summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Tayal_A.K./chapter20_13.ipynb
blob: 7b30b6756342ddb0a3985f3416e21c370a3ae450 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
{
 "metadata": {
  "name": "chapter20.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 20: Motion Of Projectile"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 20.20-1,Page No:518"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "v_o=500 # m/s # velocity of the projectile\n",
      "alpha=30 # angle at which the projectile is fired\n",
      "t=30 # seconds\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "v_x=v_o*cos(alpha*(pi/180)) # m/s # Initial velocity in the horizontal direction\n",
      "v_y=v_o*sin(alpha*(pi/180)) # m/s # Initial velocity in the vertical direction\n",
      "\n",
      "# MOTION IN HORIZONTA DIRECTION:\n",
      "V_x=v_x # m/s # V_x=Horizontal velocity after 30 seconds\n",
      "\n",
      "# MOTION IN VERTICAL DIRECTION: # using the eq'n v=u+a*t\n",
      "V_y=v_y-(g*t) # m/s # -ve sign denotes downward motion\n",
      "\n",
      "# Let the Resultant velocity be v_R. It is given as,\n",
      "v_R=((V_x)**2+(-V_y)**2)**0.5# m/s\n",
      "theta=arctan((-V_y)/V_x)*(180/pi) # degree # direction of the projectile\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The velocity of the projectile is \",round(v_R,2),\"m/s\" # The answer of velocity is wrong in the text book.\n",
      "print\"The direction of the projectile is \",round(theta,2),\"degree\" # -ve value of theta indicates that the direction is in downward direction\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity of the projectile is  435.27 m/s\n",
        "The direction of the projectile is  5.84 degree\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 20.20-2,Page no:519"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "v_A=10 # m/s # velocity of body A\n",
      "alpha_A=60 # degree # direction of body A\n",
      "alpha_B=45 # degree # direction of body B\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# (a) The velocity (v_B) for the same range is given by eq'n;\n",
      "v_B=((v_A**2*sin(2*alpha_A*(pi/180)))/(sin(2*alpha_B*(pi/180))))**0.5 # m/s\n",
      "\n",
      "# (b) Now velocity v_B for the same maximum height is given as,\n",
      "v_b=((v_A**2)*((sin(alpha_A*(pi/180)))**2/(sin(alpha_B*(pi/180)))**2))**0.5 # m/s\n",
      "\n",
      "# (c) Now the velocity (v) for the equal time of flight is;\n",
      "v=(v_A*sin(alpha_A*(pi/180)))/(sin(alpha_B*(pi/180))) # m/s\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The velocity of body B for horizontal range is \",round(v_B,1),\"m/s\"\n",
      "print\"(b) The velocity of body B for the maximum height is \",round(v_b,2),\"m/s\"\n",
      "print\"(c) The velocity of body B for equal time of flight is \",round(v,2),\"m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The velocity of body B for horizontal range is  9.3 m/s\n",
        "(b) The velocity of body B for the maximum height is  12.25 m/s\n",
        "(c) The velocity of body B for equal time of flight is  12.25 m/s\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 20.20-3,Page No:520 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "y=3.6 # m # height of the wall\n",
      "x_1=4.8 # m # position of the boy w.r.t the wall\n",
      "x_2=3.6 # m # distance from the wall where the ball hits the ground\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# The range of the projectile is r, given as,\n",
      "r=x_1+x_2 # m\n",
      "\n",
      "# Let the angle of the projection be alpha, which is derived and given as,\n",
      "alpha=arctan((y)/(x_1-(x_1**2/r)))*(180/pi) # degree\n",
      "\n",
      "# Now substuting the value of alpha in eq'n 3 we get the least velocity (v_o) as;\n",
      "v_o=((g*r)/(sin(2*alpha*(pi/180))))**0.5 # m/s\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The least velocity with which the ball can be thrown is \",round(v_o,2),\"m/s\"\n",
      "print\"The angle of projection for the same is \",round(alpha,1),\"degree\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The least velocity with which the ball can be thrown is  9.78 m/s\n",
        "The angle of projection for the same is  60.3 degree\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 20.20-5,Page No:523 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "v_o=400 # m/s # initial velocity of each gun\n",
      "r=5000 # m # range of each of the guns\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "p=180 # degree \n",
      "pi=3.14\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# now from eq'n 1\n",
      "theta_1=(arcsin(r*g/v_o**2)*(180/pi))/2 # degree # angle at which the 1st gun is fired\n",
      "\n",
      "# from eq'n 3\n",
      "theta_2=(p-2*theta_1)/2 # degree \n",
      "\n",
      "# For 1st & 2nd gun, s is\n",
      "s=r # m\n",
      "\n",
      "# For 1st gun \n",
      "v_x=v_o*cos(theta_1*(pi/180)) # m/s\n",
      "\n",
      "# Now the time of flight for 1st gun is t_1, which is given by relation,\n",
      "t_1=s*(v_x)**-1 # seconds\n",
      "\n",
      "# For 2nd gun\n",
      "V_x=v_o*cos(theta_2*(pi/180))\n",
      "\n",
      "# Now the time of flight for 2nd gun is t_2\n",
      "t_2=s/V_x # seconds\n",
      "\n",
      "# Let the time difference between the two hits be delta.T. Then,\n",
      "T=t_2-t_1 # seconds\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The time difference between the two hits is \",round(T,2),\"seconds\" #answer varies by 0.6 sec due to decimal variance\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time difference between the two hits is  67.5 seconds\n"
       ]
      }
     ],
     "prompt_number": 99
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 20.20-6,Page No:524"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "h=2000 # m/ height of the plane\n",
      "v=540*1000*3600**-1 # m/s # velocity of the plane\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "pi=3.14\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Time t required to travel down a height 2000 m is given by eq'n,\n",
      "u=0 # m/s # initial velocity\n",
      "t=(2*h/g)**0.5 # seconds\n",
      "\n",
      "# Now let s be the horizonta distance travelled by the bomb in time t seconds, then\n",
      "s= v*t # m\n",
      "\n",
      "# angle is given as theta,\n",
      "theta=arctan(h/s)*(180/pi) # degree\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The pilot should release the bomb from a distance of \",round(s),\"m\" #the answer varies by 1m due to decimal variance\n",
      "print\"The angle at which the target would appear is \",round(theta,1),\"degree\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The pilot should release the bomb from a distance of  3029.0 m\n",
        "The angle at which the target would appear is  33.5 degree\n"
       ]
      }
     ],
     "prompt_number": 70
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 20.20-7,Page No:525"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "theta=30 # degree # angle at which the bullet is fired\n",
      "s=-50 # position of target below hill\n",
      "v=100 # m/s # velocity at which the bullet if fired\n",
      "g=9.81 # m/s^2 \n",
      "\n",
      "# Calculations\n",
      "\n",
      "v_x=v*cos(theta*(pi/180)) # m/s # Initial velocity in horizontal direction\n",
      "v_y=v*sin(theta*(pi/180)) # m/s # Initial velocity in vertical direction\n",
      "\n",
      "# (a) Max height attained by the bullet\n",
      "h=v_y**2/(2*g) # m\n",
      "\n",
      "# (b)Let the vertical Velocity with which the bullet will hit the target be V_y. Then,\n",
      "V_y=((2*-9.81*s)+(v_y)**2)**0.5 # m/s # the value of V_y is +ve & -ve\n",
      "\n",
      "# Let V be the velocity with wich it hits the target\n",
      "V=((v_x)**2+(V_y)**2)**0.5 # m/s\n",
      "\n",
      "# (c) The time required to hit the target\n",
      "a=g # m/s^2\n",
      "t=(v_y-(-V_y))/a # seconds\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The maximum height to which the bullet will rise above the soldier is \",round(h,1),\"m\"\n",
      "print\"(b) The velocity with which the bullet will hit the target is \",round(V,1),\"m/s\"\n",
      "print\"(c) The time required to hit the target is \",round(t,1),\"seconds\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The maximum height to which the bullet will rise above the soldier is  127.3 m\n",
        "(b) The velocity with which the bullet will hit the target is  104.8 m/s\n",
        "(c) The time required to hit the target is  11.1 seconds\n"
       ]
      }
     ],
     "prompt_number": 72
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 20.20-8,Page No:527"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "W=30 # N # Weight of the hammer\n",
      "theta=30 # degree # ref fig.20.12\n",
      "mu=0.18 # coefficient of friction\n",
      "s=10 # m # distance travelled by the hammer # fig 20.12\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# The acceleration of the hammer is given as,\n",
      "a=g*((sin(theta*(pi/180)))-(mu*cos(theta*(pi/180)))) # m/s^2\n",
      "\n",
      "# The velocity of the hammer at point B is,\n",
      "v=(2*a*s)**0.5 # m/s\n",
      "\n",
      "# Let the initial velocity of the hammer in horizontal direction be v_x & v_y in vertical direction, Then,\n",
      "v_x=v*cos(theta*(pi/180)) # m/s\n",
      "v_y=v*sin(theta*(pi/180)) # m/s\n",
      "\n",
      "# MOTION IN VERTICAL DIRECTION\n",
      "# Now, let time required to travel vertical distance (i.e BB'=S=5 m) is given by finding the roots of the second degree eq'n as,\n",
      "# From the eq'n 4.9*t^2+4.1*t-5=0,\n",
      "a=4.9\n",
      "b=4.1\n",
      "c=-5\n",
      "\n",
      "# The roots of the eq'n are,\n",
      "t=((-b)+((b**2-(4*a*c))**0.5))/(2*a)\n",
      "\n",
      "# MOTION IN HORIZONTAL DIRECTION\n",
      "# Let the horizotal distance travelled by the hammer in time t be s_x.Then,\n",
      "s_x=v_x*cos(theta*(pi/180))*t # m\n",
      "x=1+s_x # m\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The distance x where the hammer hits the round is \",round(x,2),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The distance x where the hammer hits the round is  5.16 m\n"
       ]
      }
     ],
     "prompt_number": 101
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 20.20-9,Page no:528"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "s=1000 # m # distance OB (ref fig.20.13)\n",
      "h=19.6 # m # height of shell from ground\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# MOTION OF ENTIRE SHELL FROM O to A.\n",
      "v_y=(2*(g)*h)**0.5 # m/s # initial velocity of shell in vertical direction\n",
      "t=v_y/g # seconds # time taken by the entire shell to reach point A\n",
      "v_x=s/t # m/s # velocity of shell in vertical direction\n",
      "\n",
      "# VELOCITIES OF THE TWO PARTS OF THE SHELL AFTER BURSTING AT A:\n",
      "\n",
      "# Let v_x2 be the horizontal velocity of 1st & the 2nd part after bursting which is given as,\n",
      "v_x2=v_x*2 # m/s\n",
      "\n",
      "# Now distance BC travelled by part 2 is\n",
      "BC=v_x2*t # m\n",
      "\n",
      "# Distance from firing point OC\n",
      "OC=s+BC # m\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The velocity of shell just before bursting is \",round(v_x),\"m/s\"\n",
      "print\"(b) The velocity of first part immediately before the shell burst is \",round(v_x),\"m/s\"\n",
      "print\"(c) The velocity of second part immediately after the shell burst is \",round(v_x2,1),\"m/s\"\n",
      "print\"(b) The distance between the firing point & the point where the second part of the shell hit the ground is \",round(OC),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The velocity of shell just before bursting is  500.0 m/s\n",
        "(b) The velocity of first part immediately before the shell burst is  500.0 m/s\n",
        "(c) The velocity of second part immediately after the shell burst is  1000.5 m/s\n",
        "(b) The distance between the firing point & the point where the second part of the shell hit the ground is  3000.0 m\n"
       ]
      }
     ],
     "prompt_number": 106
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 20.20-10,Page No:530"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "v_o=200 # m/s # initial velocity\n",
      "theta=60 # degree # angle of the incline\n",
      "y=5 # rise of incline\n",
      "x=12 # length of incline\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# The angle of the inclined plane with respect to horizontal\n",
      "beta=arctan(y*x**-1)*(180/pi) # degree\n",
      "\n",
      "# The angle of projection with respect to horizontal\n",
      "alpha=90-theta # degree\n",
      "\n",
      "# Range is given by eq'n (ref. fig.20.14)\n",
      "AB=(2*v_o**2*(sin((alpha-beta)*(pi/180)))*cos(alpha*(pi/180)))/(g*(cos(beta*(pi/180)))**2) # m\n",
      "\n",
      "# Range AC when the short is fired down the plane\n",
      "AC=(2*v_o**2*(sin((alpha+beta)*(pi/180)))*cos(alpha*(pi/180)))/(g*(cos(beta*(pi/180)))**2) # m\n",
      "BC=AB+AC # m\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The range covered (i.e BC) is \",round(BC),\"m\" #due to decimal variancce answer varies by 1m\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The range covered (i.e BC) is  7649.0 m\n"
       ]
      }
     ],
     "prompt_number": 138
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}