summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Tayal_A.K./chapter17_5.ipynb
blob: 5049e924379d279754a49b5c0d3eaae07e100656 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
{
 "metadata": {
  "name": "chapter17.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 17: Kinetics Of A Particle : Impulse And Momentum"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.17-1,Page no:460"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "m=0.1 # kg # mass of ball\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Consider the respective F.B.D.\n",
      "\n",
      "# For component eq'n in x-direction\n",
      "delta_t=0.015 # seconds # time for which the ball &the bat are in contact\n",
      "v_x_1=-25 # m/s \n",
      "v_x_2=40*cos(40*(pi/180)) # m/s\n",
      "F_x_average=((m*(v_x_2))-(m*(v_x_1)))/(delta_t) # N\n",
      "\n",
      "# For component eq'n in y-direction\n",
      "delta_t=0.015 # sceonds\n",
      "v_y_1=0 # m/s\n",
      "v_y_2=40*sin(40*(pi/180)) # m/s\n",
      "F_y_average=((m*v_y_2)-(m*(v_y_1)))/(delta_t) # N\n",
      "F_average=(F_x_average**2+F_y_average**2)**0.5 # N\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The average impules force exerted by the bat on the ball is \",round(F_average,1),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The average impules force exerted by the bat on the ball is  408.6 N\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Examplle 17.17-2,Page No:461"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initiliation of variables\n",
      "\n",
      "m_g=3000 # kg # mass of the gun\n",
      "m_s=50 # kg # mass of the shell\n",
      "v_s=300 # m/s # initial velocity of shell\n",
      "s=0.6 # m # distance at which the gun is brought to rest\n",
      "v=0 # m/s # initial velocity of gun\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# On equating eq'n 1 & eq'n 2 we get v_g as,\n",
      "v_g=(m_s*v_s)/(-m_g) # m/s\n",
      "\n",
      "# Using v^2-u^2=2*a*s to find acceleration,\n",
      "a=(v**2-v_g**2)/(2*s) # m/s^2\n",
      "\n",
      "# Force required to stop the gun,\n",
      "F=m_g*-a # N # here we make a +ve to find the Force\n",
      "\n",
      "# Time required to stop the gun, using v=u+a*t:\n",
      "t=(-v_g)/(-a)  # seconds # we take -a to consider +ve value of acceleration\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The recoil velocity of gun is \",round(v_g),\"m/s\"\n",
      "print\"The Force required to stop the gun is \",round(F),\"N\" # Answer in textbook 62400 is wrong as a=20.833\n",
      "print\"The time required to stop the gun is \",round(t,2),\"seconds\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The recoil velocity of gun is  -5.0 m/s\n",
        "The Force required to stop the gun is  62500.0 N\n",
        "The time required to stop the gun is  0.24 seconds\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.17-3,Page No:462"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "m_m=50 # kg # mass of man\n",
      "m_b=250 # kg # mass of boat\n",
      "s=5 # m # length of the boat\n",
      "v_r=1 # m/s # here v_r=v_(m/b)= relative velocity of man with respect to boat\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Velocity of man is given by, v_m=(-v_r)+v_b\n",
      "\n",
      "# Final momentum of the man and the boat=m_m*v_m+m_b*v_b. From this eq'n v_b is given as\n",
      "v_b=(m_m*v_r)*(m_m+m_b)**-1 # m/s # this is the absolute velocity of the boat\n",
      "\n",
      "# Time taken by man to move to the other end of the boat is,\n",
      "t=s/v_r # seconds\n",
      "\n",
      "# The distance travelled by the boat in the same time is,\n",
      "s_b=v_b*t # m to right from O\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The velocity of boat as observed from the ground is \",round(v_b,3),\"m/s\"\n",
      "print\"(b) The distance by which the boat gets shifted is \",round(s_b,3),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The velocity of boat as observed from the ground is  0.167 m/s\n",
        "(b) The distance by which the boat gets shifted is  0.833 m\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.17-5,Page No:464"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "M=250 # kg # mass of the boat\n",
      "M_1=50 # kg # mass of the man\n",
      "M_2=75 # kg # mass of the man\n",
      "v=4 # m/s # relative velocity of man w.r.t boat\n",
      "\n",
      "# Calculations \n",
      "\n",
      "# (a)\n",
      "# Let the increase in the velocity or the final velocity of the boat when TWO MEN DIVE SIMULTANEOUSLY is given by eq'n,\n",
      "deltaV_1=((M_1+M_2)*v)*(M+(M_1+M_2))**-1 # m/s\n",
      "\n",
      "# (b) # The increase in the velocity or the final velocity of the boat when man of 75 kg dives 1st followed by man of 50 kg\n",
      "# Man of 75 kg dives first, So let the final velocity is given as\n",
      "deltaV_75=(M_2*v)*((M+M_1)+M_2)**-1 # m/s\n",
      "# Now let the man of 50 kg jumps  next, Here\n",
      "deltaV_50=(M_1*v)*(M+M_1)**-1 # m/s\n",
      "# Let final velocity of boat is,\n",
      "deltaV_2=0+deltaV_75+deltaV_50 # m/s\n",
      "\n",
      "# (c) \n",
      "# The man of 50 kg jumps first,\n",
      "delV_50=(M_1*v)*((M+M_2)+(M_1))**-1 # m/s\n",
      "# the man of 75 kg jumps next,\n",
      "delV_75=(M_2*v)*(M+M_2)**-1 # m/s\n",
      "# Final velocity of boat is,\n",
      "deltaV_3=0+delV_50+delV_75 # m/s\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The Final velocity of boat when two men dive simultaneously is \",round(deltaV_1,2),\"m/s\"\n",
      "print\"(b) The Final velocity of boat when the man of 75 kg dives first and 50 kg dives second is \",round(deltaV_2,3),\"m/s\"\n",
      "print\"(c) The Final velocity of boat when the man of 50kg dives first followed by the man of 75 kg is \",round(deltaV_3,3),\"m/s\"  \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The Final velocity of boat when two men dive simultaneously is  1.33 m/s\n",
        "(b) The Final velocity of boat when the man of 75 kg dives first and 50 kg dives second is  1.467 m/s\n",
        "(c) The Final velocity of boat when the man of 50kg dives first followed by the man of 75 kg is  1.456 m/s\n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.17-6,Page No:466"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "m_m=70 # kg # mass of man\n",
      "m_c=35 # kg # mass of canoe\n",
      "m=25*1000**-1 # kg # mass of bullet\n",
      "m_wb=2.25 # kg # mass of wodden block\n",
      "V_b=5 # m/s # velocity of block\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Considering Initial Momentum of bullet=Final momentum of bullet & the block we have,Velocity of  bullet (v) is given by eq'n,\n",
      "v=(V_b*(m_wb+m))/(m) # m/s \n",
      "\n",
      "# Considering, Momentum of the bullet=Momentum of the canoe & the man,the velocity on canoe is given by eq'n\n",
      "V=(m*v)*(m_m+m_c)**-1 # m/s\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The velocity of the canoe is \",round(V,3),\"m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity of the canoe is  0.108 m/s\n"
       ]
      }
     ],
     "prompt_number": 35
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.17-8,Page no:470"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "m=2 # kg # mass of the particle\n",
      "v_0=20 # m/s # speed of rotation of the mass attached to the string\n",
      "r_0=1 # m # radius of the circle along which the particle is rotated\n",
      "r_1=r_0*0.5 # m\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# here, equating (H_0)_1=(H_0)_2 i.e  (m*v_0)*r_0=(m*v_1)*r_1 (here, r_1=r_0/2). On solving we get v_1 as,\n",
      "v_1=2*v_0 # m/s\n",
      "# Tension is given by eq'n,\n",
      "T=(m*v_1**2)/r_1 # N\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The new speed of the particle is \",round(v_1),\"m/s\"\n",
      "print\"The tension in the string is \",round(T),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The new speed of the particle is  40.0 m/s\n",
        "The tension in the string is  6400.0 N\n"
       ]
      }
     ],
     "prompt_number": 37
    }
   ],
   "metadata": {}
  }
 ]
}