNy0uVjf6qp6AEBV9wPVsgtwZsNd3PTkMBISdudrAYwxxh98t3kVb69/j+0z5ro1H6cOjks+\n+mi2P/l6AkcbxvNo1LT8JzLGGB8XPmMUaT8OgxMN3JqPJwpHIlAnw+darmmZ29TOos3F+u53DWch\nIjWA37JNcOwt+LQBSza9R1xcXD4WwRhjfNu8+fPYuXY9LC8ORLk1L08UjjVAIxGpKyIlgD5AbKY2\nscC9ACISAhx1DUNdrG8sEO56PwCIyT5CFOyfy+nuh2jSukn2zYwxxk8tTVvKlddcC+eicLxwqGoq\nMBJYDGwB5qnqVhEZJiJDXW2+BBJEZCcwHRhxsb6uWU8GOovIdqATMCn7FMk0rDadu6/qy7Mr3TvN\nzBhjfM3OIzv5bNtnvDP8FRo2jASS3ZqfqGZ/6MAbiIj26xdFdHQ4pauW5MppV7Jx+EZqVajldDRj\njCkS7v30XhpWbEhkaCQJCbuJiJjFnDlRqGp+jjf7RuHIuAyPLXmM42eO81r31xxMZYwxRcO2Q9vo\n8FYHdo7aSVCpv66jFhErHH86dPIQjac2Zu3QtdS7pJ5zwYwxpgjo81EfmldvzrgOF15D7U7h8Ll7\nVVUpU4XhrYcT/XW001GMMcZRmw5sIu6XOEa1G+XR+fpc4QB45NpHiNkeQ/zheKejGGOMYyLjInn0\nukcpV6KcR+frk4WjYumKPNTuISZ8PcHpKMYY44i1SWtZtXcVw9sM9/i8fbJwADwU8hCLdy3mp4M/\nOR3FGGMK3fi48Tze4XHKFC/j8Xn7bOGoULICj1z7CFFxUU5HMcaYQvX9nu/ZdGAT97W8r0Dm77OF\nA2Bk25Gs2L2CDfvtzrnGGP8xPm48T97wJCUDSxbI/H26cJQtUZYx148hMi7S6SjGGFMoVuxewa4j\nuxjYYmCBfYdPFw6A+1vfz5qkNfyY9KPTUYwxpkCpKhHLIxh/43iKFyteYN/j84WjdPHSPN7+ccYv\nH+90FGOMKVBfJXzF/hP76d+sf4F+j88XDoAhLYew5eAWvt/zvdNRjDGmQPy5txF5YySBAYEF+l1+\nUThKBpbkyQ5PErE8wukoxhhTIBbsXMAfZ/6gd9PeBf5dflE4AMJbhJNwNIGvf/na6SjGGONRqsr4\n5eOZEDqBYgHFCvz7/KZwFC9WnPE3jCdieQTefmNHY4zJKGZ7DOfSznHHFXcUyvf5TeEA6NesHweS\nD7D056VORzHGGI9I0zTGLx/PxI4TCZDC2aT7VeEIDAgk6sYo2+swxviMj376iFKBpbjt8tsK7Tv9\nqnAA9L6qNyfOnuDL+C+djmKMMW5JTUslKi6KiR0nIpKvR2vki98VjgAJYGLHibbXYYzxeu9tfo+K\npSvSpWGXQv1etwqHiFQUkcUisl1EFolIUDbtwkRkm4jsEJExOfUXkZtF5EcR2SAia0Skozs5M7u9\nye0AfLrtU0/O1hhjCk1KagpRcVE81fGpQt3bAPf3OMYCS1W1MbAMGJe5gYgEAFOBLkBToK+INMmh\n/0Ggu6o2B8KBd9zMmTkTEztOJDIukjRN8+SsjTGmULy94W3qBNWhY32P/rs6V9wtHD2B2a73s4Fe\nWbRpC8Sr6m5VTQHmufpl219VN6jqftf7LUApEfHojVduvexWyhYvywdbPvDkbI0xpsCdTT1L9Ipo\nojs684hsdwtHNVU9AODa0FfLok0wsCfD572uaQDVc+ovIncC61xFx2P+3OuIioviXNo5T87aGGMK\n1Ix1M2hSpQnX17neke/P8YYmIrIEqJ5xEqDAk1k0d/do8wX9RaQp8CzQ+WKdoqKizr8PDQ0lNDQ0\nV1/WuUFnqpatytxNc7m3+b15zWqMMYXu9LnTPL3yaT7p/Ume+sXFxREXF+eRDOLOmUUishUIVdUD\nIlIDWK6qV2RqEwJEqWqY6/NYQFV18sX6i0gt4CtggKquukgGdWcZ4n6JY3DsYLY9sK1Ab0NsjDGe\nMGXVFL5K+IrYvrFuzUdEUNV8HVV3d6gqlvSD1wADgJgs2qwBGolIXREpAfRx9cu2v4hcAswHxlys\naHhCaL1Q6l1Sj9kbZufc2BhjHHQy5SSTvp3ExI4THc3h7h5HJeADoDawG7hLVY+KyKXAG6ra3dUu\nDJhCeqGaoaqTcuj/BOlnXMXz19DYLap6KIsMbu1xAHy35zv6ftyXHSN3FNijFo0xxl3PffscqxNX\n89FdH7k9L3f2ONwqHEWBJwoHQNc5Xbnt8tsY0WaEB1IZY4xnHT9znEavNGLZvctoWq2p2/NzcqjK\nZ0wMncgzK5/hVMopp6MYY8zfvLz6ZTrV7+SRouEuKxwubYLb0KpmK6avne50FGOMucDR00d5afVL\nRN4Y6XQUwArHBSaGTmTyt5NJPpvsdBRjjDnvxe9f5NbLbqVxlcZORwGscFygeY3mtK/Tnmlrpjkd\nxRhjADh88jBT10xl/I3jnY5ynh0cz+Sngz8ROiuUnQ/upELJCh6brzHG5Me4peM4fOowr9/2ukfn\nawfHPejKqldyS8NbmLJqitNRjDF+7sCJA0xfO50nb8jqRh3OsT2OLMQfjufaGdcSPyqeiqUrenTe\nxhiTWw8vepiU1BRe6faKx+dtexwedlnly+jRuAf/+f4/TkcxxvippONJzFo/i8c7PO50lL+xPY5s\nJPyeQOs3WrN95HaqlKni8fkbY8zFjPxyJCWLleSFLi8UyPztyvECWob7599PUMkgJneeXCDzN8aY\nrPx67FeumX4NWx/YSrWyWT2twn1WOApoGfYc20Pz/zZn6wNbqV6ues4djDHGA4Z+PpTKpSvz7M3P\nFth3WOEowGV4cMGDFJNivBj2YoF9hzHG/Onn33+mzRtt2DFyB5XLVC6w77HCUYDLsO/4Ppq+2pRN\nwzcRXCE45w7GGOOG8M/CqRtUlwkdJxTo91jhKOBlGL14NKdSTjHtVrui3BhTcLYf2k77t9oTPyqe\nS0pdUqDfZYWjgJfhYPJBmkxrwrqh66h7Sd0C/S5jjP+6++O7aVq1KU/c8ESBf5ddx1HAqpatyrBW\nw3hqxVNORzHG+KjNv23mq4SveLDdg05HyZEVjlwafd1oPt32KbuO7HI6ijHGB0XFRTH62tGUL1ne\n6Sg5ssKRS5VKV2Jk25FMXOHss36NMb5n/f71fLvnWx5o+4DTUXLFCkce/CvkX3wZ/yXbDm1zOoox\nxoeMXz6esdePpUzxMk5HyRW3CoeIVBSRxSKyXUQWiUhQNu3CRGSbiOwQkTG57S8idUTkuIg87E5O\nTwkqFcTDIQ8z4euCPU3OGOM/fkj8gf/t/x/DWg9zOkquubvHMRZYqqqNgWXAuMwNRCQAmAp0AZoC\nfUWkSS77vwB86WZGjxrVbhTLE5az6cAmp6MYY3xAxPIInujwBKUCSzkdJdfcLRw9gdmu97OBXlm0\naQvEq+puVU0B5rn6XbS/iPQEfga2uJnRo8qVKMej1z1KZFzRePavMcZ7ffPrN+w4vINB1wxyOkqe\nBLrZv5qqHgBQ1f0iktXduIKBPRk+7yW9mABUz9S/OoCIlAMeAzoDj7qZ0eOGtxnOC9+/wLp966h4\nujIREbNITEwjODiA6Ohw6te3az2MMX+XkLD7gu3FrvYLibghghLFSjgdLU9yLBwisgTIeIc/ARTI\n6pFU7l6Jl+b6byTwoqqeFJE/vzNbUVFR59+HhoYSGhrqZoyLK1O8DOPaj2P0F4/y66Rr2LVrAlAW\nSGbVqkiWLBllxcMYc4GEhN107vzKX9uL+l9QvPpLvN35xkL5/ri4OOLi4jwzM1XN9wvYSvpeA0AN\nYGsWbUKAhRk+jwXGXKw/sIL0Yaqfgd+BQ8CIbDKoE06lnNIyT1RQai1T0AyvE9qvX5QjmYwxRVe/\nflEKJ1zbiTRl0HVKszcd2164tp352va7e4wjFgh3vR8AxGTRZg3QSETqikgJoI+rX7b9VfUGVW2g\nqg2Al4BnVPVVN7N6VKnAUtT6uQN0zHzb47IkJaVl2ccY478SE9NIH5kAGi2C0r/DpnCv3F64Wzgm\nA51FZDvQCZgEICKXish8AFVNBUYCi0k/0D1PVbderL+3aBlwDVTaAXVWZpiaTM2adnmMMeZCwcEB\nQDKg0DEC4qJAT3vl9sJucuiGhITdtLt/GAdrJsOsFcBJGja0YxzGmL87f4wjsC10fBqmf0PDBhMc\n217Y3XEdXIb4XbtoNbMt9bd34epSje2sKmNMtnbs2km7GddTKz6U5iWvdHR7YYXD4WVYtHMRQ+cP\nZfPwzV5xgzJjjDOeXvE0K39dyYJ+C3CdMeoYKxxFYBkGxQyiVGApXr21SB3DN8YUEVt+20Lo7FDW\nDl1LnaA6Tsex53EUBf/p8h9it8cS90uc01GMMUXMubRzDIwZyFMdnyoSRcNdVjg85JJSl/Dara8x\nOHYwyWeTnY5jjClCXvz+RcqVKMd9re5zOopH2FCVh/X/pD9Vy1TlxbAXnY5ijCkCth/azvUzr+eH\n+36gQcUGTsc5z4aqipApYVOYt2Ue3/76rdNRjDEOS01LZXDsYMbfOL5IFQ13WeHwsMplKjO161QG\nxQ7iVMopp+MYYxw0bc00AEa2HelwEs+yoaoC8s8P/0mDSxowufNkp6MYYxyw68gu2r3Zju8Gf8fl\nlS93Os7f2FBVETSt2zRmb5jNmsQ1TkcxxhSyNE3jvs/vY2z7sUWyaLjLCkcBqVa2Gi92eZGBMQM5\nc+6M03GMMYXo9bWvk5ySzL9C/uV0lAJhhaMA9bmqDw0rNeTplU87HcUYU0h+PfYrEcsjeKvnWxQL\nKOZ0nAJhxzgKWNLxJFr8twWL71lMixotnI5jjClAqkrYnDBurHsjj3d43Ok4F2XHOIqwmuVr8u/O\n/2ZgzEBSUlOcjmOMKUCz1s/iYPJBHr2uyD3x2qOscBSCAc0HUKNcDSZ/a2dYGeOrEv9IZMzSMbzV\n8y2KFyvudJwCZUNVhWTPsT20fL0lcQPiaFqtqdNxjDEepKr0mNeDljVaMqHjBKfj5IoNVXmB2kG1\nefqmpxkYM5BzaeecjmOM8aC5m+byy9FfeOKGJ5yOUiiscBSi+1reR/mS5Xnxe7uPlTG+4sCJAzy8\n+GHe6vkWJYqVcDpOobChqkKW8HsCbd5ow7eDvqVxlcZOxzHGuOnOD+7kskqX8ezNzzodJU8cG6oS\nkYoislhEtovIIhEJyqZdmIhsE5EdIjImN/1FpJmIfCcim0Vkg4j4RCmvX7E+kTdGMih2EKlpqU7H\nMca44aOfPmLLwS1EhkY6HaVQuTtUNRZYqqqNgWXAuMwNRCQAmAp0AZoCfUWkycX6i0gx4B1gqKpe\nBYQCPnMu6wNtHyBAApj6w1Snoxhj8unQyUOMWjCKmT1mUiqwlNNxCpW7haMnMNv1fjbQK4s2bYF4\nVd2tqinAPFe/i/W/BdigqpsBVPV3rxqPykGABDCzx0yiV0Sz68gup+MYY/LhoYUP0feqvlxb+1qn\noxQ6dwtHNVU9AKCq+4FqWbQJBvZk+LzXNQ2gejb9LwcQkYUi8qOI+NzVNJdVvoxx7ccx5PMhpGma\n03GMMXkQuz2W1XtX89RNTzkdxRGBOTUQkSVA9YyTAAWezKK5u3sFf/YPBK4HWgOnga9E5EdVXZ5V\np6ioqPPvQ0NDCQ0NdTNG4fi/kP/jw58+5PW1r3N/6/udjmOMyYXfT/3O8C+GM/eOuZQpXsbpOLkW\nFxdHXFycR+bl1llVIrIVCFXVAyJSA1iuqldkahMCRKlqmOvzWEBVdXJ2/UWkNxCmqgNdfZ4ETqnq\nC1lk8OpRrJ8O/sSNs27kx/t+pO4ldZ2OY4zJwcCYgZQtXpap3bz7GKWTFwDGAuGu9wOAmCzarAEa\niUhd15lRfVz9LtZ/EXC1iJQSkUDgRuAnN7MWSVdWvZJ/hfyLofOH4s0F0Bh/sHDnQuJ+iWPSzZOc\njuIodwvHZKCziGwHOgGTAETkUhGZD6CqqcBIYDGwBZinqlsv1l9VjwL/AX4E1gE/quoCN7MWWY9e\n9yiHTh7irfVvOR3FGJONP878wdDPh/LGbW9QrkQ5p+M4yi4ALCI27N/Aze/czPph6wmuEJxzB2NM\nobp//v2kpqXyRo83nI7iEXavKh/QvEZzHmjzAPd/cb8NWRlTxCxLWMYX8V/w/C3POx2lSLDCUYQ8\n3uFxdh/dzdxNc52OYoxxOXH2BENihzC9+3SCSmV5cwy/Y0NVRczapLV0m9uNDfdvoEa5Gk7HMcbv\nPbjgQY6dOcbsXrNzbuxFbKjKh7Sq2YpBLQYx8suRTkcxxu+t3L2Sj7d+zItd7I7WGVnhKIIiQyP5\n6eBPfLjlQ6ejGOO3TqacZHDsYKZ1m0al0pWcjlOkWOEogkoFlmJmz5k8uPBBDp085HQcY/xS5PJI\nWtVsRa8mWd2Cz7/ZMY4i7JFFj7DvxD7m/sMOlhtTmFbvXU2v93ux8f6NVC1b1ek4BcKOcfio6Jui\nWZO0hphtWV2Qb4wpCGfOnWFgzECmhE3x2aLhLiscRViZ4mWY0WMGI74cwe+nfnc6jjF+YeLXE2lS\npQn/vPKfTkcpsmyoyguM+nIUJ1JO8FZPuyWJMQVp3b51dJ3T1S9Oh7ehKh/37M3PEvdLHAviffZ2\nXcY47mzqWQbGDOT5zs/7fNFwlxUOL1CuRDnevO1Nhs0fxh9n/nA6jjE+adI3k6hdoTb9m/V3OkqR\nZ0NVXmTo50MRhOm3TXc6ijE+ZdOBTXR6uxPrhq2jVoVaTscpFDZU5See6/wcC3Yu4Kufv3I6ijE+\n41zaOQbGDOTZTs/6TdFwlxUOLxJUKojp3adz3+f3ceLsCafjGOMTnv/ueSqVrsSgawY5HcVr2FCV\nFwr/LJzyJcrzSrdXnI5ijFfbenArN8y6wS8f3ezOUJUVDi905NQRrn7taub9Yx4d6nYgIWE3ERGz\nSExMIzg4gOjocOrX968/AmMuJqu/kTp1a9H+rfbc0+weRrQZ4XTEQmeFw8uXIT9itsUwesloYsI+\np0fXN9m1awJQFkimYcNIliwZZcXDGNKLRufOr/ztb6T3lNJ8e3AlywYsI0D8b9TeCoeXL0N+9f24\nLxtW7mbrlCWk/0H8KZl+/Z7n3XcjnYpmTJHRv/8E5swZzQV/I5U2UPKBa9n8fxtpVKmRY9mc5NhZ\nVSJSUUQWi8h2EVkkIlk+HktEwkRkm4jsEJExOfUXkZIiMldENorIFhEZ605OX/VK11fYVWYT1NqU\n6SdlSUpKcySTMUVNYmIaFxQNSYMeD1I7oYPfFg13ubt/NhZYqqqNgWXAuMwNRCQAmAp0AZoCfUWk\nSQ79+wCoajOgNTBMROq4mdXnVClThbZHwqBnOASezvCTZGrW9L9db2OyEhwcACT/NaH1a1DsDG00\nxLFM3s7drUtP4M/nKc4GsrpxfVsgXlV3q2oKMM/V72L99wNlRaQYUAY4A9gl01mY/dhzlD2ZBjdG\nuKakj99GR4c7mMqYoiM6OpyGDSOBZLgkATqOp/a6K3g62k6/za9AN/tXU9UDAKq6X0SqZdEmGNiT\n4fNe0osJQPVM/au73i8Skf7APqA08C9VPepmVp/UoEE9lo2ew43vdeSqMkdpXKEW0dF2YNyYP9Wv\nX5clS0bxZMRzLKjyNnVPtuSTj6Psb8QNORYOEVkCVM84CVDgySyau3uUOs31nf1JLxg1gMrAShFZ\nqqq/ZNUpKirq/PvQ0FBCQ0PdjOFd2l7Zhjf/OZ2najzFlIHfULlMZacjGVOk1K9fl2b3lyZ+axW+\nG7yAwAB3/83sfeLi4oiLi/PIvNw6q0pEtgKhqnpARGoAy1X1ikxtQoAoVQ1zfR4LqKpOzq6/iLwK\nfKuqc1x9ZgALVPWjLDL47VlVmY1ZMoavd3/N0nuXUq5EOafjGFNkzFg3g6dWPsU3A78huEKw03GK\nBCfvVRULhLveDwCyelTdGqCRiNQVkRKkH/iOzaJ/eIb+24BOACJSFghxTTMXMenmSVxV7SrueP8O\nzpw743QcY4qET7d+SsTyCBb1X2RFw0Pc3eOoBHwA1AZ2A3ep6lERuRR4Q1W7u9qFAVNIL1QzVHVS\nDv1LAjOA5qQPjc1U1f9kk8H2ODI4l3aOuz68i+LFijP3jrkUCyjmdCRjHLM8YTm9P+rNwv4LaXlp\nS6fjFCl2AaCXL4OnnT53mm5zutG4cmNevfVVRPL1u2GMV1ubtJauc7rywT8/ILReqNNxihy7rbq5\nQKnAUnzW5zPWJK0hMs6uHjf+Z/uh7XR/rztv3PaGFY0CYIXDR1UoWYEF/Rbw/pb3mbJqitNxjCk0\ne//YS5d3u/DMTc/Qs0nPnDuYPPO/c9L8SNWyVVlyzxLaz2xP5TKV7ZGYxucdPnmYW965hVFtRzHw\nmoFOx/FZVjh8XJ2gOizqv4iOsztSsVRFbr38VqcjGVMgTpw9Qbe53ejZuCePXPeI03F8mh0c9xM/\nJP5A97nd+fiuj+lQt4PTcYzxqDPnznDbe7dRN6gur9/2up0Qkgt2VpWXL0NhWfrzUvp90o/F/RfT\nvEZzp+MY4xGpaan0/bgvqZrKB3d+YKeg55KdVWVy5eYGNzOt2zS6ze3GriO7nI5jjNtUlQe+fIAj\np47YdUuFyI5x+Jk7r7yTI6eOcMu7t/DNwG+4tPylTkcyJt8ilkewdt9alt27jJKBJZ2O4zdsj8MP\nDW01lCHXDKHLu134/dTvTscxJl9e/P5FPt76MQv6LaB8yfJOx/ErVjj81Nj2Y+ncoDPd3+vOyZST\nTscxJk/e3vA2L61+icX9F1OlTBWn4/gdOzjux9I0jUExg/gt+Tdi+sRQvFhxpyMZk6PPt3/O0PlD\nWT5gOU2qNMm5g8mSHRw3+RIgAbzZ400CAwIJjwknTe055aZoW7F7BYNjBxPbJ9aKhoOscPi5wIBA\n3r/zffYc28NDCx7C9t5MUbV+/3ru/OBO5v5jLm2C2zgdx69Z4TCULl6az/t+zspfVxK9ItrpOMb8\nTfzheLrN6cZrt77GzQ1udjqO37PCYQAIKhXEov6LeGfjO0z7YZrTcYw5L+l4El3e7cKE0An848p/\nOB3HYNdxmAyql6vO4v6L6fBWByqVrkTfq/s6Hcn4uSOnjtDl3S4MbTWU+1rd53Qc42KFw1ygfsX6\nLOy/kE5vd6Ji6YqENQpzOpLxU8lnk+k+tztdGnZhzPVjnI5jMrDTcU2Wvt/zPT3n9SSmTwzX1r7W\n6TjGz5xNPUvPeT2pUa4GM3vMtJsWFgA7Hdd43LW1r+Xt29+m1/u92PzbZqfjGD+SpmmEfxZOiWIl\neOO2N6xoFEFuFQ4RqSgii0Vku4gsEpGgbNqFicg2EdkhImMyTL9TRDaLSKqItMzUZ5yIxIvIVhG5\nxZ2cJn/CGoXxUpeX6DqnKwm/Jzgdx/gBVeWhBQ+RdDyJef+YR2CAjaYXRe7ucYwFlqpqY2AZMC5z\nAxEJAKYCXYCmQF8R+fPKnU3A7cDXmfpcAdwFXAF0BV4V+2eHI/pe3Zdx7cdxy7u3cODEAafjGB83\n8euJfLvnW2L6xFC6eGmn45hsuFs4egKzXe9nA72yaNMWiFfV3aqaAsxz9UNVt6tqPJC5KPQE5qnq\nOVX9BYh3zcc4YESbEdzT7B7C5oRx7PQxp+MYHzX1h6nM2TSHhf0XElQqy8ELU0S4WziqqeoBAFXd\nD1TLok0wsCfD572uaReTuU9iLvqYAhRxQwQd6nSgx7wenEo55XQc42PmbprL5G8ns/iexVQrm9Vm\nxBQlOQ691DAcAAAQ3klEQVQgisgSoHrGSYACT2bR3JHTm6Kios6/Dw0NJTQ01IkYPk1EeCnsJe75\n9B56f9SbT3p/YuPPxiMWxC/g4UUP89W9X1HvknpOx/FZcXFxxMXFeWRebp2OKyJbgVBVPSAiNYDl\nqnpFpjYhQJSqhrk+jwVUVSdnaLMceERV12XVRkQWApGqujqLDHY6biFKSU2h57yeVCtbjZk9ZxIg\ndmKeyb/v9nxHr3m9iO0bS0itEKfj+BUnT8eNBcJd7wcAMVm0WQM0EpG6IlIC6OPql1nGBYgF+ohI\nCRGpDzQCfnAzq/GA4sWK89FdH7HzyE5GLx5tN0U0+bbpwCZuf/923rn9HSsaXsbdwjEZ6Cwi24FO\nwCQAEblUROYDqGoqMBJYDGwh/aD3Vle7XiKyBwgB5ovIAlefn4APgJ+AL4ERtltRdJQpXobP+37O\n0p+XMumbSU7HMV7o599/puucrrwc9jJdGnVxOo7JI7ty3ORb0vEk2s9sz9j2YxnaaqjTcYyX2H9i\nP+1ntueRax9heJvhTsfxW+4MVdnRTZNvNcvXZPE9i7lx1o1UKl2JVqXbEBExi8TENIKDA4iODqd+\n/bpOxzQOS0jYff73omrtM2xuHcuA5gOsaHgx2+MwbtuwfwOdZneixPxQ9n0zGygLJNOwYSRLloyy\n4uHHEhJ207nzK+zaNQGKC/S/maCTp1n3zCc0aFDP6Xh+ze5VZRzVvEZzWsb3YN+1X0PwFtfUsuza\nNYGIiFlORjMOi4iYlV40AkrAnb3hWAOOffA148fPzrmzKbKscBiPSNlVG2Legr49oM43rqllSUqy\n55j7s8TENCiZCnf0B1H47C3Q8vZ74eWscBiPCA4OgB0dIWZG+r8su46CEvupWdN+xfzaZbtgRFM4\nWx4+/ADSigPJ9nvh5ez/nvGI6OhwGjaMhPhQeHUzlDhK4IONuWV4A6ejGQccPnmYez+9l12NV3Dp\nDyEQOwVSyvDnsa/o6HCHExp32MFx4zF/nj2TlJRGzZoBdL6/PpE/jqdj/Y68cMsLVCpdyemIpoCp\nKh/99BEPLnyQ3k178/RNT/Nb4qELfi/sbLuiwZ2D41Y4TIE6fuY4j3/1OB9v/Zip3aZyxxV3OB3J\nFJB9x/cx4ssRbD+0nRk9ZtiTI4s4Kxxevgz+4Jtfv2FI7BCuqnYVU7tNpUa5Gk5HMh6iqsxaP4sx\nS8cwrNUwnrzhSUoGlnQ6lsmBFQ4vXwZ/cfrcaSbETWDm+pk81/k57ml2jz0W1Mv9cvQXhn4+lMOn\nDjOjxwxa1GjhdCSTS1Y4vHwZ/M26fesYFDOIS8tfyvTu06kTVMfpSCaP0jSNaT9MY8LXExh93WhG\nXzfabrPvZaxwePky+KOU1BT+/e2/eWn1S0wIncD9re+3W7R7iW2HtjEkdggAM3rMoHGVxg4nMvlh\nhcPLl8GfbT24lcGxgwkMCOTNHm9yeeXLnY5kspGSmsLz3z3PC9+/QFRoFCPajLBi78WscHj5Mvi7\n1LRUpv4wlegV0Tx2/WM8fO3DNuxRxPxv3/8YHDuYqmWr8nr316l7iZ1O6+2scHj5Mph0Cb8ncN/n\n93H09FFm9pxJs+rNnI7k906fO03019G8se4N/t353wxoPsBOaPARdpND4xPqV6zPknuWMLz1cDq9\n3Ynxy8dz5twZp2P5re/2fMc1069h2+FtbBy+kfAW4VY0DGB7HKaISjqexPAvhrPzyE5m9phJu1rt\nnI7kN06cPcETXz3Bhz99yMtdX+bOK+90OpIpALbHYXxOzfI1+az3Z4y/YTy93u/Fw4seJvlsstOx\nfN6SXUu4+rWrOXrmKJuGb7KiYbLkVuEQkYoislhEtovIIhEJyqZdmIhsE5EdIjImw/Q7RWSziKSK\nSMsM028WkR9FZIOIrBGRju7kNN5JROh9VW82Dd/Eb8m/0ey/zViWsMzpWD7p6OmjDI4ZzJDPh/Bq\nt1eZ3Ws2lctUdjqWKaLc3eMYCyxV1cbAMmBc5gYiEgBMBboATYG+ItLE9eNNwO3A15m6HQS6q2pz\nIBx4x82cxotVKVOFd+94l5fDXmbAZwMY+vlQjp0+5nQsn/HZts9o+mpTSgWWYvPwzXS9rKvTkUwR\n527h6An8+Siv2UCvLNq0BeJVdbeqpgDzXP1Q1e2qGg9cMM6mqhtUdb/r/RaglIgUdzOr8XK3Xn4r\nm4dvJkACuOq1q5i/Y77Tkbzab8m/0fuj3jy25DHe+8d7TLt1GuVLlnc6lvEC7haOaqp6AMC1oa+W\nRZtgYE+Gz3td03JFRO4E1rmKjvFzQaWC+G/3//J2r7f5v4X/x90f383B5INOx/IqqsqcjXNo9loz\n6gXVY8P9G7ih7g1OxzJeJMerrERkCVA94yRAgSezaO7R05tEpCnwLNDZk/M13q9j/Y5sHL6R8cvH\nc/VrV/NS2Ev0btrbThfNwZ5jexj+xXD2/LGH+XfPp3XN1k5HMl4ox8KhqtlutEXkgIhUV9UDIlID\n+C2LZolAxrvY1XJNuygRqQV8Atyjqr9crG1UVNT596GhoYSGhuY0e+MDyhQvw/O3PM9dTe9iUMwg\n5m6ay2u3vkZwhVzv0PqNNE3j9bWvE7E8ggfbPsgnvT+hRLESTscyhSguLo64uDiPzMut6zhEZDJw\nRFUnu86WqqiqYzO1KQZsBzoB+4AfgL6qujVDm+XAaFVd6/ocRPoB8yhV/SyHDHYdh+Fs6lmeWfkM\n09ZM45mbnmFIyyG29+Gy88hOhsQO4fS508zoMYOm1Zo6HckUAY7dckREKgEfALWB3cBdqnpURC4F\n3lDV7q52YcAU0o+pzFDVSa7pvYBXgCrAUWC9qnYVkSdIP2PrzwPnCtyiqoeyyGCFw5y3YN0i+n84\niLMpadQ6V5+RPftzW8vu1K5Q228KycmUk6zbt44vNy7g3bhP2VfqF5odvYH3//UqjRraM+BNOrtX\nlZcvg/GMhITddO78CrsSIqDuWgheSZnG71D6smOUCCxOu1rtCAkOIaRWCK1qtqJciXJOR3ZbmqYR\nfzie1YmrWbV3FasTV7Pt0DYaVbiM3d8GcGzLSPglDI4H0bBhJEuWjLLnfRvACocVDgNA//4TmDNn\nNFA2w9Rk7u73HE9PDU/fsO5dzarEVWw8sJHLKl1Gu+B2hNQKoV2tdjSp0qTI3yb8yKkjrN67+nyh\n+CHxByqUrJC+DK5luebSaxgSPjnLddGv3/O8+26kU/FNEeJO4bB7VxufkZiYxoUbSoCy7EtS6l1S\nj3qX1KPPVX0AOHPuDBsObGD13tUsTVjKUyuf4vDJw7QJbkNIcHohaRfcjqplqxb6cvwpJTWFjQc2\nXrA3se/4PlrXbE1IrRCGtx7OrF6zsnx+e3brIikprVCyG99mhcP4jODgACCZzP/Krlnz73sRJQNL\n0ja4LW2D2zKKUQAcTD7I6sTVrN67mimrp7AmcQ1VylQ5P8TVrlY7WtRoUSBnI6kqe//Ye75IrNq7\nivX711PvknqE1Arhhro38Oh1j3Jl1SspFlAsx/nlZV0Yk1c2VGV8xvljHLsmkL7BTHZrXD9N09h2\naFv68NbeVaxKXMXOIztpVr3Z+UISUiuEukF183zgPflsMj8m/XjB3sS5tHN/DZ0Ft6NNcBsqlKyQ\n59zg+XVhfI8d4/DyZTCek5Cwm4iIWSQlpVGzZgDR0eEe3VCeOHsifYPvOlayau8qVPWCvZI2Ndtc\ncOuONE1j+6HtF+xNxB+J5+pqVxNSK+R8oah3ST2PnvlV0OvCeDcrHF6+DMZ7qSp7/thzwV7J+v3r\naVCxAa0ubUXS8STWJK2hUulKF+xNtKjRgpKBJZ2Ob/yYFQ4vXwbjW86mnmXjgY2sTVpLzfI1aVer\nHdXKZnUbN2OcY2dVGVOElChWgspnqrLypf0kJiYRHLzOhomMT7E9DmM8zA5MG29gj441pgiJiJiV\noWgAlGXXrglERMxyMJUxnmOFwxgPs4vvjK+zwmGMh/118V1GdvGd8R32m2yMh0VHh9OwYSR/FY/0\nYxzR0eGOZTLGk+zguDEFwC6+M0WdXcfh5ctgjDGFzc6qMsYYU2iscBhjjMkTKxzGGGPyxAqHMcaY\nPHGrcIhIRRFZLCLbRWSRiARl0y5MRLaJyA4RGZNh+p0isllEUkWkZRb96ojIcRF52J2cxhhjPMfd\nPY6xwFJVbQwsA8ZlbiAiAcBUoAvQFOgrIk1cP94E3A58nc38XwC+dDOj34iLi3M6QpFh6+Ivti7+\nYuvCM9wtHD2B2a73s4FeWbRpC8Sr6m5VTQHmufqhqttVNR742ylhItIT+BnY4mZGv2F/FH+xdfEX\nWxd/sXXhGe4WjmqqegBAVfcDWT10IBjYk+HzXte0bIlIWeAxYAJZFBVjjDHOyfF5HCKyBKiecRKg\nwJNZNPfUlXhRwIuqetL1KE0rHsYYU1Soar5fwFaguut9DWBrFm1CgIUZPo8FxmRqsxxomeHzCtKH\nqX4GfgcOASOyyaD2spe97GWvvL/yu+139wmAsUA4MBkYAMRk0WYN0EhE6gL7gD5A3yzand+rUNUb\nzk8UiQSOq+qrWQXI7yXzxhhj8sfdYxyTgc4ish3oBEwCEJFLRWQ+gKqmAiOBxaQf6J6nqltd7XqJ\nyB7S90rmi8gCN/MYY4wpYF5/k0NjjDGFy2uuHM/uIsJMbV4WkXgRWS8iLQo7Y2HJaV2IyN0issH1\n+kZErnYiZ2HIze+Fq10bEUkRkTsKM19hyuXfSKiI/M914e3yws5YWHLxN1JZRBa4thWbRCTcgZgF\nTkRmiMgBEdl4kTZ53266c3C8sF6kF7idQF2gOLAeaJKpTVfgC9f7dsAqp3M7uC5CgCDX+zB/XhcZ\n2n0FzAfucDq3g78XQaQPFwe7PldxOreD6yISePbP9QAcBgKdzl4A66I90ALYmM3P87Xd9JY9jmwv\nIsygJ/A2gKquBoJEpDq+J8d1oaqrVPWY6+Mqcrhuxovl5vcCYBTwEfBbYYYrZLlZF3cDH6tqIoCq\nHirkjIUlN+tiP1De9b48cFhVzxVixkKhqt+QfmZqdvK13fSWwpGbiwgzt0nMoo0vyOsFlUMAXz3p\nIMd1ISI1gV6q+hq+fT1Qbn4vLgcqichyEVkjIvcUWrrClZt18QbQVESSgA3AQ4WUrajJ13bT3dNx\nTREmIh2BgaTvrvqrl4CMY9y+XDxyEgi0BG4CygLfi8j3qrrT2ViOGAdsUNWOItIQWCIizVT1hNPB\nvIG3FI5EoE6Gz7Vc0zK3qZ1DG1+Qm3WBiDQDXgfCVPViu6reLDfrojUwT9JvQVAF6CoiKaoaW0gZ\nC0tu1sVe4JCqngZOi8gKoDnpxwN8SW7WxfXA0wCquktEEoAmwI+FkrDoyNd201uGqs5fRCgiJUi/\niDDzH34scC+AiIQAR9V1Hy0fk+O6EJE6wMfAPaq6y4GMhSXHdaGqDVyv+qQf5xjhg0UDcvc3EgO0\nF5FiIlKG9IOhWws5Z2HIzbrYCtwM4BrTv5z0O1X4IiH7Pe18bTe9Yo9DVVNF5M+LCAOAGaq6VUSG\npf9YX1fVL0Wkm4jsBJJJH6LxOblZF0AEUAl41fUv7RRVbetc6oKRy3VxQZdCD1lIcvk3sk1EFgEb\ngVTgdVX9ycHYBSKXvxfPAm+JyAbSN6qPqeoR51IXDBGZC4QClUXkV9LPJiuBm9tNuwDQGGNMnnjL\nUJUxxpgiwgqHMcaYPLHCYYwxJk+scBhjjMkTKxzGGGPyxAqHMcaYPLHCYYwxJk+scBhjjMmT/wfc\n6zF3pLt3xAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xbd7ce80>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"b)The above graph is beam displacement graph\n",
"b)The maximum occures in the middle from the above graph \n"
]
}
],
"source": [
"#Given\n",
"import numpy\n",
"l_ab = 1.0 #L in - The length of the beam\n",
"F_D = 1.0 #W lb/in - The force distribution \n",
"F = F_D*l_ab #WL - The force applied\n",
"#Beause of symmetry the moment caliculations can be neglected\n",
"#F_Y = 0\n",
"R_A = F/2 #wl - The reactive force at A\n",
"R_B = F/2 #wl - The reactive force at B\n",
"#EI - The flxure rigidity is constant and 1/EI =1 # k\n",
"\n",
"#part - A\n",
"#section 1--1\n",
"l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
"M_1 = [0,0,0,0,0,0,0,0,0,0,0]\n",
"v = [0,0,0,0,0,0,0,0,0,0,0]\n",
"for i in range(10):\n",
" v[i] = R_A - F_D*l_1[i] \n",
" M_1[i] = R_A*l_1[i] - F_D*(l_1[i]**2)/2\n",
"# (EI)y'' = M_1[i] we will integrate M_1[i] twice where variable is l_1[i]\n",
"#(EI)y'- \n",
"\n",
"M_1_intg1 = R_A*(l_1[i]**2)/4 - F_D*(l_1[i]**3)/6 - F_D*(l_ab**3)*l_1[i]/24 #integration of x**n = x**n+1/n+1\n",
"#(EI)y- Using end conditions for caliculating constants \n",
"\n",
"M_1_intg2 = R_A*(l_1[i]**3)/12.0 - F_D*(l_1[i]**4)/24.0 + F_D*(l_ab**3)*l_1[i]/24.0 \n",
"#Equations \n",
"\n",
"l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
"M_1_intg2 = [0,0,0,0,0,0,0,0,0,0,0]\n",
"Y = [0,0,0,0,0,0,0,0,0,0,0]\n",
"for i in range(10):\n",
" M_1_intg2[i] = (l_1[i]**3)/12.0 - (l_1[i]**4)/24.0 - l_1[i]/24.0 # discluding every term for ruling out float values\n",
" Y[i] = M_1_intg2[i] #W(l**4)/EI k = 1/EI\n",
"#The precision is very less while caliculating through this equation because the least count in X direction is 0.1\n",
"print \"a) The maximum displacement in y direction is\",min(Y),\"W(l**4)/EI \"\n",
"print \"a) The maximum deflection occured at\",l_1[Y.index(min(Y))],\"L\"\n",
"\n",
"#Part - B\n",
"#Graphs\n",
"import numpy as np\n",
"values = M_1\n",
"y = np.array(values)\n",
"t = np.linspace(0,1,11)\n",
"poly_coeff = np.polyfit(t, y, 2)\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"plt.plot(t, y, 'o')\n",
"plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
"plt.show()\n",
"print \"b) The above graph is bending moment graph\"\n",
"values = Y \n",
"y = np.array(values)\n",
"t = np.linspace(0,1,11)\n",
"poly_coeff = np.polyfit(t, y, 2)\n",
"import matplotlib.pyplot as plt\n",
"plt.plot(t, y, 'o')\n",
"plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
"plt.show()\n",
"print \"b)The above graph is beam displacement graph\"\n",
"print \"b)The maximum occures in the middle from the above graph \""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.5 page number 517"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The reaction at A is 0.375 WL\n",
"The reaction at B is 0.625 WL\n",
"The reaction at C is 0.375 WL\n"
]
}
],
"source": [
"#Given \n",
"#because of symmetry the problem can be solved by considering first half\n",
"#Given\n",
"import numpy\n",
"\n",
"l_ab = 1.0 #L in - The length of the beam\n",
"F_D = 1.0 #W lb/in - The force distribution \n",
"F = F_D*l_ab #WL - The force applied\n",
"#Beause of symmetry the moment caliculations can be neglected\n",
"#EI - The flxure rigidity is constant and 1/EI =1 # k\n",
"\n",
"#part - A\n",
"#section 1--1\n",
"l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
"M_1 = [0,0,0,0,0,0,0,0,0,0,0]\n",
"v = [0,0,0,0,0,0,0,0,0,0,0]\n",
"\n",
"\n",
"# M_1_intg2[10] = 0, the displacement at the end of rod is 0 since its rigid \n",
"R_A = (F_D*(l_1[10]**4)/24.0 + F_D*(l_ab**3)*l_1[10]/48.0)/((l_1[10]**3)/6.0)\n",
"R_C = R_A #WL - symmetry\n",
"R_B = 1-R_A # WL - F_Y = 0, the equilibrium in Y direction\n",
"print \"The reaction at A is\",R_A ,\"WL\"\n",
"print \"The reaction at B is\",R_B ,\"WL\"\n",
"print \"The reaction at C is\",R_C ,\"WL\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.7 page number 521 "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHXZJREFUeJzt3Xt4VNW9xvHvCncQEBQpCUhDAAXkkigEqmgEoaDWW1tv\nVIph1JaLsc+hrRBowBC0PbUnMXhlYsEHLMdqT9WqlYtELhpuCRHlFgEjd4QCQriFZJ0/MoGIQEKS\nmT0z+/08zzzMntmz94/1JO/srL33WsZai4iIuEeE0wWIiEhgKfhFRFxGwS8i4jIKfhERl1Hwi4i4\njIJfRMRl6vp7B8aYr4BDQClQbK3t4+99iojI+fk9+CkL/ARr7YEA7EtERCoRiK4eE6D9iIhIFQQi\nkC0w3xiz0hjzSAD2JyIiFxCIrp7rrbW7jDGtKPsCWG+tXRqA/YqIyDn4Pfittbt8/35jjPk/oA9w\nOviNMRosSESkGqy1pjqf82tXjzGmsTHmEt/zJsBg4POz17PW6mEtKSkpjtcQLA+1hdpCbXHhR034\n+4i/NfB/vqP6usAca+08P+9TREQuwK/Bb63dCvTy5z5EROTi6DLLIJKQkOB0CUFDbXGG2uIMtUXt\nMDXtK6pxAcZYp2sQEQk1xhhsMJ7cFRGR4KPgFxFxGQW/iIjLKPhFRFxGwS8i4jIKfhERl1Hwi4i4\njIJfRMRlFPwiIi6j4BcRcRkFv4iIyyj4RURcRsEvIuIyCn4REZdR8IuIuIyCX0TEZRT8IiIuo+AX\nEXEZBb+IiMso+EVEXEbBLyLiMgp+ERGXUfCLiLiMgl9ExGUU/CIiLqPgFxFxGQW/iIjLKPhFRFxG\nwS8i4jIKfhERl1Hwi4i4jIJfRMRlFPwiIi6j4BcRcRm/B78xZogxZoMxZpMx5vf+3p+IiFyYX4Pf\nGBMBTAd+DHQDHjDGXH32er/4xRS2bi30ZykiIuLj7yP+PkCBtbbQWlsMzAXuPHulOXPGMWhQpsJf\nRCQA/B38UcC2Csvbfa99V/1SNm+ewqRJM/1cjoiI1HW6AACubQNf38CSZUVkZ99EQkKC0xWJiASV\n7OxssrOza2VbxlpbKxs658aN6QtMttYO8S0/CVhr7R8rrGNpnQ8DxtO4wzIyf/oXhvccTt2I4PhO\nEhEJRsYYrLWmOp/1d1fPSqCjMaa9MaY+cD/wzvfW2hNDzIouzPrJq8zKn0X3F7vz5ro38eeXkoiI\nW/n1iB/KLucEMij7ksmy1j5z1vt22LDJpKaOIDq6PdZaPtz8IRMWTiDCRDBt4DQGdRiEMdX6YhMR\nCUs1OeL3e/BXWoAx9lw1lNpS3lr3FhMXTSSyaSRPD3yavm37OlChiEjwCcvgL3eq9BSz1sxiysdT\niG0TS9qANK654poAVigiEnzCOvjLHT91nBdXvsgzy55hcMxgpiRMoUOLDgGoUEQk+ATzyd1a07Bu\nQ37T7zcUjC2gY4uO9J7Rm9HvjWbX4V1OlyYiElJCJvjLNWvQjJSEFDaO2UjDug255sVrGL9gPAeO\nHXC6NBGRkBBywV/u8saX8+yPn2XNY2vYd3Qfnad3ZtqSaRSdLHK6NBGRoBaywV+uXfN2zLhjBksf\nXkr+nnw6ZnZk+orpnCw56XRpIiJBKWRO7lZV7q5ckj9KZsO+DUxJmMKw7sOoE1Gn1rYvIhIMXHFV\nz8VaXLiY8QvHc+j4IaYOmMqdV92pm8BEJGwo+M/DWst7Be+R/FEyjeo2YtrAaQyIHuCXfYmIBJKC\nvxKltpS5n8/lD4v+QHSLaKYNmEbvqN5+3aeIiD8p+KuouKSYrLwsUhen0rdtX6bePJUurboEZN8i\nIrXJFTdw1YZ6derxq+t+RcHYAuKj4rlx5o08/PbDFB7UzF8i4h6uCv5yjes15nfX/46CsQVENY0i\n7pU4kj5IYm/RXqdLExHxO1cGf7lLG17K1AFTWTdqHRZLl+e7MOmjSRw6fsjp0kRE/MbVwV+u9SWt\neW7oc6x+dDXbvt1Gp8xO/Pey/+ZY8TGnSxMRqXWuOrlbVeu+WcfEjyayYscKJt04icTYROrVqed0\nWSIip+mqHj9ZsWMFExZOoPBQIU8lPMV919xHhNEfSSLiPAW/ny3cspAJH03gxKkTpA1I49ZOt+ou\nYBFxlII/AKy1/HPDP5m4aCItG7Vk2oBp9G/f3+myRMSlFPwBVFJawpy1c/jDoj/QtVVX0gakEdsm\n1umyRMRlFPwOOHHqBDNyZ5C2JI2b2t9E6s2pdLqsk9NliYhL6M5dBzSo24Axfcbw5dgv6dG6B/2y\n+vHou4+y/dvtTpcmInJBCv4aalK/CRP6T2DT2E20bNSSni/1ZNy8cew7us/p0kREzknBX0taNmrJ\nM7c8w9pfr+Vo8VGunn41T338FIdPHHa6NBGR71Dw17LIppG8cNsLLPcsZ9P+TXTK7ER6TjrHTx13\nujQREUAnd/3usz2fMfGjieTvySflphSG9xxO3Yi6TpclIiFOV/WEgE+2fcKEhRPYfWQ3UwdM5add\nfqqbwESk2hT8IcJay7zN85jw0QQMhmkDpzGowyB9AYjIRVPwh5hSW8pb695i4qKJRDaN5OmBT9O3\nbV+nyxKREKLgD1GnSk8xa80spnw8hdg2sUy9eSrdW3d3uiwRCQEK/hB3/NRxXlz5Is8se4ZBHQbx\n1M1P0aFFB6fLEpEgpjt3Q1zDug35Tb/fUDC2gE4tO9FnRh9GvzeaXYd3OV2aiIQhBX8QadagGSkJ\nKWwYs4GGdRvS7YVuPLngSQ4cO+B0aSISRhT8Qejyxpfz7I+fJf9X+ew/up/O0zszbck0ik4WOV2a\niIQBBX8Qa9e8HTPumMGyxGXk78mnY2ZHpq+YzsmSk06XJiIhzG8nd40xKcAjwF7fSxOstf8+x3qu\nP7lbVbm7ckn+KJkN+zYwJWEKw7oPo05EHQC2bi1k0qSZ7NhRSlRUBKmpI4iObu9swSLiN0F5VY8v\n+A9ba/9SyXoK/ou0uHAx4xeO59DxQ0wdMJUe9XsxePB0Nm+eAjQBioiJSWH+/LEKf5EwFczBf8Ra\n+2wl6yn4q8Fay3sF75H8UTI7vtrP/jdehq23VVijiGHD/szs2SmO1Sgi/hPMl3OOMcasMcZ4jTHN\n/bwvVzHGcHvn28l7LI8rtvaBnyTBQ4MgarlvjSbs3FnqaI0iEpxqFPzGmPnGmM8qPNb6/v0J8ALQ\nwVrbC9gNXLDLR6onwkQQV68nTF8F638KP78Xht8CP/yANpEaA0hEvq9G4wNbawdVcdUZwLvne3Py\n5MmnnyckJJCQkFCTslwnNXUEOTlT2bxqCuQlQo8s6t0zjI0xHXi/oA9DOw7VQHAiIS47O5vs7Oxa\n2ZY/+/h/YK3d7Xv+G6C3tfbBc6ynPv5aUH5Vz86dpURGRjB5ykOsOraCtCVp1IuoR3L/ZO7ucjcR\nRlfwioSDYD25+xrQCygFvgIes9buOcd6Cn4/KrWlvLvxXdKWpHHk5BHG3zCeB7o/oMlgREJcUAZ/\nlQtQ8AeEtZYFWxaQtiSNbd9u4/fX/55f9vwlDeo2cLo0EakGBb9clKVfLyVtSRpr96xl3I/G8ei1\nj9K4XmOnyxKRi6Dgl2pZvXM1aUvS+GTbJyTFJzG6z2iaNWjmdFkiUgUKfqmRL/Z+wdNLn+bfX/6b\nUb1HkRSfxGWNL3O6LBG5gGC+gUtCQLcrujH7ntnkeHLYdXgXnTI7MW7eOM0HIBKmFPxyWseWHZlx\nxwzyf5VPcUkx3V7oxuj3RlN4sNDp0kSkFin45XvaNW9HxtAM1o9eT9MGTYl7JY6H336YTfs3OV2a\niNQC9fFLpQ4cO0DmikwyV2QyMHogE/pPoEfrHk6XJeJqOrkrAXH4xGFeXv0yz376LL0je5PcP5n4\ntvFOlyXiSgp+Cahjxcd4Ne9V/vTJn+h8WWeS+ydzU/ubNB6QSAAp+MURJ0tOMvuz2Tyz9BlaNWnF\nxP4TGdJxiL4ARAJAwS+OKikt4e/r/k7akjTq16nPhBsmaEA4ET9T8EtQOHtAuAn9J3D/NfdrQDgR\nP1DwS1DRgHAi/qfgl6BVPiDc53s/Z1y/cTxy7SMaEE6kFij4JehpQDiR2qXgl5ChAeFEaocGaZOQ\nca4B4X4777caEE4kgBT84oiKA8KdLDmpAeFEAkjBL44614BwiW8nakA4ET9SH78EFQ0IJ1I1Orkr\nYefwicO8tOol/pLzF/pE9SG5fzJ9ovo4XZZI0FDwS9g6e0C4if0ncmP7GzUekLiegl/CXvmAcE8v\nfZrWTVqT3D9ZA8KJqyn4xTXOHhAuuX8yd119lwaEE9dR8IvrVBwQrqi4iPE3jNeAcOIqCn5xrfIB\n4aYumcr2b7fz5PVPMrzncA0IJ2FPwS+CBoQTd1Hwi1RQcUC4J/o+wajeozQgnIQdBb/IOWhAOAln\nGqRN5BzOHhCu8/TO/Hbeb9l9ZLfTpYk4SsEvYa98QLg1j63hZMlJuj7fVQPCiasp+MU1NCCcSBn1\n8YtrVRwQ7pYOtzDhhgl0b93d6bJEqkQnd0VqQAPCSShS8IvUgvIB4f647I9c2aQ9jVZ2pPjLdrSN\nqkNq6giio9s7XaLIaQp+kVq08csC+o8ewzdXbYHjLSDnV3Q4vpYFHz6h8Jeg4djlnMaYnxljPjfG\nlBhj4s56b7wxpsAYs94YM7gm+xEJpNTJr/PNvH/A9A3w8SSIfZ0tP/lf7vrLw3xT9I3T5YnUWE2v\n6lkL3A18XPFFY0wX4F6gCzAUeMFo/FwJETt2lAJNwNaBTT+B1xbA7A/5pvggnad3xvOOh7V71jpd\npki11Sj4rbUbrbUFwNmhficw11p7ylr7FVAA6GyZhISoqAig6Lsv7u3AgCN3smnMJqIvjWbInCEM\nfG0g72x8h5LSEkfqFKkuf13HHwVsq7C8w/eaSNBLTR1BTEwKZ8K/iJiYFFJTR9CqSSuSb0xma9JW\nRsaOZOriqVw1/SoycjL49sS3zhUtchEqPblrjJkPtK74EmCBZGvtu751FgH/Za3N9S1nAp9aa1/3\nLXuB9621/zjH9nVyV4LO1q2FTJo0k507S4mMjDjvVT3WWnK255CxPIP5W+bzUI+HGNtnLDEtYwJf\ntLhKTU7uVjprhbV2UDW2uwNoV2G5re+1c5o8efLp5wkJCSQkJFRjlyK1Jzq6PbNnp1S6njGGfu36\n0a9dP7Yd2sbzK5+nb1Zfrm93PUnxSST8MEHTQ0qtyM7OJjs7u1a2VSuXc/qO+MdZa1f7lrsCc4B4\nyrp45gOdznVoryN+CTdFJ4uY/dlsMpZnUK9OPZLik3iw+4M0rNvQ6dIkjDh2Hb8x5i4gE7gcOAis\nsdYO9b03HhgJFANJ1tp559mGgl/CkrWW+Vvmk56Tzupdq3k07lFG9R5Fm6ZtnC5NwoBu4BIJchv3\nbeS55c/xt8//xm2dbyMpPonrIq9zuiwJYQp+kRBx4NgBsvKymL5iOm2btSUpPom7u9ytSeLloin4\nRULMqdJTvL3hbdKXp/P1oa8Z3Xs0j8Q9QotGLZwuTUKEgl8khK3euZqM5Rn8a9O/uK/bfTwe/zhd\nWnVxuiwJcgp+kTCw+8huXlz5Ii+vfpnYNrEkxScxOGYwEUbzJcn3KfhFwsjxU8eZ+/lc0nPSOVFy\ngsf7PM7wnsNpUr+J06VJEFHwi4Qhay2LCxeTvjydJYVLSIxNZEyfMVzZ/EqnS5MgoOAXCXNbDmxh\n+orpzMqfxYDoATwR/wQ/avcj3RXsYgp+EZc4fOIwM9fMJGN5Bi0atSApPol7u91L/Tr1nS5NAkzB\nL+IypbaU9wveJz0nnXXfrOPX1/2ax657jCuaXOF0aRIgCn4RF1u7Zy3PLX+ON9e/yd1X301SfBI9\nf9DT6bLEzxT8IsK+o/t4ZfUrPL/yea667CqS4pO4vfPt1Imo43Rp4gcKfhE5rbikmDfXvUn68nT2\nHd3H2D5jSYxNpFmDZk6XJrVIwS8i55SzPYf0nHTmbZ5XNklM/Fg6tuzodFlSCxT8InJB2w5t44WV\nL+DN89KvbT+e6PsEN//wZl0OGsIU/CJSJUeLjzL7s9mk56RTN6Lu6UliGtVr5HRpcpEU/CJyUay1\nLNiygPTl6azauYpH4h5hVO9RRDaNdLo0qSIFv4hU28Z9G8lckcmctXO4rVPZJDG9o3o7XZZUQsEv\nIjV28PhBsnKzyFyRSVSzKJLik7inyz2aJCZIKfhFpNaUTxKTsTyDrw5+VTZJzLWP0LJRS6dLkwoU\n/CLiF7m7cslYnsE7G9/hvm73kRSfpEligoSCX0T8aveR3by06iVeWvUSvX7Qi6T4JH7c8ceaJMZB\nCn4RCYjySWIylmdwrPgYj8eXTRJzSf1LnC7NdRT8IhJQ1lqWfL2E9Jx0FhcuJjE2kdG9R9P+0vZO\nl+YaCn4RcczWA1uZvmI6M/NnMiB6AEnxSVzf7vrTdwVv3VrIpEkz2bGjlKioCFJTRxAdrS+ImlLw\ni4jjyieJeW7FczRv0Jyk+CT6NOnLbUNeZvPmKUAToIiYmBTmzx+r8K8hBb+IBI3ySWIylmewbFMO\nx5YkwarHoah8kpgihg37M7NnpzhaZ6irSfDrlLyI1KoIE8HtnW9n/kPz6Zb3C2i2F8ZcBXeNgLaf\nAo3ZubPU6TJdTcEvIn5z1aU/gHf/BzIL4JuucPcvYVRXDnVdzr6j+5wuz7XU1SMifrN1ayGDBmVW\n6OM/QmQ/D/G/LuajHQsZHDMYT5yHWzrconsCLpL6+EUkaJVf1bNzZymRkWeu6jl4/CCvr30db66X\n/xz7D4mxiTzc62HaNW/ndMkhQcEvIiEtd1cuWblZzP1iLvFR8XjiPNze+Xbq16nvdGlBS8EvImHh\naPFR3lr3Ft48Lxv2bWB4j+GMjBvJ1Zdf7XRpQUfBLyJhZ9P+TWTlZjErfxadLuuEJ9bDz7r+jCb1\nmzhdWlBQ8ItI2CouKea9gvfw5nr5ZNsn3NvtXjxxHq5tc62r5wxW8IuIK2z/djsz18wkKy+L5g2a\n44nzMKz7MFo0auF0aQGn4BcRVym1pSzaughvnpcPCj7g9s6344nzcFP7m1zzV4BjwW+M+RkwGegC\n9LbW5vpebw+sBzb4Vs2x1o46zzYU/CJSbfuP7mf2Z7OZkTuDEyUnSOyVyIheI2jTtI3TpfmVk8F/\nFVAKvAyMOyv437XW9qjCNhT8IlJj1lpW7FiBN9fLm+vf5Mb2N+KJ9TC009CwnDfY8a4eY8wi4L/O\nCv5/WWu7V+GzCn4RqVVHTh7hjS/ewJvrpfBQISN6jiAxNpGYljFOl1ZrgnWQth8aY3KNMYuMMTf4\ncT8iIt9xSf1LSIxN5JORnzDvF/M4duoYfbP6MvC1gby+9nWOnzrudImOqvSI3xgzH2hd8SXAAsnW\n2nd965x9xF8PuMRae8AYEwf8E+hqrT1yju3blJQzw7MmJCSQkJBQo/+UiMjZTpw6wdsb38ab6yV3\nVy4Pdn8QT5yHHq0r7ZEOCtnZ2WRnZ59enjJlSnB19VzM++rqEZFA++rgV/w176+8uuZV2lzSBk+c\nh/uvuZ9mDZo5XVqVBUsf/zhr7Wrf8uXAf6y1pcaYDsDHQHdr7cFzfFbBLyKOKCktYd7meXjzvCzc\nspC7u9yNJ9bDj9r9KOgvC3Xyqp67gEzgcuAgsMZaO9QYcw/wFHCSsqt+/mCtff8821Dwi4jj9hzZ\nw2v5r+HN8xJhIvDEehjeczitmrRyurRzcvyIvyYU/CISTKy1LNu2DG+ul39u+CeDYgYxMnYkgzoM\nok5EHafLO03BLyLiB4eOH+Jvn/8Nb66XvUV7T88Z0P5S5yeKV/CLiPjZmt1ryMrN4vXPX6d3ZG88\ncR7uuOoOx+YMUPCLiATIseJj/GP9P/Dmefli7xcM7zmckbEj6dKqS0DrUPCLiDigYH8Br+a9ysz8\nmXRo0QFPrId7u90bkDkDFPwiIg4qLinmgy8/wJvrZenXS/l515/jifNwXeR1frssVMEvIhIkdny7\ng1n5s8jKy+KS+pfgifUwrMcwWjZqWav7UfCLiASZUltK9lfZeHO9vF/wPrd2uhVPnIeEHyYQYWo+\nTJqCX0QkiO0/up85a+fgzfVSVFzEyNiRjOg1gsimkdXepoJfRCQEWGtZtXMV3lwvb6x7g/5X9mdk\n7Ehu7XQr9erUu6htKfhFRELMkZNH+PsXf8eb52XLgS2M6DmCkXEj6diyY5U+r+AXEQlh679ZT1Ze\nFq/lv0a3K7rhifVwT5d7aFSv0Xk/o+AXEQkDJ0tO8s7Gd/Dmelm5cyUPXPMAnjgPvX7Q63vrKvhF\nRMJM4cFC/rrmr7ya9ypXNLkCT5yHB655gP/sOsikSTOZM2eygl9EJByVlJawYMsCvHlePiz4EDZc\nyeGP/we+HqzgFxEJdz/75W95q6AlxL0Gz28IysnWRUSkFu3/ujF8Oh6eX1ej7Sj4RURCRFRUBFAE\n1Gz8HwW/iEiISE0dQUxMCmXhX30KfhGREBEd3Z7588cybNifa7QdndwVEQlBNbmOX0f8IiIuo+AX\nEXEZBb+IiMso+EVEXEbBLyLiMgp+ERGXUfCLiLiMgl9ExGUU/CIiLqPgFxFxGQW/iIjLKPhFRFxG\nwS8i4jIKfhERl1Hwi4i4TI2C3xjzJ2PMemPMGmPMW8aYZhXeG2+MKfC9P7jmpYqISG2o6RH/PKCb\ntbYXUACMBzDGdAXuBboAQ4EXjDE1myTSBbKzs50uIWioLc5QW5yhtqgdNQp+a+0Ca22pbzEHaOt7\nfgcw11p7ylr7FWVfCn1qsi830A/1GWqLM9QWZ6gtakdt9vEnAu/7nkcB2yq8t8P3moiIOKxuZSsY\nY+YDrSu+BFgg2Vr7rm+dZKDYWvs3v1QpIiK1psaTrRtjRgCPAAOstSd8rz0JWGvtH33L/wZSrLXL\nz/F5zbQuIlIN1Z1svUbBb4wZAjwL3Git3V/h9a7AHCCesi6e+UAnW9NvGRERqbFKu3oqkQnUB+b7\nLtrJsdaOstauM8a8AawDioFRCn0RkeBQ464eEREJLQG7c9cYM8QYs8EYs8kY8/vzrPOc76avNcaY\nXoGqLdAqawtjzIPGmHzfY6kxprsTdQZCVX4ufOv1NsYUG2PuCWR9gVTF35EEY0yeMeZzY8yiQNcY\nKFX4HbnMGPOBLyvW+s41hh1jTJYxZo8x5rMLrHPxuWmt9fuDsi+YL4H2QD1gDXD1WesMBd7zPY+n\nrNsoIPUF8lHFtugLNPc9H+Lmtqiw3kLgX8A9Ttft4M9Fc+ALIMq3fLnTdTvYFinA0+XtAOwH6jpd\nux/a4gagF/DZed6vVm4G6oi/D1BgrS201hYDc4E7z1rnTuA1AFt29U9zY0xrwk+lbWGtzbHWHvIt\n5hC+90BU5ecCYCzwJrA3kMUFWFXa4kHgLWvtDgBr7b4A1xgoVWmL3UBT3/OmwH5r7akA1hgQ1tql\nwIELrFKt3AxU8J99Q9d2vh9mbrnpqyptUZEH+MCvFTmn0rYwxkQCd1lrX6TsHpJwVZWfi85AS2PM\nImPMSmPMQwGrLrCq0hYzgG7GmJ1APpAUoNqCTbVys6ZX9YgfGWNuBh6m7M89t0oHKvbxhnP4V6Yu\nEAcMAJoAnxpjPrXWfulsWY4YD+Rba282xsRQdmVhD2vtEacLCwWBCv4dwJUVltv6Xjt7nXaVrBMO\nqtIWGGN6AK8AQ6y1F/pTL5RVpS2uA+b6Bvm7HBhqjCm21r4ToBoDpSptsR3YZ609Dhw3xiwGelLW\nHx5OqtIW1wNpANbazcaYrcDVwKqAVBg8qpWbgerqWQl0NMa0N8bUB+4Hzv7FfQcYDmCM6QsctNbu\nCVB9gVRpWxhjrgTeAh6y1m52oMZAqbQtrLUdfI9oyvr5R4Vh6EPVfkfeBm4wxtQxxjSm7GTe+gDX\nGQhVaYv1wC0Avj7tzsCWgFYZOIbz/6VbrdwMyBG/tbbEGDOGsmGcI4Asa+16Y8xjZW/bV6y17xtj\nbjXGfAkUUdbFEXaq0hbAJKAlZ4azLrbWht3oplVsi+98JOBFBkgVf0c2GGM+BD4DSoBXrLXrHCzb\nL6r4c/E08FdjTD5lofg7a+1/nKvaP4wxrwMJwGXGmK8pu5qpPjXMTd3AJSLiMpp6UUTEZRT8IiIu\no+AXEXEZBb+IiMso+EVEXEbBLyLiMgp+ERGXUfCLiLjM/wNWcxRplSOb4wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x421e4a8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"b) The shape from x belongs to 0<x<4\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0VPW99/H3NyRQLopFECh3CJBwESGPXBaIkVuSgxWK\np9oeq8fT6kESMwGiFioUtCg+FDAkQJVa8HjEh6Vt1Xow4WKJbbUiSiCQCyCiUix6BEQQMWHm9/yR\nqBFBApPMnsx8XmvNYi47ez7slXyz85m9Z8w5h4iIRI8YrwOIiEhoafCLiEQZDX4RkSijwS8iEmU0\n+EVEoowGv4hIlAlq8JvZv5rZTjPzm9mg0x6baWZ7zKzMzMYFF1NEROpKbJBfvwP4AfBozTvNLBG4\nAUgEOgIbzayn00kDIiKeC2qP3zm3yzm3B7DTHpoArHHOnXLOvQPsAQYH81wiIlI36qvj7wDsr3H7\nQPV9IiLisXNWPWa2AWhb8y7AAfc6516or2AiIlI/zjn4nXNjL2C9B4BONW53rL7vG8xMvb+IyAVw\nzp1es9dKXVY9NQP8CfiRmTU2s25APPD62b7QOaeLc8yZM8fzDOFy0bbQttC2+PZLMII9nHOime0H\nhgL/Y2b51YO8FHgaKAVeBNJdsElFRKROBHU4p3PuOeC5szw2H5gfzPpFRKTu6czdMJKcnOx1hLCh\nbfEVbYuvaFvUDfO6gTEztUAiIufJzHBh8OKuiIg0ABr8IiJRRoNfRCTKaPCLiEQZDX4RkSijwS8i\nEmU0+EVEoowGv4hIlNHgFxGJMmEx+H/yk/vYt+9dr2OIiESFsHjLBjhOjx5z2LAhk27duniaR0Sk\nIYiAt2xozt699zF79uNeBxERiXjhMfjH3g1N/Lz/fsDrJCIiES+o9+OvM80OwZ29OfnpUAIuQIyF\nx+8jEZFIFB4T9vk8Ovx1FJ/1e4dhvxvG6wfO+imNIiISpLAY/DfdtJC/rnmQN9PfJP3/pDNxzUR+\n+vxP+eD4B15HExGJOGFxVM/pGT75/BN+9fKvWLVtFb+46hfcOfhOGjdq7FFCEZHwE8xRPWE5+L9Q\n/lE509ZN452P3yEnJYeU+JQQpxMRCU8RO/gBnHOs3bOWqQVT6XtZXxaPW0yPVj1CmFBEJPxEwHH8\nZ2dmXNvrWkrSSxjWcRhDHhvCvS/dy/GK415HExFpkMJ+8H+hSWwTZoyYwfY7tvPu0XdJXJbIUzue\nwuu/WEREGpqwr3rO5pX3XiEzP5PmjZuTm5rLwPYD6yGdiEh4iuiO/9v4A35WFq1k9qbZTEyYyLxR\n82jdrHUdJxQRCT8R3fF/m0Yxjbg96XbKMspo0qgJfZb1YenrSzkVOOV1NBGRsNWg9/hPt/PDnWQV\nZPHhpx+Sm5rLNd2uqZP1ioiEm6ites7EOccfy/5I9vpsBncYzK/H/poul+itnkUkskRt1XMmZsb1\nfa6nLKOMfpf1Y9CKQdxXeB+fVX7mdTQRkbAQcXv8p3v343e5e8PdvH7gdRaNW8SkxEmYXdAvSRGR\nsKGqpxY27duEr8DHZc0vY0nqEvpd1q/en1NEpL6o6qmFa7pdQ9HkIiYlTGLUf43Cl+/jyGdHvI4l\nIhJyUTP4AWJjYskYnEFpRimV/koSliWw4s0V+AN+r6OJiIRM1FQ9Z1L0zyJ8BT4+rfiUvLQ8hnce\n7kkOEZHzpY4/CM451uxcwz0b72Fkl5EsGLOADhd38CyPiEhtqOMPgpnx4/4/piyjjG6XdGPAIwOY\n/9f5fH7qc6+jiYjUi6AGv5n9q5ntNDO/mQ2qcX8XMzthZlurL8uDj1q/WjRuwbxR89h822Y2H9hM\n3+V9eWHXC3r3TxGJOEFVPWbWGwgAjwJ3Oee2Vt/fBXjBOXd5LdbhadVzNuveWkdWQRbdvtuNnJQc\nerfu7XUkEZEveVb1OOd2Oef2AGd68gZ9llRKfArFU4oZ230sI1aN4O71d/PJ5594HUtEJGj12fF3\nra55NpnZiHp8nnrTuFFjpg+bzs4pOzn82WESlibw+LbHCbiA19FERC7YOaseM9sAtK15F+CAe51z\nL1QvswnIrlH1xAEtnHNHqrv/54A+zrlvfF6imbk5c+Z8eTs5OZnk5OSg/lP15fUDr+PL9+Fw5KXl\nMbjDYK8jiUiUKCwspLCw8Mvb9913n7eHc54++M/n8XDt+M8m4AL89/b/ZuZLM0mNT+XB0Q/SrkU7\nr2OJSJQJl8M5vwxgZq3NLKb6encgHni7Dp/LMzEWw79f8e+U31lO62at6be8H4teXUSFv8LraCIi\ntRLsUT0TgTygNfAxsM05l2Zmk4D7gQqqjvr5pXPuxbOso0Ht8Z9u10e7mLpuKvuO7GNJ6hJS4lO8\njiQiUUBn7nrMOcfaPWuZWjCVvpf1ZfG4xfRo1cPrWCISwcKl6olaZsa1va6lJL2EYR2HMeSxIdz7\n0r0cr/jGa9kiIp7T4K9DTWKbMGPEDLbfsZ13j75LwtIEntrxlM7+FZGwoqqnHr3y3iv4Cnw0i2tG\nbmouA9sP9DqSiEQIdfxhzB/ws7JoJbM3zWZiwkTmjZpH62atvY4lIg2cOv4w1iimEbcn3U5ZRhlN\nGjWhz7I+LH19KacCp7yOJiJRSnv8IVbyYQm+Ah8ffvohS1KXMKrbKK8jiUgDpKqngXHO8Wz5s0xf\nN50rO1zJwrEL6XJJF69jiUgDoqqngTEzJiVOoiyjjP6X9WfQikHMLZzLicoTXkcTkSigPf4w8N7R\n97h7w91s/sdmFo5byPWJ12PWoN/VWkTqmaqeCFH4TiG+fB+tm7UmNy2Xfpf18zqSiIQpVT0RIrlr\nMlsnb+X6xOsZ9V+j8OX7OPLZEa9jiUiE0eAPM7ExsWQMzqA0o5RKfyUJyxJY8eYK/AG/19FEJEKo\n6glzRf8swlfg49OKT8lLy2N45+FeRxKRMKCOP8I551izcw33bLyHkV1GsmDMAjpc3MHrWCLiIXX8\nEc7M+HH/H1OeUU63S7ox4JEBzP/rfE6eOul1NBFpgLTH3wDtPbyX7PXZ7PxwJw+nPMy1va7V4Z8i\nUUZVT5Rav3c9WQVZdGnZhZzUHBJaJ3gdSURCRFVPlBrXYxzFdxST0iOFEStHcNf6u/jk80+8jiUi\nYU6Dv4GLaxTHtGHTKEkv4chnR0hYmsCqolUEXMDraCISplT1RJgtB7aQmZ+Jw5GbmsuQjkO8jiQi\n9UAdv3xNwAV4svhJZmycQUp8CvNHz6ddi3ZexxKROqSOX74mxmK4ZcAtlN9ZTptmbei3vB+LXl1E\nhb/C62giEga0xx8Fdn20i6nrprLvyD5yUnNIjU/1OpKIBElVj5yTc461e9YytWAqfS/ry+Jxi+nR\nqofXsUTkAqnqkXMyM67tdS0l6SUM6ziMIY8N4Rcv/YLjFce9jiYiIabBH2WaxDZhxogZFE8pZv8n\n+0lYmsBTO55Cf3WJRA9VPVHulfdewVfgo2lsU/LS8hjYfqDXkUSkFtTxS1D8AT8ri1Yye9NsJvSe\nwLxR82jTvI3XsUTkW6jjl6A0imnE7Um3U5ZRRtO4pvRZ3oe8zXmcCpzyOpqI1APt8cs3lHxYQlZB\nFh98+gFLUpcwqtsoryOJyGlU9Uidc87xbPmzZK/PJql9EgvHLaTrJV29jiUi1VT1SJ0zMyYlTqI0\nvZQBbQeQtCKJuYVzOVF5wutoIhIkDX75Vk3jmjL76tkUTS6i7KMy+izrw+9Lf6/DP0UaMFU9cl4K\n3ynEl++jdbPWLEldQv+2/b2OJBKVVPVIyCR3TWbr5K1cn3g9o58YjS/fx5HPjngdS0TOQ1CD38wW\nmFmZmW0zsz+Y2cU1HptpZnuqHx8XfFQJF7ExsWQMzqA0o5RTgVMkLEvg0TcexR/wex1NRGohqKrH\nzMYAf3bOBczsIcA552aaWR9gNXAl0BHYCPQ8U6ejqqfh23ZwG758H8cqjpGXlseIziO8jiQS8Tyr\nepxzG5378jP+XqNqyANcB6xxzp1yzr0D7AEGB/NcEr6uaHcFL9/6Mj8f/nN+/Icfc9Mfb+LAJwe8\njiUiZ1GXHf9PgRerr3cA9td47ED1fRKhzIwf9fsR5RnldLukGwMeGcCDf32Qk6dOeh1NRE5zzsFv\nZhvMrLjGZUf1v9+vscy9QKVz7v/Va1oJe80bN2feqHm8fvvrbHl/C32X9+VPu/6kwz9FwkjsuRZw\nzo39tsfN7FbgX4Ca5/UfADrVuN2x+r4zmjt37pfXk5OTSU5OPlcsCXPdv9udZ298lvV715NVkMXy\nLcvJSc0hoXWC19FEGqTCwkIKCwvrZF3BvribCiwCRjrnDtW4/4sXd4dQVfFsQC/uRq1KfyVLX1/K\ng397kFsuv4VfXv1LWn6npdexRBo0L4/jzwNaABvMbKuZLQdwzpUCTwOlVPX+6Zru0SuuURzThk1j\n55SdfHzyYxKWJbCqaBWBL48LEJFQ0pm7EnJbDmzBV+Aj4ALkpuYypOMQryOJNDh6d05pcAIuwJPF\nTzJj4wxS4lOYP3o+7Vq08zqWSIOht2yQBifGYrhlwC2U31lOm2Zt6Le8H4teXUSFv8LraCIRT3v8\nEhZ2H9rN1IKpvH3kbXJSc0iNT/U6kkhYU9UjEWPt7rVMXTeVxNaJLE5ZTHyreK8jiYQlVT0SMcb3\nGs/OKTsZ3mk4Qx8byi9e+gXHK457HUskomjwS9hpEtuEn4/4OcVTitn/yX4Sliawuni1zv4VqSOq\neiTsvbr/VTLzM2ka25TctFwGtR/kdSQRz6njl4jnD/hZtW0Vs/48iwm9JzBv1DzaNG/jdSwRz6jj\nl4jXKKYRtw26jbKMMprGNaXP8j7kbc7jVOCU19FEGhzt8UuDVPJhCVkFWRw8fpDctFxGdRt17i8S\niSCqeiQqOed4tvxZstdnk9Q+iYXjFtL1kq5exxIJCVU9EpXMjEmJkyhNL2VA2wEkrUhibuFcTlSe\n8DqaSFjT4JcGr2lcU2ZfPZuiyUWUfVRG4rJEfl/6ex3+KXIWqnok4hS+U4gv38elzS4lNzWX/m37\nex1JpM6p6hGpIblrMlsnb+WHfX7I6CdGk/liJoc/O+x1LJGwocEvESk2Jpb0K9MpyyjD7/wkLkvk\n0TcexR/wex1NxHOqeiQqbDu4DV++j2MVx8hLy2NE5xFeRxIJig7nFKkF5xxPlzzNXRvu4qrOV7Fg\n7AI6XtzR61giF0Qdv0gtmBk39ruR8oxyeny3BwMeGcCDf32Qk6dOeh1NJKS0xy9R6+0jb5O9Ppvi\nD4p5OOVhvt/r+5hd0A6USMip6hEJwvq968kqyKJLyy7kpOaQ0DrB60gi56SqRyQI43qMo/iOYlJ6\npDBi5Qiy12Vz9ORRr2OJ1BsNfhEgrlEc04ZNoyS9hKOfHyVhWQKrilYRcAGvo4nUOVU9Imew5cAW\nfAU+/AE/eWl5DOk4xOtIIl+jjl+kHgRcgCeLn2TmSzMZ230sD415iHYt2nkdSwRQxy9SL2IshlsG\n3EJ5Rjltm7el3/J+LHx1IRX+Cq+jiQRFe/witbT70G6mFkxl75G9LEldQmp8qteRJIqp6hEJobW7\n1zJ13VQSWyeyOGUx8a3ivY4kUUhVj0gIje81np1TdjKi8wiGPjaUmRtncrziuNexRGpNg1/kAjSJ\nbcI9w++heEoxB44dIGFpAquLV+vDX6RBUNUjUgde3f8qvnwf34n9DrlpuQxqP8jrSBLh1PGLhAF/\nwM+qbauY9edZTOg9gXmj5tGmeRuvY0mEUscvEgYaxTTitkG3UX5nOU3jmtJneR9yN+dS6a/0OprI\n12iPX6SelHxYQlZBFgePH2RJ6hJGdx/tdSSJIKp6RMKUc47nyp9j+vrpJLVPYuG4hXS9pKvXsSQC\nqOoRCVNmxg8Sf0BpeikD2g4gaUUSczbN4UTlCa+jSRQLavCb2QIzKzOzbWb2BzO7uPr+LmZ2wsy2\nVl+W101ckYapaVxTZl89m6LJRZQfKidxWSLPlDyjwz/FE0FVPWY2Bvizcy5gZg8Bzjk308y6AC84\n5y6vxTpU9UjUefmdl8nMz+TSZpeSm5pL/7b9vY4kDYxnVY9zbqNzX75h+WtAzU+u1mfYiZzF1V2v\nZuvkrfywzw8Z/cRoMl/M5PBnh72OJVGiLjv+nwL5NW53ra55NpnZiDp8HpGIEBsTS/qV6ZRllBFw\nARKXJfLIG4/gD/i9jiYR7pxVj5ltANrWvAtwwL3OuReql7kXGOScu776dhzQwjl3xMwGAc8BfZxz\n33hDE1U9IlW2H9yOr8DHJ59/Qm5qLld1ucrrSBLGgql6Ys+1gHNu7Dme/FbgX4BRNb6mEjhSfX2r\nme0FegFbz7SOuXPnfnk9OTmZ5OTkcwYXiTQD2g2g8N8LebrkaW76402M6DyCBWMX0PHijuf+Yol4\nhYWFFBYW1sm6gn1xNxVYBIx0zh2qcX9r4HD1i77dgZeB/s65j8+wDu3xi5zm04pPeehvD7H8jeVk\nD8tm+rDpfCf2O17HkjDi2QlcZrYHaAx8MfRfc86lm9kk4H6gAggAv3TOvXiWdWjwi5zF20feJnt9\nNsUfFLN43GKu630dZjpuQnTmrkjE27B3A1kFWXRq2YmclBwS2yR6HUk8pjN3RSLc2B5j2X7HdtLi\n0xj5+Eiy12Vz9ORRr2NJA6XBL9JAxDWKY+rQqZSkl3D086MkLEtgZdFKAl+eSiNSO6p6RBqoLQe2\n4Cvw4Q/4yU3LZWjHoV5HkhBSxy8SpQIuwOri1cx4aQZju4/loTEP0a5FO69jSQio4xeJUjEWw80D\nbqY8o5y2zdvSb3k/Fr66kAp/hdfRJIxpj18kguw+tJtp66bx1uG3yEnJIa1nmteRpJ6o6hGRr1m7\ney1T100loXUCD6c8THyreK8jSR1T1SMiXzO+13h2TtnJVZ2vYuhjQ5m5cSbHK77xVlkSpTT4RSJU\nk9gm3DP8HoqnFHPg2AESliawuni1PvxFVPWIRItX97+KL99Hk9gm5KbmkvS9JK8jSRDU8YtIrfgD\nflZtW8WsP8/iut7X8cCoB2jTvI3XseQCqOMXkVppFNOI2wbdRvmd5TSPa06f5X3I3ZxLpb/S62gS\nQtrjF4lipf9bii/fx8HjB1mSuoTR3Ud7HUlqSVWPiFww5xzPlT/H9PXTGdR+EIvGLaLrJV29jiXn\noKpHRC6YmfGDxB9Qml7KwHYDSVqRxJxNczhRecLraFJPNPhFBICmcU2ZNXIWRZOL2HVoF4nLEnmm\n5Bkd/hmBVPWIyBm9/M7L+Ap8tGraitzUXPq37e91JKlBVY+I1Lmru17Nm//5Jj/s80NGPzGaO1+8\nk8OfHfY6ltQBDX4ROavYmFjSr0ynLKMM5xyJyxJ55I1H8Af8XkeTIKjqEZFa235wO74CH0dPHiUv\nLY+rulzldaSopcM5RSRknHM8XfI0d2+4m+Gdh7NgzAI6tezkdayoo45fRELGzLix342UZZQR/914\nrnj0Ch74ywOcPHXS62hSS9rjF5Gg7Duyj+z12Wz/YDuLxy3mut7XYXZBO6JyHlT1iIjnNuzdQFZB\nFp1adiInJYfENoleR4poqnpExHNje4xl+x3bSYtPY+TjI5m+bjpHTx71OpacgQa/iNSZuEZxTB06\nlZL0Eo59foyEZQmsLFpJwAW8jiY1qOoRkXrzxvtvkJmfiT/gJzctl6Edh3odKWKo4xeRsBVwAVYX\nr2bGSzMY230s80fPp/1F7b2O1eCp4xeRsBVjMdw84GbKM8pp27wt/X/Tn1+/8msq/BVeR4ta2uMX\nkZDafWg309ZN463Db5GTkkNazzSvIzVIqnpEpMFZu3st09ZNo3fr3jyc8jDxreK9jtSgqOoRkQZn\nfK/x7Jiyg6s6X8XQx4Yyc+NMjlcc9zpWVNDgFxHPNIltwj3D76F4SjEHjh0gYWkCTxY/qQ9/qWeq\nekQkbPx9/9/JzM+kSWwTclNzSfpekteRwpY6fhGJGAEXYFXRKu79871c1/s6Hhj1AG2at/E6VthR\nxy8iESPGYvjZoJ9Rfmc5zeOa02d5H5a8toRKf6XX0SJGUHv8ZnY/MAFwwEfArc65f1Q/NhP4KXAK\nyHLOrT/LOrTHLyJnVfq/pWQVZPH+sffJTc1ldPfRXkcKC55VPWbWwjl3vPp6JnC5c+52M+sDrAau\nBDoCG4GeZ5rwGvwici7OOZ7f9TzT1k1jUPtBLBq3iK6XdPU6lqc8q3q+GPrVmgOHqq9fB6xxzp1y\nzr0D7AEGB/NcIhK9zIyJCRMpTS9lYLuBJK1IYs6mOZyoPOF1tAYp6I7fzOaZ2XvArcD86rs7APtr\nLHag+j4RkQvWNK4ps0bOYtvkbew6tIvEZYk8U/KMDv88T7HnWsDMNgBta95FVad/r3PuBefcLGCW\nmf0cyAH+43xDzJ0798vrycnJJCcnn+8qRCSKdGrZiTX/uoaX33kZX4GPZVuWkZuWy+VtL/c6Wr0p\nLCyksLCwTtZVZ4dzmlkn4EXnXH8zmwE459z/rX6sAJjjnNt8hq9Txy8iF+xU4BS/ffO3zCmcww19\nb+D+a+6nVdNWXseqd551/GZW8801JgLbqq//CfiRmTU2s25APPB6MM8lInImsTGxTLlyCmUZZTjn\nSFyWyCNvPII/4Pc6WtgK9qie3wO9AD/wNjDFOfdh9WMzgZ8BlehwThEJke0Ht+Mr8HH05FFy03IZ\n2WWk15Hqhc7cFRGpwTnHM6XPcNf6uxjeeTgLxiygU8tOXseqUzpzV0SkBjPjhr43UJZRRs9WPbni\n0St44C8PcPLUSa+jhQXt8YtIxNt3ZB/Z67PZdnAbi1MWM6H3BMwuaGc5bKjqERGphY1vb8SX76Pj\nxR1ZkrqExDaJXke6YKp6RERqYUz3MWy/Yzvje45n5OMjmb5uOkdPHvU6Vshp8ItIVIlrFEfW0CxK\n0ks49vkxEpYlsLJoJQEX8DpayKjqEZGo9sb7b+DL91EZqCQvLY+hHYd6HalW1PGLiAQh4AKsLl7N\njJdmMKb7GB4a/RDtL2rvdaxvpY5fRCQIMRbDzQNupjyjnPYt2tP/N/359Su/psJf4XW0eqE9fhGR\n0+w5tIdp66ax5/AeclJySOuZ5nWkb1DVIyJSD9buXsu0ddPodWkvHk55mJ6X9vQ60pdU9YiI1IPx\nvcazY8oORnYZybDfDWPGxhkc+/yY17GCpsEvIvItmsQ24Z7h97Bjyg7+efyfJCxL4MniJxv0h7+o\n6hEROQ9/3/93MvMzadyoMXlpeSR9L8mTHOr4RURCKOACrCpaxaxNs7i257U8MPoBLmt+WUgzqOMX\nEQmhGIvhZ4N+RllGGRc1uYi+y/uy5LUlVPorvY5WK9rjFxEJUun/lpJVkMX7x95nSeoSxnQfU+/P\nqapHRMRjzjme3/U809dNZ2D7gSwat4iul3Stt+dT1SMi4jEzY2LCRErSSxjYbiBJK5L45aZfcqLy\nhNfRvkGDX0SkDjWNa8qskbPYNnkbew7vIWFpAk+XPB1Wh3+q6hERqUd/efcvZOZn8t3vfJfctFwu\nb3t5naxXVY+ISJga2WUkb/7nm9zY90bGPDGGjLUZHDpxyNNMGvwiIvUsNiaWKVdOoSyjDIDEZYn8\nZstv8Af8nuRR1SMiEmLFHxTjy/fx8cmPyU3LZWSXkee9Dh3OKSLSwDjneKb0Ge5afxfDOw9nwZgF\ndGrZqdZfr45fRKSBMTNu6HsDZRll9GzVkysevYJ5f5nHyVMn6/+5vd7b1h6/iAjsO7KP7PXZbDu4\njcUpi5nQewJmZ9+hV9UjIhIhNr69kayCLDpc1IElqUtIbJN4xuVU9YiIRIgx3cewbfI2xvccz8jH\nRzJ93XSOnjxap8+hwS8iEmbiGsWRNTSLkvQSjn1+jN5Le/O7rb8j4ALs2/cuP/nJfUGtX1WPiEiY\ne/P9N8nMz+T4Z59y+Mm+HNj8W6CFOn4RkUjmnGNE+vW82uw1eHssPPeEOn4RkUhmZjQu7w9Ld8Hx\n9kGtS4NfRKSB6NAhBipiYONDQa1Hg19EpIH41a9upUePOcCnQa1Hg19EpIHo1q0LGzZkctNNC4Na\nT1Av7prZ/cAEwAEfAbc65/5hZl2AMqC8etHXnHPpZ1mHXtwVETlPXp7AtcA5N8A5dwXwPDC3xmNv\nOecGVV/OOPTl6woLC72OEDa0Lb6ibfEVbYu6EdTgd84dr3GzOVV7/V+4oN9E0Uzf1F/RtviKtsVX\ntC3qRmywKzCzecAtwAlgSI2HuprZVuAoMNs597dgn0tERIJ3zj1+M9tgZsU1Ljuq//0+gHNulnOu\nM7AKyKn+sn8CnZ1zg4Bs4Ckza1Ff/wkREam9Ojtz18w6AS865/qf4bFNQLZzbusZHtMruyIiF+BC\nX9wNquoxs3jn3FvVNycC26rvbw0cds4FzKw7EA+8faZ1XGhwERG5MMF2/A+ZWS/AT9Vgn1J9/0jg\nfjOrAALAZOfcx0E+l4iI1AHP36RNRERCK2Rn7ppZqpmVm9luM/v5WZbJNbM9ZrbNzK4IVbZQO9e2\nMLN/M7Pt1Ze/mdk3XjeJFLX5vqhe7kozqzSzSaHMF0q1/BlJNrMiM9tZ/dpZRKrFz8ilZpZfPSt2\nmNmtHsSsd2b2OzP7wMyKv2WZ85+bzrl6v1D1C+YtoAsQR9VrAQmnLZMGrK2+PoSqs31Dki+Ul1pu\ni6FAy+rrqdG8LWos9xLwP8Akr3N7+H3REigBOlTfbu11bg+3xRxg/hfbATgExHqdvR62xQjgCqD4\nLI9f0NwM1R7/YGCPc+5d51wlsIaqt3qoaQLwBIBzbjPQ0szahihfKJ1zWzjnXnPOffFZa68BHUKc\nMVRq830BkAn8HvgwlOFCrDbb4t+APzjnDgA45z4iMtVmWxwELqq+fhFwyDl3KoQZQ8JVnf905FsW\nuaC5GarB3wHYX+P2P/jmMDt9mQNnWCYS1GZb1HQbkF+vibxzzm1hZt8DJjrnfkNknw1em++LXkAr\nM9tkZlvM7OaQpQut2myL3wJ9zex9YDuQFaJs4eaC5mbQZ+5K/TGza4D/oOrPvWiVA9TseCN5+J9L\nLDAIGEUUUv6EAAABtElEQVTVW6T83cz+7r46pDqazAS2O+euMbMewAYzu9x9/W1k5CxCNfgPAJ1r\n3O5Yfd/py3Q6xzKRoDbbAjO7HFgBpDrnvu1PvYasNtvi/wBrzMyo6nLTzKzSOfenEGUMldpsi38A\nHznnTgInzewvwACq+vBIUpttMRx4AMA5t9fM9gEJwBshSRg+Lmhuhqrq2QLEm1kXM2sM/Ag4/Qf3\nT1S95w9mNhT42Dn3QYjyhdI5t4WZdQb+ANzsnNvrQcZQOee2cM51r750o6rnT4/AoQ+1+xl5Hhhh\nZo3MrBlVL+aVhThnKNRmW5QBYwCqO+1enOUk0QhgnP0v3QuamyHZ43fO+c3sTmA9Vb9sfuecKzOz\nyVUPuxXOuRfN7F/M7C2qPl7mP0KRLdRqsy2A2UArYHn1nm6lc26wd6nrRy23xde+JOQhQ6SWPyPl\nZrYOKKbqpMkVzrlSD2PXi1p+X8wHVpnZdqqG4j3OucPepa4fZvYUkAxcambvUXU0U2OCnJs6gUtE\nJMrooxdFRKKMBr+ISJTR4BcRiTIa/CIiUUaDX0Qkymjwi4hEGQ1+EZEoo8EvIhJl/j/O/pNirWAf\nFAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xbd15588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"b) The shape from x belongs to 4<x<5\n"
]
}
],
"source": [
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"import numpy as np\n",
"%matplotlib inline \n",
"import matplotlib.pyplot as plt\n",
"\n",
"\n",
"l_ac = 5 #m - The length of the beam \n",
"l_ab = 4 #m - The length of ac on beam \n",
"l_bc = 1 #m - The length of bc on beam \n",
"F = 20 #N - force applied on beam at 'b'\n",
"R_A = F/2 #wl - The reactive force at A\n",
"R_B = F/2 #wl - The reactive force at B\n",
"I_ab = 4 #I The moment of inertia of part AB \n",
"I_bc = 1 #I - The momemt of inertia of part BC\n",
"R_A = F*(l_bc/l_ac) #N- The reaction at joint A\n",
"R_B = F*(l_ab/l_ac) #N- The reaction at joint B\n",
"E = 1 #E youngs modulus\n",
"\n",
"#0<x<4\n",
"x = [0,1,2,3,4]\n",
"M = [0,0,0,0,0]\n",
"y = [0,0,0,0,0]\n",
"for i in range(5):\n",
" M[i] = 4*x[i] #integration of x**n = x**n+1/n+1\n",
" #y_2[i] = 4*x[i]/(E*I_ab) #The \n",
" #y_1[i] = 4*(x[i]**2)/(E*I_ab) -4.8/(E*I_bc) #The constant can be found by conditions y(o) = y(c) = 0\n",
" y[i] = 4*(x[i]**2)/(6*E*I_ab) -4.8*x[i]/(E*I_bc) #elastic curve constant can be found by Y_1(0) = 0 \n",
"\n",
"\n",
"#0<x_1<1\n",
"x_1 = [4,5]\n",
"m = [0,0]\n",
"Y = [0,0]\n",
"for i in range(2):\n",
" m[i] = 16 - 16*x_1[i] #integration of x**n = x**n+1/n+1\n",
" # Y_2 = (16 - 16*x_1[i])/(E*I_ab) \n",
" #Y_1 = (16*x_1[i]-8*(x_1[i]**2) +8 - 4.8)/(E*I_ab)#The constant can be found by conditions y(o) = y(c) = 0\n",
" Y[i] = (8*(x_1[i]**2)-8*(x_1[i]**3)/3 +(8-4.8)*x_1[i] - 4*4.8 )/(E*I_ab) #elastic curve constant can be found by Y_1(0) = 0\n",
"\n",
"#Graphs\n",
"values = y\n",
"y = np.array(values)\n",
"t = np.linspace(0,1,5)\n",
"poly_coeff = np.polyfit(t, y, 2)\n",
"plt.plot(t, y, 'o')\n",
"plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
"plt.show()\n",
"print \"b) The shape from x belongs to 0<x<4\"\n",
"values = Y \n",
"y = np.array(values)\n",
"t = np.linspace(0,1,2)\n",
"poly_coeff = np.polyfit(t, y, 2)\n",
"plt.plot(t, y, 'o')\n",
"plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
"plt.show()\n",
"print \"b) The shape from x belongs to 4<x<5\"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.10 page number 529"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The deflection of point D -5.56 mm\n"
]
}
],
"source": [
"k = 24.0*(10**12) #N.mm2 Flexure rigidity\n",
"E = 200.0 #Gpa - Youngs modulus of the string\n",
"l = 5000.0 #mm - The length of the string\n",
"C_A = 300.0 #mm2 - crossection area \n",
"P = 50.0 #KN - The force applies at the end \n",
"a = 2000.0 #mm - The distance C-F\n",
"x = 1#X - let it be a variable X\n",
"y_d = x*(a**3)/(3*k) #Xmm The displacement at D, lets keep the variable in units part\n",
"y_p = -P*(10**3)*(16*(a**3)-12*(a**3)+(a**3))/(k*6) #mm The displacement due to p \n",
"e_rod = l/(C_A*E*(10**3)) #Xmm -deflection, The varible is in units \n",
"e_rod\n",
"X = y_p/(2*e_rod+y_d) # By equating deflections \n",
"y_d_1 = X*(a**3)/(3*k) # the deflection of point D\n",
"print \"The deflection of point D\",round(y_d_1,2),\"mm\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.11 page number 530 "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the horizantal component of deflection 0.246 in\n",
"the vertical component of deflection 0.073 in\n",
"the resultant deflection 0.257 in\n"
]
}
],
"source": [
"import math \n",
"l = 15 #in - The length of the crossection \n",
"b = 33.9 #in - the width of the crossection\n",
"L = 100 #in The length of the cantilever \n",
"E = 29*(10**6) #psi The youngs modulus of the material used \n",
"I_Z = 315 #in4 - the moment of inertia wrt Z axis \n",
"I_y = 8.13 #in4 - the moment of inertia wrt Y axis\n",
"o = 5 # degrees - the angle of acting force \n",
"P = 2000 #k the acting force \n",
"P_h = P*math.sin(math.radians(o)) #k - The horizantal component of P\n",
"P_v = P*math.cos(math.radians(o)) #k - The vertical component of P\n",
"e_h = P_h*(L**3)/(3*E*I_y) # the horizantal component of deflection \n",
"e_v = P_v*(L**3)/(3*E*I_Z ) # the vertical component of deflection\n",
"e = pow((e_h**2 + e_v**2),0.5)\n",
"print \"the horizantal component of deflection\",round(e_h,3) ,\"in\"\n",
"print \"the vertical component of deflection\",round(e_v,3) ,\"in\"\n",
"print \"the resultant deflection\",round(e,3) ,\"in\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.13 page number 533"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a) The maximum deflection when the beam is on rigid supports 0.03 mm with impact factor 71.7 b) The maximum deflection when the beam is on spring supports 0.28 mm with impact factor 24.17\n"
]
}
],
"source": [
"#Given \n",
"l = 50.0 #mm - The length of the crossection \n",
"b = 50.0 #mm - the width of the crossection\n",
"m = 15.3 # mass of the falling body\n",
"h = 75.0 #mm - The height of the falling body \n",
"p = m*9.81 #N the force acted due to the body\n",
"L = 1000.0 #mm The length of the cantilever\n",
"E = 200 #Gpa The youngs modulus of the material used \n",
"I = (l**4)/12 #mm - the moment of inertia \n",
"k = 300 #N/mm -the stiffness of the spring \n",
"#Rigid supports \n",
"e = m*9.81*(L**3)*(10**-3)/(48*E*I) #mm - the deflection of beam \n",
"imp_fact_a = 1 +pow((1 +2*h/e),0.5) #no units , impact factor \n",
"#spring supports\n",
"e_spr = h/k #mm the elongation due to spring \n",
"e_total = e_spr + e \n",
"imp_fact_b = 1 +pow((1 +2*h/e_total),0.5) #no units , impact factor\n",
"print \"a) The maximum deflection when the beam is on rigid supports\",round(e,3),\"mm with impact factor\",round(imp_fact_a ,2),\n",
"print \"b) The maximum deflection when the beam is on spring supports\",round(e_total,2),\"mm with impact factor\",round(imp_fact_b,2) ,\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.15 page number 536 "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the ultimate capacity 120 K-in\n",
"the ultimate curvature 0.000806666666667 in*-1\n"
]
}
],
"source": [
"#Given\n",
"E = 30*(10**3) #ksi - The youngs modulus of the material \n",
"stress_y = 40 #Ksi - yield stress\n",
"stress_max = 24.2 #Ksi - the maximum stress\n",
"l = 2 #in - The length of the crossection \n",
"b = 3 #in - the width of the crossection\n",
"h = 3 #in - the depth of the crossection\n",
"#lets check ultimate capacity for a 2 in deep section \n",
"M_ul = stress_y*b*(l**2)/4 #K-in the ultimate capacity \n",
"curvature = 2*stress_y/(E*(h/2) ) #in*-1 the curvature of the beam \n",
"curvature_max = stress_max/(E*(h/2)) #in*-1 The maximum curvature \n",
"print \"the ultimate capacity\",M_ul,\"K-in\"\n",
"print \"the ultimate curvature\",curvature_max,\"in*-1\"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.16 page number 543"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The maximum deflection at tip B -4.11 mm\n",
"The slope at the tip B -0.0 radians\n"
]
}
],
"source": [
"#Given \n",
"l_ad = 1600 #mm - The total length of the beam \n",
"l_ab = 600 #mm - The length of AB\n",
"l_bc = 600 #mm - The length of BC\n",
"e_1 = 0.24 #mm - deflection \n",
"e_2 = 0.48 #mm - deflection\n",
"E = 35 #Gpa\n",
"#Caliculation \n",
"\n",
"A_afe = -(l_ab+l_bc)*e_1*(10**-3)/(2*E)\n",
"A_afe = -(l_ab)*e_2*(10**-3)/(4*E)\n",
"y_1_b = A_afe + A_afe #rad the slope at the tip B\n",
"x_1 = 1200 #com from B\n",
"x_2 = 800 #com from B\n",
"y_b = A_afe*x_1 + A_afe*x_2 #mm The maximum deflection at tip B\n",
"print\"The maximum deflection at tip B\",round(y_b,2),\"mm\"\n",
"print \"The slope at the tip B\",round(y_1_b,2) ,\"radians\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.19 page number 547 "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" The maximum displacement in y direction is -0.0130208333333 W(l**4)/EI \n",
" The maximum deflection occured at 0.5 L\n",
" The maximum deflection is -0.05775 W(l**3)/EI \n"
]
}
],
"source": [
"#Given\n",
"import numpy\n",
"l_ab = 1.0 #L in - The length of the beam\n",
"F_D = 1.0 #W lb/in - The force distribution \n",
"F = F_D*l_ab #WL - The force applied\n",
"#Beause of symmetry the moment caliculations can be neglected\n",
"#F_Y = 0\n",
"R_A = F/2 #wl - The reactive force at A\n",
"R_B = F/2 #wl - The reactive force at B\n",
"#EI - The flxure rigidity is constant and 1/EI =1 # k\n",
"\n",
"#part - A\n",
"#section 1--1\n",
"l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
"M_1 = [0,0,0,0,0,0,0,0,0,0,0]\n",
"v = [0,0,0,0,0,0,0,0,0,0,0]\n",
"for i in range(10):\n",
" v[i] = R_A - F_D*l_1[i] \n",
" M_1[i] = R_A*l_1[i] - F_D*(l_1[i]**2)/2\n",
"# (EI)y'' = M_1[i] we will integrate M_1[i] twice where variable is l_1[i]\n",
"#(EI)y'- \n",
"\n",
"M_1_intg1 = R_A*(l_1[i]**2)/4 - F_D*(l_1[i]**3)/6 - F_D*(l_ab**3)*l_1[i]/24 #deflection integration of x**n = x**n+1/n+1\n",
"#(EI)y- Using end conditions for caliculating constants \n",
"\n",
"M_1_intg2 = R_A*(l_1[i]**3)/12.0 - F_D*(l_1[i]**4)/24.0 + F_D*(l_ab**3)*l_1[i]/24.0 \n",
"#Equations \n",
"\n",
"l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
"M_1_intg2 = [0,0,0,0,0,0,0,0,0,0,0]\n",
"Y = [0,0,0,0,0,0,0,0,0,0,0]\n",
"for i in range(10):\n",
" M_1_intg2[i] = (l_1[i]**3)/12.0 - (l_1[i]**4)/24.0 - l_1[i]/24.0 # discluding every term for ruling out float values\n",
" Y[i] = M_1_intg2[i] #W(l**4)/EI k = 1/EI\n",
"#The precision is very less while caliculating through this equation because the least count in X direction is 0.1\n",
"print \" The maximum displacement in y direction is\",min(Y),\"W(l**4)/EI \"\n",
"print \" The maximum deflection occured at\",l_1[Y.index(min(Y))],\"L\"\n",
"\n",
"l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
"M_1_intg1 = [0,0,0,0,0,0,0,0,0,0,0]\n",
"Y = [0,0,0,0,0,0,0,0,0,0,0]\n",
"for i in range(10):\n",
" M_1_intg1[i] = R_A*(l_1[i]**2)/4 - F_D*(l_1[i]**3)/6 - F_D*(l_ab**3)*l_1[i]/24\n",
"print \" The maximum deflection is\",min(M_1_intg1 ),\"W(l**3)/EI \""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.23 page number 554 "
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The moment at the end is -0.0833333333333 wl**2\n"
]
}
],
"source": [
"import numpy\n",
"l_ab = 1.0 #L in - The length of the beam\n",
"F_D = 1.0 #W lb/in - The force distribution \n",
"F = F_D*l_ab #WL - The force applied\n",
"#Beause of symmetry the moment caliculations can be neglected\n",
"#F_Y = 0\n",
"R_A = F/2 #wl - The reactive force at A\n",
"R_B = F/2 #wl - The reactive force at B\n",
"#EI - The flxure rigidity is constant and 1/EI =1 # k\n",
"#M_A and M_B are applied at the ends\n",
"\n",
"#part - A\n",
"#section 1--1\n",
"l_1 = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
"M = [0,0,0,0,0,0,0,0,0,0,0]\n",
"for i in range(10):\n",
" M[i] = l_1[i]/2.0 - (l_1[i]**2)/2.0 -1.0/12.0 #The moment euation at 1--1 section\n",
"# M_1 = R_A*l_1[i]/2.0 - F_D*(l_1[i]**2)/2.0 -F_D*(l_ab**2)/12.0 #The moment euation at 1--1 section \n",
"# (EI)y'' = M_1[i] we will integrate M_1[i] twice where variable is l_1[i]\n",
"#(EI)y'\n",
"M_1_intg1 = R_A*(l_1[i]**2)/4 - F_D*(l_1[i]**3)/6 - F_D*(l_ab**2)*l_1[i]/12.0 #integration of x**n = x**n+1/n+1\n",
"#(EI)y\n",
" \n",
"print \"The moment at the end is \",M[0],\"wl**2\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.25 pagenumber 556"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEACAYAAABYq7oeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcjfX7x/HXZd9F9rEkClmSb7YixzJRymj9WUObilQS\nJb5DVFRakBbJkl2+2YsJQwkJITuNibEU2YVhrt8fczDNYsacM+c+58z1fDzm0Tn3+dz3/XY/pnPN\n/fncn/sWVcUYY4xJKIvTAYwxxvgfKw7GGGOSsOJgjDEmCSsOxhhjkrDiYIwxJgkrDsYYY5LwSnEQ\nkRYisk1EdohInxTaDBeRnSLyq4jUdC8rLSJLRGSziGwSkR7eyGOMMcYzHhcHEckCjASaA1WBtiJS\nOVGbe4AKqnoT0BX41P3RBaCnqlYF6gPdEq9rjDHG97xx5lAH2Kmq0aoaC0wFwhK1CQMmAKjqaqCg\niBRX1YOq+qt7+SlgKxDihUzGGGM84I3iEALsTfB+H0m/4BO3iUncRkRuAGoCq72QyRhjjAf8YkBa\nRPIBXwMvuM8gjDHGOCibF7YRA5RN8L60e1niNmWSayMi2YgvDF+p6uyUdiIidhMoY4xJB1WVa13H\nG2cOa4CKIlJORHIAbYA5idrMAR4DEJF6wDFVPeT+7Etgi6p+lNqOVNV+VAkPD3c8g7/82LGwY2HH\n4uo/6eXxmYOqXhSR7sAi4ovNGFXdKiJd4z/Wz1V1gYjcKyK7gNNAZwARuRNoD2wSkfWAAn1V9TtP\ncxljjEk/b3Qr4f4yr5Ro2WeJ3ndPZr0VQFZvZDDGGOM9fjEgba6Ny+VyOoLfsGNxhR2LK+xYeE48\n6ZPyJRHRQMlqjDH+QkRQhwakjTHGBBkrDsYYY5Kw4mCMMSYJKw7GGGOSsOJgjDEmiYAqDrEXY52O\nYIwxmUJAFYfxG8Y7HcEYYzKFgCoOg5cP5vzF807HMMaYoBdQxaFykcqMXT/W6RjGGBP0AmqG9Kq9\nq3hkxiPsfH4nObPldDqSMcb4vUwxQ7pu6bpUL16dL9Z94XQUY4wJagF15qCq/LL/F1pPbc2uHrvI\nlS2X07GMMcavZYozB4DbS91OrZK1+Hzt505HMcaYoBVwZw4A6w+sp+XkluzusZvc2XM7nMwYY/xX\npjlzALit5G3UK12PT3/51OkoxhgTlALyzAFg46GNNJ/YnF3P7yJvjrwOJjPGGP+Vqc4cAGoUr0GD\nsg345JdPnI5ijDFBxyvFQURaiMg2EdkhIn1SaDNcRHaKyK8iUvNa1k1JeKNw3v3pXU6dP+XpP8EY\nY0wCHhcHEckCjASaA1WBtiJSOVGbe4AKqnoT0BX4NK3rXk21YtVofENjPv75Y0//GcYYYxLwxplD\nHWCnqkaraiwwFQhL1CYMmACgqquBgiJSPI3rXtahw0CioqL/tSy8UTjDVg7jxLkTXvinGGNMcIiK\niqZDh4HpXt8bxSEE2Jvg/T73srS0Scu6l02a1IvQ0BH/KhBVilYhtEIoI1aPSF96Y4wJMlFR0YSG\njmDSpF7p3oZTA9LXPHIeLy+7dw+kf/9x/1r637v+y4erP+T42eOeJzPGmADXv/84du8eCKT/Sk5v\nFIcYoGyC96XdyxK3KZNMm7Ssm8AA4F1WrFhCZGTk5aWVilTi3pvu5aPVH11zeGOMCSaRkZH8+OMS\n4F3ivzPTxxvFYQ1QUUTKiUgOoA0wJ1GbOcBjACJSDzimqofSuG4CA4BXuPPOJrhcrn990v+u/gxf\nPZxjZ4954Z9kjDGByeVy0aBBE+AVHC0OqnoR6A4sAjYDU1V1q4h0FZGn3W0WAFEisgv4DHjuauum\nvLfTVKgQzqBBnZN8UrFwRVpVasUHKz/w9J9kjDEBbdCgzlSoEA6cTvc2AmqGdPv2Axg0qDPly5dL\nts3vR3+n9uja7Hx+J4VzF/ZtQGOM8SNRUdH07z+OSZMGpGuGdEAVh7RkfWrOUxTPV5zBTQb7IJUx\nxvi39N4+I+iKw55je/jP5/9he/ftFMlTxAfJjDHGf2W6eyul5IbrbuCRWx7hvZ/eczqKMcYErKA7\ncwD44/gf3PbZbWzttpVieYtlcDJjjPFfduaQQNmCZWlbrS3vrnjX6SjGGBOQgvLMASDmRAw1Pq3B\nlue2UDxf8QxMZowx/svOHBIJKRBCh+odGLpiqNNRjDEm4ATtmQPAgZMHqDqqKpuf20zJ/CUzKJkx\nxvgvO3NIRsn8JelcszNDfhzidBRjjAkoQX3mAHDo1CGqfFyFjc9upHSB0hmQzBhj/JedOaSgeL7i\nPHHbE7z9w9tORzHGmIAR9MUBoPedvZm6eSp/HP/D6SjGGOMz6w6sS/e6maI4FM1blKdqPcVbP7zl\ndBRjjPGJ42ePc++ke9O9fqYoDgC97ujFjC0z2HNsj9NRjDEmw735w5u0vKllutcP+gHphPot6ceh\nU4cY3Wq0l1IZY4z/ufT4gk3PbiKkQIjdlTU1f//zNzePuJmfn/qZGwvd6KVkxhjjXx6d8SjVi1Wn\nf6P+drVSWhTOXZhutbsxeLk968EYE5xW/LGCVftW8fIdL3u0nUxVHABeqv8Sc7bPYdffu5yOYowx\nXhWncby08CXeavoWebLn8Whbma44XJfrOnrU7cGg5YOcjmKMMV41ZdMUFKVd9XYeb8uj4iAihURk\nkYhsF5GFIlIwhXYtRGSbiOwQkT4Jlr8jIltF5FcRmSkiBTzJk1Yv1H2BBTsXsP3wdl/szhhjMtyZ\n2DO8tvg13r/7fbKI53/3e7qFV4HvVbUSsAR4LXEDEckCjASaA1WBtiJS2f3xIqCqqtYEdia3fkYo\nmKsgL9Z9kTeWv+GL3RljTIb7YOUH1C1dl4blGnple54WhzBgvPv1eKB1Mm3qADtVNVpVY4Gp7vVQ\n1e9VNc7dbhXgs5sf9ajbg4jdEWz9a6uvdmmMMRni4KmDvL/qfYY09d5NRj0tDsVU9RCAqh4Eknsm\nZwiwN8H7fe5liT0OfOthnjTLnzM/L9d/mYHLBvpql8YYkyH6LenH4zUfp0LhCl7bZrbUGohIBJDw\nUWoCKNAvmebpmoggIq8Dsao6+WrtBgwYcPm1y+XC5XKlZ3eXdavTjQrDK/Dbn79RrVg1j7ZljDFO\n2HBwA3N3zGV79/gx1MjISCIjIz3erkeT4ERkK+BS1UMiUgJYqqpVErWpBwxQ1Rbu968CqqpD3e87\nA08BTVT13FX25fEkuOS899N7rI5ZzYxHZnh928YYk5FUlWZfNePByg/SrU63ZNs4NQluDtDZ/boT\nMDuZNmuAiiJSTkRyAG3c6yEiLYBXgFZXKwwZ6bnaz/HjHz+y4eAGJ3ZvjDHpNn/nfA6cPEDX27t6\nfdueFoehQKiIbAeaAkMARKSkiMwDUNWLQHfir0zaDExV1UujwCOAfECEiKwTkVEe5rlmebLnofcd\nvW3swRgTUGIvxtJrUS/eu/s9smVJdYTgmmWqeyul5J/Yf6g4oiJz286lVslaGbIPY4zxphGrRzB3\nx1wWdliISMq9RuntVrLi4DZ89XC+//175rSdk2H7MMYYbzj6z1EqjazE4scWU7149au2tRvveejp\n/zzNugPr+GX/L05HMcaYqxq8fDCtK7dOtTB4ws4cEhi1ZhTzd85nfrv5GbofY4xJr11/76LeF/XY\n/Nxmiucrnmp7O3Pwgidue4JNhzaxet9qp6MYY0yyekf05uX6L6epMHjCikMCObPl5PWGrxMeGe50\nFGOMSWLZnmWsPbCWF+u9mOH7suKQSJfburDt8DZ+2vuT01GMMeayOI2j56KeDGk6hNzZc2f4/qw4\nJJIjaw763dXPzh6MMX5l4saJ5MiagzbV2vhkf1YcktHp1k7s/ns3y6OXOx3FGGM4ff40fRf35f27\n37/qnAZvsuKQjOxZs9P/rv529mCM8Qvv/fQeDco2oH6Z+j7bpxWHFHS8tSN7j+9ladRSp6MYYzKx\nmBMxDP95OEOaee9ZDWlhxSEF2bJkI7xROOGR4QTKXBBjTPDpt7QfT9V6ihuuu8Gn+7VJcFdxIe4C\nVUdVpX+tcL4btZOYmDhCQrIwaFBnypcv59MsxpjMZ92Bddw76V52PL+DAjkLpGsb6Z0E5/1b+QWR\nbFmy8WyVbjw16RXOTtpO/A1kT7NqVTgREc9bgTDGZBhVpefCngx0DUx3YfCEdSul4uexRzgr+aHC\nCveSvOzePZD+/cc5GcsYE+Rmb5/N4TOHeaLWE47s34pDKg7EAJEDoXE4V56Cmpf9++McTGWMCWbn\nL57nlYhXGHb3sAx5VkNaWHFIRUhIFthyL+Q4BTd96156mlKl7NAZYzLGqDWjuKnwTTSv2NyxDDYg\nnYqoqGhCQ0ewO2dNaPAhjF5KhRsH2piDMSZDHDlzhMofV2ZZ52XcUvQWj7dnD/vJQFFR0fTr/yXz\ni43lpnPVmd5rlBUGY0yGeOHbF4iNi2VUS+88NdmKgw9s/WsrDcc2ZH3X9ZQpWMbRLMaY4LP98Hbu\n/PJOtnTbQrG8xbyyTUee5yAihURkkYhsF5GFIlIwhXYtRGSbiOwQkT7JfP6yiMSJSGFP8mS0KkWr\n8ELdF3h2/rM2Mc4Y43W9v+9N7zt7e60weMLTUdVXge9VtRKwBHgtcQMRyQKMBJoDVYG2IlI5weel\ngVAg2sMsPtGnQR+ij0czbfM0p6MYY4LIkqglbDq0iR51ezgdBfC8OIQB492vxwOtk2lTB9ipqtGq\nGgtMda93yQfAKx7m8JkcWXPwxf1f8NLClzhy5ojTcYwxQeBi3EV6LuzJ0GZDyZUtl9NxAM+LQzFV\nPQSgqgeB5M6FQoC9Cd7vcy9DRFoBe1V1k4c5fKpu6br8X9X/o+eink5HMcYEgfEbxpM3R14evuVh\np6NclursChGJABI+rFSInw3WL5nmae6IF5HcQF/iu5QSbjtFAwYMuPza5XLhcrnSujuvG9xkMNVG\nVWPR7kXcXeFux3IYYwLbqfOn6LekH7PazPLKsxoiIyOJjIz0eDseXa0kIlsBl6oeEpESwFJVrZKo\nTT1ggKq2cL9/lfgiMh/4HjhDfFEoDcQAdVT1z2T25fjVSol9t+s7np3/LL89+xt5c+R1Oo4xJgD9\nd+l/+f3o70x8cGKGbN+RS1lFZCjwt6oOdV+FVEhVX03UJiuwHWgKHAB+Btqq6tZE7aKAWqp6NIV9\n+V1xAOj4TUeK5SnGsObDnI5ijAkwe4/vpeZnNVnfdT1lC5bNkH04cikrMBQIFZFLX/5D3GFKisg8\nAFW9CHQHFgGbgamJC4Obkkq3kj/6oPkHTNo0iTUxa5yOYowJMH2X9OXZ25/NsMLgCZsE5wWTNk5i\n6IqhrH16LdmzZnc6jjEmAKyJWUPY1DC2d99O/pz5M2w/Tp05GKBd9XaULlCad3961+koxpgAoKr0\nXNSTNxq/kaGFwRNWHLxARPik5Se8v/J9th/e7nQcY4yfm7l1JifOnaBLzS5OR0mRFQcvKXddOf7b\n6L88Nfcp4tSe9WCMSd65C+foHdGbYXcPI2uWrE7HSZEVBy/qVrsb5y+eZ/Ta0U5HMcb4qRE/j6Bq\nsao0u7GZ01GuygakvWzzn5txjXfxa9dfCSkQ4nQcY4wf+ev0X1T5uAo/Pv4jlYtUTn0FL7BbdvuR\n8KXhbDi0gW/+7xuvzHg0xgSHbvO7kUWyMOLeET7bp12t5Ef6NuzLjiM7mLl1ptNRjDF+YstfW5i+\nZToDXAOcjpImVhwyQM5sOfmi1Rf0+LYHR/9JdsK3MSaTeSXiFV5r8BrX57ne6ShpYsUhg9xR5g4e\nrPIgvRb1cjqKMcZhi3YvYvvh7XSr3c3pKGlmxSEDvdX0LSJ+j2Dx74udjmKMccjFuIu8vOhl3gl9\nh5zZcjodJ82sOGSgAjkLMKrlKLrO68qZ2DNOxzHGOGDM+jEUzl2YByo/4HSUa2JXK/lA25ltKVOg\nDO+EvuN0FGOMD504d4JKIysxr+08/lPqP45ksKuV/NhHLT5i/IbxrDuwzukoxhgfGvLjEO6ucLdj\nhcETVhx8oFjeYrzT7B2emPMEsRdjnY5jjPGB6GPRfLb2M95s8qbTUdLFioOPPHbrYxTNU5QPVn3g\ndBRjjA+8uvhVutfuTukCpZ2Oki425uBDUUejqD26NiufWMlN19/kdBxjTAaJ3BNJ+/+1Z0f3HY4/\nQtjGHAJA+ULl6duwL0/Pe5pAL3TGmOSt3bqell+Ecf0KF10ff4+oqGinI6WLFQcf61G3B6fOn+LL\n9V86HcUY42W//76Hu95/mDM/P86m/01i0qRehIaOCMgCYd1KDthwcAOhX4Wy4ZkNlMxf0uk4xhgv\n+U/3Fqw7dwTGroCLOdxLT9O+/XtMnBjuSCZHupVEpJCILBKR7SKyUEQKptCuhYhsE5EdItIn0WfP\ni8hWEdkkIkM8yRMobi1xK0/Veornv33e6SjGGC/5Zf8vbCr4A3w9PUFhAMjL/v2B9wAwT7uVXgW+\nV9VKwBLgtcQNRCQLMBJoDlQF2opIZfdnLuB+oLqqVgfe8zBPwOjfqD+b/tzEN1u/cTqKMcZDJ86d\noM3Xbah7pCUcK5bo09OUKhV4PfieJg4DxrtfjwdaJ9OmDrBTVaNVNRaY6l4P4FlgiKpeAFDVwx7m\nCRi5suVi9P2jef7b5zl29pjTcYwx6aSqdJ3XlablmzKhz7tUqBAOnHZ/epoKFcIZNKizcwHTyaMx\nBxH5W1ULp/TevewhoLmqPu1+3wGoo6o9RGQ9MBtoAfwDvKKqv6Swr6AZc0jomXnPoKp8dv9nTkcx\nxqTDmHVj+HD1h/z85M/kzp6bqKho+vcfx/79cZQqlYVBgzpTvnw5x/Kld8whWxo2HAEUT7gIUKBf\nMs2v9ds7G1BIVeuJSG1gOnBjSo0HDBhw+bXL5cLlcl3j7vzP0GZDqTqqKsv2LKPRDY2cjmOMuQZb\n/trCq4tfZVnnZeTOnhuA8uXLOTb4DBAZGUlkZKTH2/H0zGEr4FLVQyJSAliqqlUStakHDFDVFu73\nrwKqqkNF5Fviu5WWuT/bBdRV1SPJ7CsozxwAZm2bRe+I3mx8diO5suVyOo4xJg3+if2HOl/U4cW6\nL/JErSecjpMipybBzQE6u193Ir6LKLE1QEURKSciOYA27vUAZgFNAETkZiB7coUh2LWu3JpbS9zK\nG8vecDqKMSaNXlr4EtWKVePx2x53OkqG8PTMoTDxXUFlgGjgUVU9JiIlgdGqep+7XQvgI+KL0RhV\nHeJenh34EqgJnANevnQWkcy+gvbMAeDgqYPU+KQGER0juLXErcm2udSXGRMTR0iI832ZxmRWMzbP\n4LXFr7Gu6zoK5CzgdJyrSu+Zg02C8yNj1o3h07WfsvKJlWTL8u/hoKioaEJDR7B790AgL5eugoiI\neN4KhDE+FHU0irpf1GVB+wXcXup2p+Okyu6tFAQev+1xCuQswPDVw5N81r//uASFASAvu3cPpH//\ncb6MaEymFnsxljYz2/Bag9cCojB4woqDHxERPrvvM9764S1+P/r7vz6LiYnjSmG4JDBnXhoTqF5f\n8jpF8xTlxXovOh0lw1lx8DMVC1ek95296Tqv67/u3BoSkoUrE2suCcyZl8YEou92fceU36YwrvU4\nRK65lybg2DeLH+pZvydHzhxhwoYJl5cNGtQ5aGZeGhNo9p/cT5fZXZj4wESK5CnidByfsAFpP7Xu\nwDrumXQPG5/ZSPF88XMQ/W3mpTGZwcW4i9w98W7uKnsX4S7nJrell12tFIT6RPQh+ng0Ux+e6nQU\nYzKtwcsH8/3v37P4scVkzZLV6TjXzK5WCkLhrnB+2f8Lc7fPdTqKMZnSD9E/MPLnkUx6cFJAFgZP\nWHHwY3my52H0/aPptqAbJ86dcDqOMZnKkTNHaP+/9oxpNYaQAiFOx/E561YKAE/OeZKcWXPyccuP\nnY5iTKagqrSe1pqKhSoyrPkwp+N4xLqVgti7oe/yzbZvWPHHCqejGJMpjPx5JDEnYni72dtOR3GM\nFYcAUCh3IYbfM5wn5z7JuQvnnI5jTFBbd2Adbyx/g2kPTyNH1hyprxCkrDgEiIeqPETlIpV584c3\nnY5iTNA6ee4kbb5uw4h7RlChcAWn4zjKxhwCSMyJGGp+VpPFjy2mRvEaTscxJqioKo/NeoycWXPy\nRasvnI7jNTbmkAmEFAjhw+YfEjY1jIOnDjodx5igMmHDBNbuX8vwe5Le+DIzsuIQYNrXaE+Xml1o\nObklp86fcjqOMUFh2+Ft9IroxfRHppMnex6n4/gF61YKQKrKE3Oe4M/TfzKrzawkz34wxqTd2Qtn\nqftFXbrV7sbT/3na6TheZ91KmcilW3vHxsXSfUF3rGgak34vL3yZStdX4qlaTzkdxa9YcQhQ2bNm\nZ8YjM1i1bxVDVwx1Oo4xAel/W//Ht7u+ZfT9ozPFbbivhRWHAFYgZwHmt5vPqDWjmLxpstNxjAko\ne47t4Zl5zzD14akUzFXQ6Th+x6PiICKFRGSRiGwXkYUikuwRFpEWIrJNRHaISJ8Ey2uLyM8ist79\n3+B+7l4GCCkQwvx283nxuxdZtmeZ03GMCQixF2NpN7Mdve/sTZ2QOk7H8Uuenjm8CnyvqpWAJcBr\niRuISBZgJNAcqAq0FZHK7o/fAfqp6m1AOPCuh3kyperFqzPloSk8+vWjbPlri9NxjPF74ZHhXJfr\nOnrW7+l0FL/laXEIA8a7X48HWifTpg6wU1WjVTUWmOpeD+AAcOls4zogxsM8mVbTG5vyXuh73Dvp\nXg6cPOB0HGP8VsTuCCZsmMC41uPIItaznhJPr4EspqqHAFT1oIgUS6ZNCLA3wft9xBcMiD/zWCEi\nwwAB7vAwT6bW8daORB+PpuXklizvspx8OfI5HckYv3Lw1EE6zerExAcnUixvcl9X5pJUi4OIRADF\nEy4CFOiXTPNrvaZyDPC8qs4SkYeBL4HQlBoPGDDg8muXy4XL5brG3QW/1xu+zp5je3h0xqPMaTvH\n5kAY4xancTz2zWM8WetJmpRv4nScDBMZGUlkZKTH2/FoEpyIbAVcqnpIREoAS1W1SqI29YABqtrC\n/f5VQFV1qIicUNUCCdoeV9WUBrVtElwaxV6M5f4p91O2YFk+u+8zu0TPGGDIj0NYsHMBSzotyVR/\nNDk1CW4O0Nn9uhMwO5k2a4CKIlJORHIAbRK02ykijQBEpCmww8M8hitzINbsX8PbP2be+9Ebc8lP\ne3/ig1UfMOnBSZmqMHjC06M0FJguIo8D0cCjACJSEhitqvep6kUR6Q4sIr4YjVHVbe71uwIfu4vG\nWSD45q47JH/O/MxvN5/6Y+pTtmBZOtTo4HQkYxxx9J+jtJvZjtH3j6ZMwTJOxwkYdm+lILf5z800\nHt+YaQ9Po3H5xk7HMcanVJWHpj9EmQJl+Oiej5yO4wi7t5JJVtViVZn28DTazGzD5j83Ox3HGJ/6\n5JdP2HNsD++EvuN0lIBjxSETaFy+Me/f/T4tJ7dk/8n9Tscxxic2HNxAeGQ40x6eRs5sOZ2OE3Cs\nOGQS7Wu05+n/PE3LyS05ee6k03GMyVCnzp/i/77+Pz5s/iE3XX+T03ECko05ZCKqStd5Xfnj+B/M\nbTuX7FmzOx3JmAzRZXYXAMaGjXU4ifNszMGkSkQY1XIUWSQLz81/zp4DYYLSVxu+YuXelYy8Z6TT\nUQKaFYdMJluWbEx/ZDrrDq7jzR/edDqOMV417bdpvBLxCjMemUHeHHmdjhPQrDhkQvly5GNe23l8\nse4LJmyY4HQcY7xi9NrR9FzUk4iOEVQvXt3pOAHPpgpmUiXzl2RB+wW4xrkIyR9C0xubpmm9qKho\n+vcfR0xMHCEhWRg0qDPly5fL2LDGpGLYT8MYuWYkyzovo2Lhik7HCQo2IJ3JRe6J5NEZj7Kk0xKq\nFat21bZRUdGEho5g9+6BQF7gNBUqhBMR8bwVCOMIVSU8Mpzpm6cT0THCZkAnwwakTbq4bnDxYYsP\naTm5JTEnrv44jf79xyUoDAB52b17IP37j8vomMYkEadxvPjdi8zdMZflXZZbYfAy61YytKvejj+O\n/3H5ORAFchZItl1MTBxXCsMledm/Py7DMxqT0IW4Czw19yl2HNnB0k5LuS7XdU5HCjp25mAA6HNn\nH+qVrscjMx4h9mJssm1CQrIApxMtPU2pUvZrZHzn3IVztPm6DTEnYljUYZEVhgxi/1cbIL5fcuS9\nI8mWJRvPzHsm2TkQgwZ1pkKFcK4UiPgxh0GDOvsuqMnUzsSeIWxqGHEax9y2c+1y1QxkA9LmX06d\nP4VrnIuwSmH0b9Q/yeeXrlbavz+OUqXsaiXjO8fPHuf+Kfdzw3U38GXYl/ZchjRK74C0FQeTxMFT\nB6k/pj4DGg2gU81OTscxhsNnDtN8YnPql67P8HuGk0WS7/SwS62TsuJgvGrrX1txjXcx6cFJNLux\nmdNxTCYWcyKG0K9CeaDyAwxuMjjFx97apdbJs0tZjVdVKVqFGY/MoN3Mdmw8tNHpOCaT+v3o7zQc\n25DONTvzZtM3r/o8dLvU2rusOJgU3VXuLobfM5z7Jt/HvhP7nI5jMpnNf27mrrF30fvO3vS+s3eq\n7e1Sa++y4mCuqk21NnSv052Wk1ty4twJp+OYTGJNzBqaTmjKO6Hv8Mztz6RpHbvU2rs8OmoiUkhE\nFonIdhFZKCIFU2g3RkQOicjG9KxvnPXKHa9wZ5k7eWj6QynOgTDGW5ZHL6fl5JZ8fv/ntKveLs3r\n2aXW3uXRgLSIDAWOqOo7ItIHKKSqrybTrgFwCpigqjWudX13WxuQdtCFuAs8MO0BiuQpwpetvrxq\n368x6bVg5wI6z+rMlIempPlmkAnZpdZJOXK1kohsAxqp6iERKQFEqmrlFNqWA+YmKg7Xsr4VB4ed\nPn8a13gX9910H+GucKfjmCAzffN0nv/2eWa3mU290vWcjhM0nLpaqZiqHgJQ1YNAMR+vb3wob468\nzGs7j/EbxjN2vT1+0XjPmHVjeGnhS0R0jLDC4CdSnWIoIhFA8YSLAAX6JdPc0z/tr7r+gAEDLr92\nuVy4XC57Xs5MAAAO1klEQVQPd2euVfF8xVnQfgHNJjRj6+GtDG4ymBxZczgdywSwD1Z+wEerPyKy\nUyQ3XX+T03ECXmRkJJGRkR5vx9Nupa2AK0G30FJVrZJC2+S6la5lfetW8iN/nf6LLrO7cOj0IaY8\nNMUesGKumaoycNlApvw2hYiOEZQtWNbpSEHJqW6lOUBn9+tOwOyrtBX3T3rXN36kaN6izG07l8dq\nPEb9MfX5asNXTkcyAURV6bmwJ7O2zWJ55+VWGPyQp2cOhYHpQBkgGnhUVY+JSElgtKre5243GXAB\n1wOHgHBVHZvS+insy84c/NSGgxtoM7MNt5e6nY/v/TjF50EYA3Ax7iJPz32aLYe3sKDdAgrlLuR0\npKBm91YyjjoTe4aXvnuJxVGLmfLQFGqH1HY6kvFD5y+ep8P/OvD3P38zq80s8uXI53SkoGfFwfiF\nr7d8zXPzn6PXHb3odUevFO+eaTKfM7FneHj6w+TImoOpD08lV7ZcTkfKFKw4GL/xx/E/aP+/9uTK\nlosJrSdQMn9JpyMZh504d4L7p9xP2YJl+bLVl2TPmt3pSJmG3ZXV+I2yBcuytNNS7ixzJ7U+r8WC\nnQucjmQcdPjMYZpOaErVolUZ33q8FYYAYWcOJkP9EP0DHb7pwAOVH2Bos6HkzJbT6UjGh/af3E/o\nV6G0urkVbzV9y2674gA7czB+qWG5hqzvup69J/ZS94u6bDu8zelIxkcuPYuhY42OvN3sbSsMAcaK\ng8lwhXMX5utHvubZ25+l4diGjFk3BjsLDG5b/tpCo3GNeLn+y7zaINl7aRo/Z91Kxqc2/7mZtjPb\nUrlIZT6//3Ouy3Wd05GMl63dv5b7ptzHu6Hv0qFGB6fjZHrWrWQCQtViVVn95GqK5S1GzU9r8tPe\nn5yOZLzoh+gfuGfSPXzS8hMrDAHOzhyMY+Zsn8PTc5+mW+1u9G3Yl6xZsjodyaTT6fOnGfHzCN5f\n+T6TH5pMsxubOR3JuNk8BxOQYk7E0PGbjsRpHBMfnEjpAqXTtN6lh7rExMQREmIPdXHK+Yvn+Xzt\n57z1w1s0LNeQQY0HcfP1NzsdyyRgxcEErItxFxm6Yigfrf6Iz+77jNaVW1+1fVRUNKGhI9i9eyDx\nD5SPfxxkRMTzViB85GLcRSZunMiAZQOoUqQKbzZ5k9tK3uZ0LJMMKw4m4K3at4p2M9vRomILht09\njNzZcyfbrkOHgUya1Iv4wnDJadq3f4+JE+0JdRlJVflm2zf0W9KP6/Ncz1tN4s8YjP+yAWkT8OqV\nrsf6rus5evYotUfX5rc/f0u2XUxMHP8uDAB52b8/LsMzZlaqSsTuCOp8UYfBywcz7O5hLO+83ApD\nEEv1SXDG+FLBXAWZ/OBkxm8YT+PxjRnoGsiztz/7rwlUISFZgNMkPnMoVcr+1skIK/eupO+Svuw/\nuZ/BjQfz0C0P2Q0VMwHrVjJ+a8eRHbT5ug1lC5ZlTKsxXJ/nesDGHHxl46GN9FvSjw2HNhDeKJzH\nbn2MbFns78lAY2MOJiidu3COvov7Mn3LdL564CtcN7iAK1cr7d8fR6lSdrWSN+36exfhkeEs/n0x\nrzV4ja63d7XbawcwKw4mqH236zu6zO7Ck7c9Sbgr3P6CzQAxJ2J4Y9kbzNw6kxfrvcgLdV8gf878\nTscyHrLiYILewVMH6TSrEyfPnWTyQ5O54bobnI4UFA6fOcyQH4cw9texPHnbk/Rp0IfCuQs7Hct4\niSNXK4lIIRFZJCLbRWShiBRMod0YETkkIhsTLX9HRLaKyK8iMlNE7OHDJkUl8pXg2/bf8mCVB6kz\nug7TfpvmdKSAdvLcSQZGDqTyyMqciT3Dpmc3MTR0qBUGA3h45iAiQ4EjqvqOiPQBCqlqklswikgD\n4BQwQVVrJFjeDFiiqnEiMgRQVX0thX3ZmYO5bO3+tbSd2ZbCuQsTVimMsMphVClSxW4LnQb/xP7D\nJ798wtAVQ2leoTkDXAO4sdCNHm3TZqz7L0e6lURkG9BIVQ+JSAkgUlUrp9C2HDA3YXFI9Hlr4CFV\n7ZjC51YczL+cv3ieZXuWMXv7bGZvn02ubLniC0WlMO4oc4fdqymR2IuxjPt1HG8sf4PbS93OoMaD\nqFasmsfbtavH/JtTxeFvVS2c0vtEbVMrDnOAqao6OYXPrTiYFKkq6w+uZ/a2+EIRczKGlje1JKxS\nGHdXuJu8ORJPmss84jSOab9N47+R/6VcwXK82eRN6pau67Xt24x1/5be4pDqJR8iEgEUT7gIUKBf\nMs3T9e0tIq8DsSkVBmNSIyLUKlmLWiVrMbDxQPYc28Oc7XMYuWYknWZ1otENjQirFMb9N99P8XzF\nU99gEFBV5u+cz+tLXidXtlx82vJTmt7Y1Ov7sRnrwSnV4qCqoSl95h5kLp6gW+nPaw0gIp2Be4Em\nqbUdMGDA5dculwuXy3WtuzOZxA3X3UCPuj3oUbcHR/85yoKdC5izYw69FvXilqK3XB6nqFwk2V7Q\ngLdszzL6LunL8bPHebPJm7Sq1CrDxmNsxrp/iYyMJDIy0uPteGNA+m9VHXq1AWl32xuI71aqnmBZ\nC2AYcJeqHkllX9atZDx27sI5IvdEMnv7bOZsn0PeHHkvj1PUK10v4Mcp1u5fy+tLXmfHkR280fgN\n2lZrm+H/Jhtz8G9OjTkUBqYDZYBo4FFVPSYiJYHRqnqfu91kwAVcDxwCwlV1rIjsBHIAlwrDKlV9\nLoV9WXEwXqWqrD2w9vI4xaHTh7jvpvsIqxxGsxubkSd7HqcjpupC3AUOnDxA1LEohq8ezsp9K+nX\nsB9P1HqCHFlz+CyHzVj3XzYJzhgPRR2Nunzl09r9a2lSvglhlcK47+b7KJq3qM/znL1wlpgTMew7\nse/yT8zJmH+9/uv0XxTNW5SQ/CE8fMvDdK/TPSCKmvEdKw7GeNHf//zNgp0LmL19NhG7I6hevDph\nlcJoVanV5SedeXJt/4lzJ+K/4K/y5X/y/ElC8ocQUiCE0gVKUzp/6Suv3T8l8pWwW4mYq7LiYEwG\nOXvhLEujll4epyiYqyCNiruY995xYn7+DDQ/l/rZFy3qToES+f79hX8ihn0n//0+TuP+9SUfkv/K\nl/6lAlAkTxG7NbbxmBUHY3wgTuP4Zf8vPP5OLzZfOAx5/oa9d0DuI1BgL1mu+4Pr8hZM8oWf+H2B\nnAVsNrfxiQyb52CMuSKLZKFOSB2KbmwMkQOh0G4o9QucLg4nStPgti9Z9v1bTsc0xmNWHIxJh8vX\n9h+tEP8DwGnKlMjp8yx2XyOTEaxbyZh08Jdr+/0lh/FfNuZgjI/5w7X9dl8jkxobczDGx8qXL+f4\nF7Dd18hkFLtOzpgAduW+RgnZfY2M5+w3yJgANmhQZypUCOdKgYgfcxg0qLNjmUxwsDEHYwKcP4x9\nGP9lA9LGGGOSSG9xsG4lY4wxSVhxMMYYk4QVB2OMMUlYcTDGGJOEFQdjjDFJWHEwxhiThBUHY4wx\nSXhUHESkkIgsEpHtIrJQRAqm0G6MiBwSkY0pfP6yiMSJSGFP8hhjjPEOT88cXgW+V9VKwBLgtRTa\njQWaJ/eBiJQGQoFoD7NkGpGRkU5H8Bt2LK6wY3GFHQvPeVocwoDx7tfjgdbJNVLVH4GjKWzjA+AV\nD3NkKvaLf4UdiyvsWFxhx8JznhaHYqp6CEBVDwLFrmVlEWkF7FXVTR7mMMYY40WpPs9BRCKA4gkX\nAQr0S6Z5mm9+JCK5gb7Edykl3LYxxhiHeXTjPRHZCrhU9ZCIlACWqmqVFNqWA+aqag33+2rA98AZ\n4otCaSAGqKOqfyazvt11zxhj0sGJJ8HNAToDQ4FOwOyrtBUSnBmo6m9AicsfikQBtVQ12bGJ9Pzj\njDHGpI+nYw5DgVAR2Q40BYYAiEhJEZl3qZGITAZ+Am4WkT9EpEsy21KsW8kYY/xCwDzPwRhjjO/4\n3QxpEWkhIttEZIeI9EmhzXAR2Skiv4pITV9n9JXUjoWItBORDe6fH0WkuhM5M1pafifc7WqLSKyI\nPOjLfL6Uxv8/XCKyXkR+E5Glvs7oK2n4/+N6EfnW/T2xSUQ6OxDTJ1KbaOxuc23fm6rqNz/EF6td\nQDkgO/ArUDlRm3uA+e7XdYFVTud28FjUAwq6X7cIxmORluOQoN1iYB7woNO5HfydKAhsBkLc74s4\nndvBYxEOvH3pOABHgGxOZ8+g49EAqAlsTOHza/7e9LczhzrATlWNVtVYYCrxE+0SCgMmAKjqaqCg\niBQn+KR6LFR1laoed79dBYT4OKMvpOV3AuB54GsgyZVuQSQtx6IdMFNVYwBU9bCPM/pKWo7FQSC/\n+3V+4IiqXvBhRp/Rq080hnR8b/pbcQgB9iZ4v4+kX3iJ28Qk0yYYpOVYJPQk8G2GJnJGqsdBREoB\nrVX1E4L7ooa0/E7cDBQWkaUiskZEOvosnW+l5ViMBqqKyH5gA/CCj7L5o2v+3vT0UlbjB0SkMdCF\n+FPLzOhDIGGfczAXiNRkA2oBTYC8wEoRWamqu5yN5YjXgA2q2lhEKgARIlJDVU85HSwQ+FtxiAHK\nJnh/aWJc4jZlUmkTDNJyLBCRGsDnQAtNYY5IgEvLcbgdmCoiQnzf8j0iEquqc3yU0VfSciz2AYdV\n9SxwVkSWA7cS3z8fTNJyLO4E3gRQ1d3uuVSVgV98ktC/XPP3pr91K60BKopIORHJAbQhfqJdQnOA\nxwBEpB5wTN33dwoyqR4LESkLzAQ6qupuBzL6QqrHQVVvdP+UJ37c4bkgLAyQtv8/ZgMNRCSriOQh\nfvBxq49z+kJajsVWoBmAu3/9ZuB3n6b0rX9NNE7kmr83/erMQVUvikh3YBHxhWuMqm4Vka7xH+vn\nqrpARO4VkV3AaeK7U4JOWo4F0B8oDIxy/9Ucq6p1nEvtfWk8Dv9axechfSSN/39sE5GFwEbgIvC5\nqm5xMHaGSOPvxdvAWBHZQPyXZm9V/du51BnHPdHYBVwvIn8Qf6VWDjz43rRJcMYYY5Lwt24lY4wx\nfsCKgzHGmCSsOBhjjEnCioMxxpgkrDgYY4xJwoqDMcaYJKw4GGOMScKKgzHGmCT+H0QpvJnXJERk\nAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xbc67400>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHz9JREFUeJzt3Xl4VdW9//H3l/mqgBMiCYoYKxZUQJBKoRoHCE6g1F5B\nQFGxoKLW/n4W9TYS5VqlvU+12qIyKCoqtgiIE4NCRLiKoIDKIFMaIUFAVIRIICTf+0cCxkhC4Oyc\nfYbP63ny9Azr7P11N6xP9l77rGXujoiIJKdaYRcgIiLhUQiIiCQxhYCISBJTCIiIJDGFgIhIElMI\niIgksUBCwMx6mNlKM1tlZsP28/4xZvaWmS0xs0/NbGAQ+xURkchYpN8TMLNawCrgQiAfWAj0cfeV\n5doMBxq4+z1mdizwOdDU3fdEtHMREYlIEGcCnYDV7p7r7kXARKBXhTZfAg3LHjcEtioARETCVyeA\nbaQC68s930BpMJQ3BnjHzPKBI4CrA9iviIhEKFoDw/cAS909BWgP/MPMjojSvkVEpBJBnAnkASeW\ne9687LXyugAPArj7WjPLAU4DFlXcmJlpMiMRkYPk7nYonwviTGAhcIqZtTCzekAfYFqFNiuAiwDM\nrClwKrCusg26u37cGT58eOg1xMKPjoOOhY5F1T+RiPhMwN2LzWwoMJPSUBnn7ivMbHDp2z4aeAh4\nxsyWAgb8wd2/jnTfIiISmSAuB+Hu04FWFV57qtzjr4DLg9iXiIgER98YjmHp6elhlxATdBx+oGPx\nAx2LYET8ZbGgmZnHWk0iIrHMzPAQB4ZFRCROKQRERJKYQkBEJIkpBEREkphCQEQkiSkERESSmEJA\nRCSJKQRERJKYQkBEJIkpBEREkphCQEQkiSkERESSmEJARCSJKQRERJKYQkBEJIkpBERE4lROTi79\n+98f0Ta0qIyISBzKycmlW7fHWbv2fuAILSojIpJMMjPHlwXA4RFtRyEgIhKH8vJKgMPh7FERbUch\nICISh1JTa0HbMdD1oYi2oxAQEYlDXQYdT+2MO+H5qRFtRyEgIhJnpq+ZTtai+5j6m5fpl/F6RNvS\n3UEiInFkbu5crvrnVUztM5VfnvBLAMxMdweJiCS6hXkLueqfV/HSr1/aFwCRUgiIiMSBzzZ/xuUv\nXc7YnmO58OQLA9uuQkBEJMat3rqajAkZPJLxCD1b9Qx024GEgJn1MLOVZrbKzIZV0ibdzBab2Wdm\nNieI/YqIJLr129bT7fluZJ2XRd8z+ga+/YgHhs2sFrAKuBDIBxYCfdx9Zbk2jYH/Bbq7e56ZHevu\nX1WyPQ0Mi4gAm3Zs4tzx5zKkwxDu7Hxnpe3CHhjuBKx291x3LwImAr0qtLkGeMXd8wAqCwARESn1\n9c6v6fZ8N645/ZoqAyBSQYRAKrC+3PMNZa+VdypwtJnNMbOFZjYggP2KiCSk7bu2c/ELF9M9rTv3\nnXdfje6rTo1u/cf7OQu4gNLZjt43s/fdfU2U9i8iEhd2Fu2k58SetGvajr90+wtmh3SVp9qCCIE8\n4MRyz5uXvVbeBuArdy8ECs1sLtAW2G8IZGVl7Xucnp5Oenp6AGWKiMS23cW7uepfV5HSMIVRl46q\nNACys7PJzs4OZJ9BDAzXBj6ndGB4I/Ah0NfdV5RrcxrwONADqA8sAK529+X72Z4GhkUk6RSXFNP3\nlb7sLt7Nv37zL+rWrlvtz0YyMBzxmYC7F5vZUGAmpWMM49x9hZkNLn3bR7v7SjObAXwCFAOj9xcA\nIiLJqMRLuOm1m/im8Bte6/vaQQVApDR3kIhIiNyd303/HYs2LmJm/5kcXu/gF4kJ9UxAREQOXeac\nTN774j1mXzf7kAIgUgoBEZGQjJw3kskrJvPuwHc5ssGRodSgEBARCcGohaMY/fFo5g6cS5PDm4RW\nh0JARCTKnlv6HA/Ne4i5A+eS2qjid2ujSyEgIhJFk1dMZtjbw5h97WxaHtUy7HIUAiIi0TJjzQxu\nfuNmpvebzs+b/DzscgCFgIhIVMzNncuAKQOY2mcq7Zu1D7ucfbSojIhIDVuUvyjwZSGDohAQEalB\nn23+jMtevCzwZSGDohAQEakhNbksZFAUAiIiNaCml4UMikJARCRgm3Zs4qLnL+KOX9zBTR1uCruc\nKikEREQCFK1lIYOiWURFRAKyfdd2Lnr+In514q+isirYXpHMIqoQEBEJwM6inVzy4iWcevSpPHnZ\nk1ELAFAIiIiEanfxbq58+UqObHAkz13xHLVr1Y7q/hUCIiJRlpOTS2bmeDbk7SGnw2RatU7ljeve\niOqqYHtFEgIaGBYROUg5Obl06/Y4L7z4e95tnMcXm5uy5uHWbPgiP+zSDppCQETkIGVmjmftuuFw\n8d1wzOcw8TVyVj9IZub4sEs7aJpATkTkIK3P3wO9hsJR6+CFN6GodFnI/PySkCs7eDoTEBE5CLv2\n7CKnwytwRB5MmAG7Gpe9U0BKSvx1qfFXsYhISL4v+p5eE3vRunULTl5wOhTtvYmlgLS04YwYMTDE\n6g6N7g4SEamGbYXbuOylyzj5qJMZ13Mc63PzyMwcT35+CSkptRgxYiAtW7YIpTbdIioiUoO++v4r\nMiZk0Ll5Zx67+DFqWWxdRNEtoiIiNSR/ez7njT+PjLQMHr/48ZgLgEgl1n+NiEiAcr7J4VfP/Ipr\nz7yWP134p6hOBREtukVURGQ/lm9ZTsaEDO7peg+3nH1L2OXUGIWAiEgFH2/8mEtfvJQ/X/RnBrQd\nEHY5NUohICJSzrwv5tH75d48ddlTXPnzK8Mup8YFMiZgZj3MbKWZrTKzYVW0O9vMisysdxD7FREJ\n0sy1M7ny5SuZ0HtCUgQABBACZlYL+DuQAbQB+prZaZW0exiYEek+RUSCNmXFFPpP7s+Uq6fQPa17\n2OVETRBnAp2A1e6e6+5FwESg137a3QZMAjYHsE8RkcA8v/R5bnnzFqb3n07XE7uGXU5UBRECqcD6\ncs83lL22j5mlAFe4+xNA4t1jJSJxa9TCUdw7+15mXzubs5qdFXY5URetgeFHgfJjBVUGQVZW1r7H\n6enppKen10hRIpLcHp73MGM+HsPcgXNpeVTLsMuptuzsbLKzswPZVsTTRpjZOUCWu/coe3434O4+\nslybdXsfAscCBcBv3X3afranaSNEpEa5O/81+7+YunIqswbMIrVR6oE/FMNCnTvIzGoDnwMXAhuB\nD4G+7r6ikvbPAK+5++RK3lcIiEiNKfESbn/rdt7f8D4z+s/g2MOODbukiEUSAhFfDnL3YjMbCsyk\ndIxhnLuvMLPBpW/76IofiXSfIiKHYk/JHm6cdiPrvlnH7Gtn07hB4wN/KMFpFlERSQq79uzimsnX\nULC7gMlXT+awuoeFXVJgNIuoiEgVCnYX0HNiTwzj1T6vJlQAREohICIJbVvhNjImZNDsiGZMvGoi\n9evUD7ukmKIQEJGEtaVgCxc8dwHtj2/P072epk4tTZdWkUJARBJS3nd5nDf+PHqk9YjJ1cBihY6K\niCScdd+s49zx53Jd2+t48MIHE3IxmKDo3EhEEkqyLAYTFIWAiCSMZFoMJigKARFJCMm2GExQFAIi\nEvdmrp1Jv8n9eKH3C0m1FkAQFAIiEldycnLJzBxPXl4Jqam16DLoeIYvzGTK1VOSbi2AIGjaCBGJ\nGzk5uXTr9jhr194PHA5tx1A7406m/OZlLu94adjlhUbTRohIUsjMHP9DAJz9D7jgAYqffpeXH10U\ndmlxSyEgInEjL68ErAFcNAw6PwLPzIWvOpCfXxJ2aXFLYwIiEjeOa14EfXpC/QIY+wF8X7pGVUqK\n/p49VDpyIhIX/v3tv1nacQoNa62H56fsC4C0tOGMGDEw5Oril84ERCTmzf9iPlf96yqGdRlGz8uv\n4D4eIz+/hJSUWowYcRstW7YIu8S4pbuDRCSmPbvkWe6adRfPXvEsF//s4rDLiUmhLi8pIlITikuK\nufede5m0YhLZA7Np3aR12CUlJIWAiMSc7bu2029yP77b9R0LBi1IiMXgY5UGhkUkpvz723/T5eku\nND28KTMHzFQA1DCFgIjEjPlfzKfzuM7c0P4GRl8+mnq164VdUsLT5SARiQkaAA6HQkBEQqUB4HAp\nBEQkNBoADp/GBEQkFBoAjg0KARGJOg0Axw5dDhKRqNIAcGxRCIhIVGgAODYFcjnIzHqY2UozW2Vm\nw/bz/jVmtrTsZ56ZnRHEfkUkPmzftZ3e/+zNgrwFLBi0QAEQQyIOATOrBfwdyADaAH3N7LQKzdYB\n57p7W+C/gTGR7ldE4kPut7l0eboLxx12nAaAY1AQZwKdgNXunuvuRcBEoFf5Bu7+gbtvK3v6AZAa\nwH5FJMbN/2I+54w7RwPAMSyIMYFUYH255xsoDYbKDALeCmC/IhLDNAAcH6I6MGxm5wPXA12rapeV\nlbXvcXp6Ounp6TVal4gERwPANS87O5vs7OxAthXxojJmdg6Q5e49yp7fDbi7j6zQ7kzgFaCHu6+t\nYntaVEYkTm3ftZ3+U/qzrXAbk/5zkq7/R0kki8oEMSawEDjFzFqYWT2gDzCtQoEnUhoAA6oKABGJ\nXxoAjk8Rh4C7FwNDgZnAMmCiu68ws8Fm9tuyZpnA0cAoM1tsZh9Gul8RiR0aAI5fWmNYRCKiAeDw\naY1hEYmKnJxcMjPHk5dXQrNUaHjFJt7On6UB4DimEBCRasnJyaVbt8dZu/Z+qFcCvfvS4J2lzLt9\nmgIgjmkWURGplszM8aUBcOQWuLELFDSjcMwnPPLgtAN/WGKWQkBEqiUvrwRavwU3dYLFN8Bro6H4\nKPLzS8IuTSKgy0EickAFuwvY0P51KH4eXnwd8vZOClBASor+loxn+n9PRKq05MsldBzTkdPbt6Dl\nzEshr03ZOwWkpQ1nxIiBIVYnkdItoiKyX+7O3xb8jQffe5BHMh6h/5n9990dlJ9fQkpKLUaMGEjL\nli3CLjXpRXKLqEJARH5ic8FmBk4dyNadW3mx94ukHZ0WdklShbCnjRCRBDJjzQzaPdmOdse3Y971\n8xQACU4DwyICwK49u7j3nXt5ednLTOg9gQtaXhB2SRIFCgERYdXWVfR9pS/NGzVnyZAlmvwtiehy\nkEgSc3eeWfwMXZ7uwo3tb2Tq1VMVAElGZwIiSerbwm8Z/Ppglm9Zzpzr5nD6caeHXZKEQGcCIklo\n/hfzaf9Ue5oc1oQPB32oAEhiOhMQSSLFJcU8+N6DjFo4itGXj6Znq55hlyQhUwiIJIkvtn1B/8n9\nqVu7Lh/99iNSG6WGXZLEAF0OEkkCk5ZPouPojlz6s0uZNWCWAkD20ZmASAIr2F3AnTPuZHbObF6/\n5nU6pXY68IckqehMQCRB7Z34rXBPIYsHL1YAyH7pTEAkwZSf+O3RjEfpd2a/sEuSGKYQEEkg5Sd+\nWzBoAScfdXLYJUmM0+UgkQQxc+1M2j/VnvbHt2fe9fMUAFItOhMQiXO7i3f/MPHblRM4v+X5YZck\ncUQhIBLH9k78dkKjE1gyeAnHHHZM2CVJnFEIiMSBvSt65eWVkJpaiwceuI53t83hD2//gQfSH2BI\nxyGYHdKaIpLkFAIiMS4nJ5du3R5n7dr7gcOhQR6v1r2QlHZo4jeJmAaGRWJcZub4HwLghP+FwV3Z\nsSmd9ouuUgBIxBQCIjEuL68E6hdDj9/B1b1h+t/grSfZnFc77NIkAQQSAmbWw8xWmtkqMxtWSZvH\nzGy1mS0xs3ZB7Fck0bk7Ra2Wwa2nQd0C+Mcy+LwnUEBKiv6Gk8hF/FtkZrWAvwMZQBugr5mdVqHN\nxUCau/8MGAw8Gel+RRLdqq2r6D6hO1+3Xk7q/HR47VHYeQxQQFracEaMGBhugZIQghgY7gSsdvdc\nADObCPQCVpZr0wt4DsDdF5hZYzNr6u6bAti/SELZWbSTP733J55Y9AR/PPePDO00lPWX55GZ+T/k\n55eQklKLESNuo2XLFmGXKgkgiBBIBdaXe76B0mCoqk1e2WsKAZFy3lz9JkPfHMrZqWezdMjSfVM+\nt2zZggkThodcnSSimLxFNCsra9/j9PR00tPTQ6tFJBrWb1vPHdPv4NPNn/LkZU/SPa172CVJDMvO\nziY7OzuQbZm7R7YBs3OALHfvUfb8bsDdfWS5Nk8Cc9z95bLnK4Hz9nc5yMw80ppE4kVRcRGPfvAo\nI+eP5LZOtzGs6zAa1GkQdlkSZ8wMdz+kbwsGcSawEDjFzFoAG4E+QN8KbaYBtwIvl4XGtxoPkGT3\nXu573PzGzTRv1JwPBn3AKUefEnZJkoQiDgF3LzazocBMSu82GufuK8xscOnbPtrd3zSzS8xsDVAA\nXB/pfkXi1ZaCLdw16y7eyXmHRzIe4dc//7WmfJDQRHw5KGi6HCSJqsRLGPPRGDLnZDLgzAFkpWfR\nsH7DsMuSBBD25SAROYDFGxcz5I0h1KlVh7evfZszm54ZdkkigEJApEZtK9zGfXPuY+KyiTx04UMM\nbDeQWqZv+krs0G+jSA1wdyZ+NpHWo1rzfdH3LL9lOTe0v0EBIDFHZwIiAVu1dRW3vnkrWwq2MOk3\nk+h8QuewSxKplP4sEQnIzqKdZM7O5Jfjfsklp1zCot8uUgBIzNOZgEgA9k730DGl44+mexCJdQoB\nkQiUn+7hiUufIOOUjLBLEjkouhwkcgiKiov4y/y/0P6p9rRt2pZPb/5UASBxSWcCIgdQcZH3y4e2\nZsTH92u6B0kI+sawSBV+tMj7Yd9D9zup/bNX+dslf+aW84ZougeJCZF8Y1iXg0SqkJk5nrW598Av\nxsGtbeD7phT/bTXvj92sAJCEoMtBIpUo3FPIAj6A20fDxg7w3NuwqXS6h/z8kpCrEwmGQkCkgsI9\nhYz5aAwPz38Ya3YEvPAybOxaroUWeZfEod9kkTKFewp5fMHjpD2Wxqx1s5jWZxrv3TKTtMOmUjoD\nOmiRd0k0GhiWpFf+L/8OzTow/LzhdEjpsO/9vXcH/bDI+0At8i4xJZKBYYWAJK0Ddf4i8ULrCYgc\nhIqd/7Q+09T5S9JSCEjSUOcv8lMKAUl46vxFKqcQkIRVuKeQsR+P5eF5D3NWs7PU+Yvsh0JAEk7F\nzv/VPq+q8xephEJAEoY6f5GDpxCQuKfOX+TQKQQkbqnzF4mcQkDijjp/keAoBCRmVVzM5Y9ZfXj7\n61nq/EUCpBCQmPSjxVzq1Iaz/sHE0R1Jb3WOOn+RAGkWUYlJmZnjWbv1ejj/Ybg9DdLepXjCWxw/\np6sCQCRAEYWAmR1lZjPN7HMzm2FmjffTprmZzTazZWb2qZndHsk+JbEV7inkpU9f4o1jn4Wb0qH+\ndpgwA16aBhu7ajEXkYBFeiZwN/C2u7cCZgP37KfNHuD37t4G6AzcamanRbhfSTCfbPqEO966g+Z/\nbc4zS56hTWEH+OvnMP1R2Hx6WSst5iIStIimkjazlcB57r7JzI4Hst29yg7ezKYCj7v7O5W8r6mk\nk8R3u77jpU9fYtzicWzcsZEb2t3A9e2v56QjT/rxmACHs3cxl1mzbtNc/iIVhLaegJl97e5HV/Z8\nP+1PArKB0919RyVtFAIJzN2Zv34+Yz8ey9SVU7no5IsYdNYgup3cjdq1av+orRZzEameGg0BM5sF\nNC3/EuDAH4HxFUJgq7sfU8l2jqA0AEa4+6tV7E8hkIA27djEc0ufY9zicZgZg9oPYkDbARx3+HFh\nlyYS92p0URl371bFjjeZWdNyl4M2V9KuDjAJeL6qANgrKytr3+P09HTS09MP9BGJQXtK9jBjzQzG\nLR7HnH/P4crTruTpXk/TuXlnzA7p91VEgOzsbLKzswPZVqSXg0YCX7v7SDMbBhzl7nfvp91zwFfu\n/vtqbFNnAnEu55scnl78NM8seYbmjZpzY/sbufr0q2lUv1HYpYkkpDDHBI4G/gmcAOQC/+nu35pZ\nM2CMu19mZl2AucCnlF5GcuBed59eyTYVAnGocE8hU1ZMYdzicSzdtJR+Z/TjxvY3ckbTM8IuTSTh\naaF5Cc0nmz5h7MdjefHTFzmr2VkMOmsQvVr1on6d+mGXJpI0tNC8RNW2wm1M/GwiYxeP5csdX3JD\nuxtY9NtFnHTkSWGXJiIHSWcCsl8VJ2974IHryKu9nnGLxx3w1k4RiS5dDpJA/eiLWofvgHZjqNvp\nr7Q48RiGdBqiWztFYoxCQALj7lx+41DeWHkCpM2B1A9h5ZXwcT+uOfc9XpiQFXKFIlKRxgQkIt/s\n/Ia3173NjLUzmLF2BluaboctV8NHg+Gfk2B3QwA25s8NuVIRCZpCIAkVlxTzYd6H+zr9ZZuX0fXE\nrvQ4pQd3/fIuHvjdS7z4+l2UztmzlyZvE0lEuhyUJDZ8t4EZa0o7/Xdy3iG1YSoZaRlknJJB1xO7\n0qBOg31tNXmbSHzRmID8xM6inczNnbvvr/1NOzbRLa0bGWkZdE/rTkrDlCo/r8nbROKHQkBwd1Z8\ntWLfX/vz18+nbdO2+/7a79Csg27lFElQCoEkVXFAt7bV3tfpX9DyAo5scGTYJYpIFCgEEkzFL2rt\nvRRTXFLMwvyF+/7a/2zzZ/sGdDPSMjj1mFM1O6dIElIIJJCfDMo2WkWTzrdxdp+6fLD5/SoHdEUk\nOSkEEsSO3Tu46uY7mfFxR2i6EtJmwRFfwtrzOadJEa/8edQBB3RFJPnoy2JxZsfuHSzfspzlW5az\nbPMylm1ZxvIty9ny/RZqHdUIWhaWLq7+6tOQ3wG8Nv9x/nAFgIgETiFQg6rq7Fsd04o2x7Wh9bGt\nGdJxCG2atOGkI0/iumv/mxem/H/0RS0RiQZdDgpAdTv7Nse12dfZV3a7pr6oJSIHS2MCAansrpy9\nguzsq1OHvqglItWRcCHQr19W1Du+H/0FXs+hyUc0af0QV9zUgg271/+ks2/TpA2tm7SOqLMXEQlC\nwoUA7DikSyDuzvdF3/Pdru/Ytmsb3+367kc/2worvLb7h9eWrVnNtzsbQP3tUHsXbG0Fm1vRLnUL\n9w+9XZ29iMSsxAuB1AVQfzO/uuh5rh/S46edeYUOfu/z7bu2U692PRo3aEyj+o32/TSu/+Pn+3vt\n97e+wKL5d8OuRlDYGLy0sz///OHMnn1/yEdFRKRyiXeL6CW3wq5GrKiXR3Zug30ddpPDm5B2dNpP\nOvC9nX7Deg2pW7vuIe2y1ZGzWfRtE3RXjogkk9g8E8CBAvr1+x8mTBgelf3qrhwRiVeJdznoEMcE\nIqW7ckQkHiVcCIRxd5CISLxKuBCItZpERGJZJCGgUU8RkSSmEBARSWIKARGRJBZRCJjZUWY208w+\nN7MZZta4ira1zOxjM5sWyT5FRCQ4kZ4J3A287e6tgNnAPVW0vQNYHuH+kkp2dnbYJcQEHYcf6Fj8\nQMciGJGGQC/g2bLHzwJX7K+RmTUHLgHGRri/pKJf8lI6Dj/QsfiBjkUwIg2B49x9E4C7fwkcV0m7\nR4C7KP0qsIiIxIgDzh1kZrOApuVforQz/+N+mv+kkzezS4FN7r7EzNLLPi8iIjEgoi+LmdkKIN3d\nN5nZ8cAcd/95hTZ/AvoDe4D/ABoCk9392kq2qbMFEZGDFMo3hs1sJPC1u480s2HAUe5+dxXtzwP+\nn7v3POSdiohIYCIdExgJdDOzz4ELgYcBzKyZmb0eaXEiIlKzYm7uIBERiZ5QvjFsZj3MbKWZrSq7\njLS/No+Z2WozW2Jm7aJdY7Qc6FiY2TVmtrTsZ56ZnRFGndFQnd+LsnZnm1mRmfWOZn3RVM1/I+lm\nttjMPjOzOdGuMVqq8W/kGDN7q6yv+NTMBoZQZlSY2Tgz22Rmn1TR5uD6TneP6g+lwbMGaAHUBZYA\np1VoczHwRtnjXwAfRLvOGDoW5wCNyx73SOZjUa7dO8DrQO+w6w7x96IxsAxILXt+bNh1h3gshgMP\n7T0OwFagTti119Dx6Aq0Az6p5P2D7jvDOBPoBKx291x3LwImUvqls/J6Ac8BuPsCoLGZNSXxHPBY\nuPsH7r6t7OkHQGqUa4yW6vxeANwGTAI2R7O4KKvOsbgGeMXd8wDc/aso1xgt1TkWX1J61yFl/7vV\n3fdEscaocfd5wDdVNDnovjOMEEgF1pd7voGfdmwV2+Ttp00iqM6xKG8Q8FaNVhSeAx4LM0sBrnD3\nJ0js75tU5/fiVOBoM5tjZgvNbEDUqouu6hyLMUAbM8sHllI6RU2yOui+MzYXmpefMLPzgespPR1M\nVo8C5a8JJ3IQHEgd4CzgAkoXxX7fzN539zXhlhWKe4Cl7n6+maUBs8zsTHffEXZh8SCMEMgDTiz3\nvHnZaxXbnHCANomgOscCMzsTGA30cPeqTgXjWXWORUdgopkZpdd+LzazIndPtJlpq3MsNgBfuXsh\nUGhmc4G2lF4/TyTVORZdgAcB3H2tmeUApwGLolJhbDnovjOMy0ELgVPMrIWZ1QP6ABX/EU8DrgUw\ns3OAb71sjqIEc8BjYWYnAq8AA9x9bQg1RssBj4W7n1z205LScYFbEjAAoHr/Rl4FuppZbTM7jNJB\nwBVRrjMaqnMsVgAXAZRd/z4VWBfVKqPLqPws+KD7zqifCbh7sZkNBWZSGkLj3H2FmQ0ufdtHu/ub\nZnaJma0BCii9DJJwqnMsgEzgaGBU2V/ARe7eKbyqa0Y1j8WPPhL1IqOkmv9GVprZDOAToBgY7e4J\nN1V7NX8vHgKeMbOllHaOf3D3r8OruuaY2YtAOnCMmX1B6Z1R9Yig79SXxUREkpiWlxQRSWIKARGR\nJKYQEBFJYgoBEZEkphAQEUliCgERkSSmEBARSWIKARGRJPZ/XAlOnyX6TbQAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xc68f550>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"import numpy as np\n",
"# This problem is divided into two parts\n",
"#Part _1\n",
"#Given\n",
"\n",
"l = 1.0 #l - The length of the beam\n",
"p = 1.0 #W - The total load applied\n",
"#since it is triangular distribution \n",
"l_com = 0.66*l #l - The distance of force of action from one end\n",
"#F_Y = 0\n",
"#R_A + R_B = p\n",
"#M_a = 0 Implies that R_B = 2*R_A\n",
"R_A = p/3.0\n",
"R_B = 2.0*p/3\n",
"\n",
"#Taking Many sections \n",
"\n",
"#Section 1----1\n",
"l = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] #L taking each section at 0.1L distance \n",
"M = [0,0,0,0,0,0,0,0,0,0,0]\n",
"v = [0,0,0,0,0,0,0,0,0,0,0]\n",
"for i in range(10):\n",
" v[i] = p*(l[i]**2) - p/3.0\n",
" M[i] = p*(l[i]**3)/(3.0)- p*l[i]/3.0\n",
"\n",
"v[10] = R_B #again concluded Because the value is tearing of \n",
"\n",
"\n",
"#Graph\n",
"values = M\n",
"y = np.array(values)\n",
"t = np.linspace(0,1,11)\n",
"poly_coeff = np.polyfit(t, y, 2)\n",
"plt.plot(t, y, 'o')\n",
"plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
"plt.show()\n",
"values = v\n",
"y = np.array(values)\n",
"t = np.linspace(0,1,11)\n",
"poly_coeff = np.polyfit(t, y, 2)\n",
"\n",
"plt.plot(t, y, 'o')\n",
"plt.plot(t, np.poly1d(poly_coeff)(t), '-')\n",
"plt.show()\n",
"\n",
"\n",
"#part B\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|