1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
|
{
"metadata": {
"name": "chapter18.ipynb"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 18: Impact:Collision Of Elastic Bodies"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-1,Page No:474"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import numpy as np\n",
"\n",
"# Initilization of variables\n",
"m_a=1 # kg # mass of the ball A\n",
"v_a=2 # m/s # velocity of ball A\n",
"m_b=2 # kg # mass of ball B\n",
"v_b=0 # m/s # ball B at rest\n",
"e=1/2 # coefficient of restitution\n",
"\n",
"# Calculations\n",
"# Solving eqn's 1 & 2 using matrix for v'_a & v'_b,\n",
"A=np.array([[1 ,2],[-1 ,1]])\n",
"B=np.array([2,1])\n",
"C=np.linalg.solve(A,B)\n",
"\n",
"# Results\n",
"\n",
"print\"The velocity of ball A after impact is \",round(C[0]),\"m/s\"\n",
"print\"The velocity of ball B after impact is \",round(C[1]),\"m/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The velocity of ball A after impact is 0.0 m/s\n",
"The velocity of ball B after impact is 1.0 m/s\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-2,Page No:480"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import numpy as np\n",
"\n",
"# Initilization of variables\n",
"m_a=2 # kg # mass of ball A\n",
"m_b=6 # kg # mass of ball B\n",
"m_c=12 # kg # mass of ball C\n",
"v_a=12 # m/s # velocity of ball A\n",
"v_b=4 # m/s # velocity of ball B\n",
"v_c=2 # m/s # velocity of ball C\n",
"e=1 # coefficient of restitution for perfectly elastic body\n",
"\n",
"# Calculations\n",
"\n",
"# (A)\n",
"# Solving eq'n 1 & 2 using matrix for v'_a & v'_b,\n",
"A=np.array([[2 ,6],[-1, 1]])\n",
"B=np.array([48,8])\n",
"C=np.linalg.solve(A,B)\n",
"\n",
"# Calculations\n",
"\n",
"# (B)\n",
"# Solving eq'ns 3 & 4 simultaneously using matrix for v'_b & v'_c\n",
"P=np.array([[1 ,2],[-1, 1]])\n",
"Q=np.array([12,6])\n",
"R=np.linalg.solve(P,Q)\n",
"\n",
"# Results (A&B)\n",
"\n",
"print\"The velocity of ball A after impact on ball B is \",round(C[0]),\"m/s\" # here the ball of mass 2 kg is bought to rest\n",
"print\"The velocity of ball B after getting impacted by ball A is \",round(C[1]),\"m/s\"\n",
"print\"The final velocity of ball B is \",round(R[0]),\"m/s\" # here the ball of mass 6 kg is bought to rest\n",
"print\"The velocity of ball C after getting impacted by ball B is \",round(R[1]),\"m/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The velocity of ball A after impact on ball B is 0.0 m/s\n",
"The velocity of ball B after getting impacted by ball A is 8.0 m/s\n",
"The final velocity of ball B is 0.0 m/s\n",
"The velocity of ball C after getting impacted by ball B is 6.0 m/s\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-3,Page No:481"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Initilization of variables\n",
"h_1=9 # m # height of first bounce\n",
"h_2=6 # m # height of second bounce\n",
"\n",
"# Calculations\n",
"\n",
"# From eq'n (5) we have, Coefficient of restitution between the glass and the floor is,\n",
"e=(h_2*h_1**-1)**0.5\n",
"# From eq'n 3 we get height of drop as,\n",
"h=h_1/e**2 # m\n",
"\n",
"# Results\n",
"\n",
"print\"The ball was dropped from a height of \",round(h,1),\"m\"\n",
"print\"The coefficient of restitution between the glass and the floor is \",round(e,1)\n",
"# Here we use h`=h_1 & h``=h_2 because h` & h`` could not be defined in Scilab.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ball was dropped from a height of 13.5 m\n",
"The coefficient of restitution between the glass and the floor is 0.8\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-4,Page No:484"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Initilization of variables\n",
"\n",
"e=0.90 # coefficient o restitution\n",
"v_a=10 # m/s # velocity of ball A\n",
"v_b=15 # m/s # velocity of ball B\n",
"alpha_1=30 # degree # angle made by v_a with horizontal\n",
"alpha_2=60 # degree # angle made by v_b with horizontal\n",
"\n",
"# Calculations\n",
"\n",
"# The components of initial velocity of ball A:\n",
"v_a_x=v_a*cos(alpha_1*(pi/180)) # m/s\n",
"v_a_y=v_a*sin(alpha_1*(pi/180)) # m/s\n",
"\n",
"# The components of initial velocity of ball B:\n",
"v_b_x=-v_b*cos(alpha_2*(pi/180)) # m/s\n",
"v_b_y=v_b*sin(alpha_2*(pi/180)) # m/s\n",
"\n",
"# From eq'n 1 & 2 we get,\n",
"v_ay=v_a_y # m/s # Here, v_ay=(v'_a)_y\n",
"v_by=v_b_y # m/s # Here, v_by=(v'_b)_y\n",
"\n",
"# On adding eq'n 3 & 4 we get,\n",
"v_bx=((v_a_x+v_b_x)+(-e*(v_b_x-v_a_x)))*0.5 # m/s # Here. v_bx=(v'_b)_x\n",
"\n",
"# On substuting the value of v'_b_x in eq'n 3 we get,\n",
"v_ax=(v_a_x+v_b_x)-(v_bx) # m/s # here, v_ax=(v'_a)_x\n",
"\n",
"# Now the eq'n for resultant velocities of balls A & B after impact are,\n",
"v_A=(v_ax**2+v_ay**2)**0.5 # m/s\n",
"v_B=(v_bx**2+v_by**2)**0.5 # m/s\n",
"\n",
"# The direction of the ball after Impact is,\n",
"theta_1=arctan(-(v_ay/v_ax))*(180/pi) # degree\n",
"theta_2=arctan(v_by/v_bx)*(180/pi) # degree\n",
"\n",
"# Results\n",
"\n",
"print\"The velocity of ball A after impact is \",round(v_A,2),\"m/s\"\n",
"print\"The velocity of ball B after impact is \",round(v_B,2),\"m/s\"\n",
"print\"The direction of ball A after impact is \",round(theta_1,2),\"degree\"\n",
"print\"The direction of ball B after impact is \",round(theta_2,2),\"degree\"\n",
"# Her we use, (1) v'_a & v'_b as v_A & v_B.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The velocity of ball A after impact is 8.35 m/s\n",
"The velocity of ball B after impact is 15.18 m/s\n",
"The direction of ball A after impact is 36.77 degree\n",
"The direction of ball B after impact is 58.85 degree\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-5,Page No:485"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Initiization of variables\n",
"theta=30 # degrees # ange made by the ball against the wall\n",
"e=0.50\n",
"# Calculations\n",
"# The notations have been changed\n",
"# Resolving the velocity v as,\n",
"v_x=cos(theta*(pi/180))\n",
"v_y=sin(theta*(pi/180))\n",
"V_y=v_y\n",
"# from coefficient of restitution reation\n",
"V_x=-e*v_x\n",
"# Resultant velocity\n",
"V=sqrt(V_x**2+V_y**2)\n",
"theta=arctan(V_y*(-V_x)**-1)*(180/pi) # taking +ve value for V_x\n",
"# NOTE: Here all the terms are multiplied with velocity i.e (v).\n",
"# Results\n",
"\n",
"print\"The velocity of the ball is \",round(V,3),\"v\"\n",
"print\"The direction of the ball is \",round(theta,1),\"degree\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The velocity of the ball is 0.661 v\n",
"The direction of the ball is 49.1 degree\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-6,Page No:488"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import numpy as np\n",
"\n",
"# Initilization of variables\n",
"e=0.8 # coefficient of restitution\n",
"g=9.81 # m/s^2 # acc due to gravity\n",
"\n",
"# Calcuations\n",
"\n",
"# Squaring eqn's 1 &2 and Solving eqn's 1 & 2 using matrix for the value of h\n",
"A=np.array([[-1 ,(2*g)],[-1 ,-(1.28*g)]])\n",
"B=np.array([0.945**2,(-0.4*9.81)])\n",
"C=np.linalg.solve(A,B) # m\n",
"\n",
"# Results\n",
"\n",
"print\"The height from which the ball A should be released is \",round(C[1],3),\"m\"\n",
"# The answer given in the book i.e 0.104 is wrong.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The height from which the ball A should be released is 0.15 m\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-7,Page No:490"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Initilization of variables\n",
"theta_a=60 # degree # angle made by sphere A with the verticle\n",
"e=1 # coefficient of restitution for elastic impact\n",
"\n",
"# Calculations\n",
"\n",
"# theta_b is given by the eq'n cosd*theta_b=0.875, hence theta_b is,\n",
"theta_b=arccos(0.875)*(180/pi) # degree\n",
"\n",
"# Results\n",
"\n",
"print\"The angle through which the sphere B will swing after the impact is \",round(theta_b,2),\"degree\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The angle through which the sphere B will swing after the impact is 28.96 degree\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-8,Page No:491"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Initilization of variables\n",
"m_a=0.01 # kg # mass of bullet A\n",
"v_a=100 # m/s # velocity of bullet A\n",
"m_b=1 # kg # mass of the bob\n",
"v_b=0 # m/s # velocity of the bob\n",
"l=1 # m # length of the pendulum\n",
"v_r=-20 # m/s # velocity at which the bullet rebounds the surface of the bob # here the notation for v'_a is shown by v_r\n",
"v_e=20 # m/s # velocity at which the bullet escapes through the surface of the bob # here the notation for v_a is shown by v_e\n",
"g=9.81 # m/s^2 # acc due to gravity\n",
"\n",
"# Calculations\n",
"\n",
"# Momentum of the bullet & the bob before impact is,\n",
"M=(m_a*v_a)+(m_b*v_b) # kg.m/s......(eq'n 1)\n",
"\n",
"# The common velocity v_c ( we use v_c insted of v' for notation of common velocity) is given by equating eq'n 1 & eq'n 2 as,\n",
"\n",
"# (a) When the bullet gets embedded into the bob\n",
"v_c=M/(m_a+m_b) # m/s\n",
"# The height h to which the bob rises is given by eq'n 3 as,\n",
"h_1=(0.5)*(v_c**2/g) # m\n",
"# The angle (theta_1) by which the bob swings corresponding to the value of height h_1 is,\n",
"theta_1=arccos((l-h_1)/l)*(180/pi) # degree\n",
"\n",
"# (b) When the bullet rebounds from the surface of the bob\n",
"# The velocity of the bob after the rebound of the bullet from its surface is given by equating eq'n 1 & eq'n 4 as,\n",
"v_bob_rebound=M-(m_a*v_r) # m/s # here v_bob_rebound=v'_b\n",
"# The equation for the height which the bob attains after impact is,\n",
"h_2=(v_bob_rebound**2)/(2*g) # m\n",
"# The corresponding angle of swing \n",
"theta_2=arccos((l-h_2)/l)*(180/pi) # degree\n",
"\n",
"# (c) When the bullet pierces and escapes through the bob\n",
"# From eq'n 1 & 5 the velocity attained by the bob after impact is given as,\n",
"v_b_escape=M-(m_a*v_e) # m/s # here we use, v_b_escape insted of v'_b\n",
"# The equation for the height which the bob attains after impact is,\n",
"h_3=(v_b_escape**2)/(2*g) # m\n",
"# The corresponding angle of swing \n",
"theta_3=arccos((l-h_3)/(l))*(180/pi) # degree\n",
"\n",
"# Results\n",
"\n",
"print\"(a) The maximum angle through which the pendulum swings when the bullet gets embeded into the bob is \",round(theta_1,1),\"degree\"\n",
"print\"(b) The maximum angle through which the pendulum swings when the bullet rebounds from the surface of the bob is \",round(theta_2,2),\"degree\"\n",
"print\"(c) The maximum angle through which the pendulum swings when the bullet escapes from other end of the bob the bob is \",round(theta_3,1),\"degree\"\n",
"# IN THIS SUM WE HAVE USED DIFFERENT NOTATIONS CONSIDERING DIFFERENT CASES BECAUSE IN THE TEXT BOOK WE HAD 3 VARIABLES WITH SAME NOTATION BUT WITH A DIFFERENT VALUE WHICH COULD NOT BE EXECUTED INTO SCILAB.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The maximum angle through which the pendulum swings when the bullet gets embeded into the bob is 18.2 degree\n",
"(b) The maximum angle through which the pendulum swings when the bullet rebounds from the surface of the bob is 22.09 degree\n",
"(c) The maximum angle through which the pendulum swings when the bullet escapes from other end of the bob the bob is 14.7 degree\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-9,Page No:493"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Initilization of variables\n",
"\n",
"W_a=50 # N # falling weight\n",
"W_b=50 # N # weight on which W_a falls\n",
"g=9.81 # m/s^2 # acc due to gravity\n",
"m_a=W_a/g # kg # mass of W_a\n",
"m_b=W_b/g # kg # mass of W_b\n",
"k=2*10**3 # N/m # stiffness of spring\n",
"h=0.075 # m # height through which W_a falls\n",
"\n",
"#Calculations\n",
"\n",
"# The velocity of weight W_a just before the impact and after falling from a height of h is given from the eq'n, ( Principle of conservation of energy)\n",
"v_a=(2*g*h)**0.5 # m/s\n",
"\n",
"# Let the mutual velocity after the impact be v_m (i.e v_m=v'), (by principle of conservation of momentum)\n",
"v_m=(m_a*v_a)/(m_a+m_b) # m/s\n",
"\n",
"# Initial compression of the spring due to weight W_b is given by,\n",
"delta_st=(W_b/k)*(10**2) # cm\n",
"\n",
"# Let the total compression of the spring be delta_t, Then delta_t is found by finding the roots from the eq'n........ delta_t^2-0.1*delta_t-0.000003=0. In this eq'n let,\n",
"a=1\n",
"b=-0.1\n",
"c=-0.000003\n",
"delta_t=((-b+((b**2-(4*a*c))**0.5))/2*a)*(10**2) # cm # we consider the -ve value\n",
"delta=delta_t-delta_st # cm\n",
"\n",
"# Results\n",
"\n",
"print\"The compression of the spring over and above caused by the static action of weight W_a is \",round(delta),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The compression of the spring over and above caused by the static action of weight W_a is 10.0 cm\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-10,Page No:494"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Initilization of variables\n",
"v_a=600 # m/s # velocity of the bullet before impact\n",
"v_b=0 # m/s # velocity of the block before impact\n",
"w_b=0.25 # N # weight of the bullet\n",
"w_wb=50 # N # weight of wodden block\n",
"mu=0.5 # coefficient of friction between the floor and the block\n",
"g=9.81 # m/s^2 # acc due to gravity\n",
"\n",
"# Calculations\n",
"\n",
"m_a=w_b/g # kg # mass of the bullet\n",
"m_b=w_wb/g # kg # mass of the block\n",
"\n",
"# Let the common velocity be v_c which is given by eq'n (Principle of conservation of momentum)\n",
"v_c=(w_b*v_a)/(w_wb+w_b) # m/s\n",
"\n",
"# Let the distance through which the block is displaced be s, Then s is given by eq'n\n",
"s=v_c**2/(2*g*mu) # m\n",
"\n",
"# Results\n",
"\n",
"print\"The distance through which the block is displaced from its initial position is \",round(s,2),\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The distance through which the block is displaced from its initial position is 0.91 m\n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18.18-11,Page No:495"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Initilization of variables\n",
"\n",
"M=750 # kg # mass of hammer\n",
"m=200 # kg # mass of the pile\n",
"h=1.2 # m # height of fall of the hammer\n",
"delta=0.1 # m # distance upto which the pile is driven into the ground\n",
"g=9.81 # m/s^2 # acc due to gravity\n",
"\n",
"# Caculations\n",
"\n",
"# The resistance to penetration to the pile is given by eq'n,\n",
"R=(((M+m)*g)+((M**2*g*h)/((M+m)*delta)))*(10**-3) # kN \n",
"\n",
"# Results\n",
"\n",
"print\"The resistance to penetration to the pile is \",round(R),\"KN\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resistance to penetration to the pile is 79.0 KN\n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|