summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Tayal_A.K./chapter14_13.ipynb
blob: 41eaaa7679ba167d34cdbada4c7b4b1c1ff3c403 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
{
 "metadata": {
  "name": "chapter14.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 14: Rectilinear Motion Of A Particle"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-3,Page No:335"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "a_T=0.18 # m/s^2 # acc of trolley\n",
      "# Calculations\n",
      "a_B=-a_T*3**-1 # m/s^2 # from eq'n 4\n",
      "t=4 # seconds\n",
      "v_T=a_T*t # m/s # velocity of trolley after 4 seconds\n",
      "v_B=-v_T*3**-1 # m/s # from eq'n 3\n",
      "S_T=(0.5)*a_T*t**2 # m # distance moved by trolley in 4 sec\n",
      "S_B=-S_T*3**-1 # m # from eq'n 2\n",
      "# Results\n",
      "\n",
      "print\"The acceleration of block B is \",round(a_B,2),\"m/s^2\"\n",
      "print\"The velocity of trolley & the block after 4 sec is \",round(v_T,2),\"m/s\",\"&\",round(v_B,2),\"m/s\"\n",
      "print\"The distance moved by the trolley & the block is \",round(S_T,2),\"m\",\"&\",round(S_B,2),\"m\"\n",
      "# The -ve sign indicates that the velocity or the distance travelled is in opposite direction.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceleration of block B is  -0.06 m/s^2\n",
        "The velocity of trolley & the block after 4 sec is  0.72 m/s & -0.24 m/s\n",
        "The distance moved by the trolley & the block is  1.44 m & -0.48 m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-4,Page No:338"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initiliztion of variables\n",
      "\n",
      "v_B=12 # cm/s # velocity of block B\n",
      "u=0\n",
      "s=24 # cm # distance travelled by bock B\n",
      "t=5 # seconds\n",
      "\n",
      "# Calculations\n",
      "\n",
      "a_B=v_B**2/(2*s) # cm/s^2 # using eq'n v^2-u^2=28*a*s for block B. Here u=0\n",
      "a_A=(1.5)*a_B # cm/s^2 # from eq'n 4 # Here a_A is negative which means acceleration is in opposite direction. However we consider +ve values for further calculations\n",
      "v_A=u+(a_A*t) # m/s # using eq'n v=u+(a*t)\n",
      "S_A=(u*t)+((0.5)*a_A*t**2) # m # using eq'n S=(u*t)+((1/2)*a*t^2)\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The acceleration of block A (a_A) is \",round(a_A,1),\"cm/s^2\"\n",
      "print\"The acceleration of block B (a_B) is \",round(a_B),\"cm/s^2\"\n",
      "print\"The velocity of block A (v_A) after 5 seconds is \",round(v_A,1),\"m/s\"\n",
      "print\"The position of block A (S_A) after 5 seconds is \",round(S_A,2),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceleration of block A (a_A) is  4.5 cm/s^2\n",
        "The acceleration of block B (a_B) is  3.0 cm/s^2\n",
        "The velocity of block A (v_A) after 5 seconds is  22.5 m/s\n",
        "The position of block A (S_A) after 5 seconds is  56.25 m\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-5,Page No:340"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "u=72*1000*60**-2 # km/hr # speed of the vehicle\n",
      "s=300 # m # distance where the light is turning is red\n",
      "t=20 # s # traffic light timed to remain red\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Now to find the acceleration we use the eq'n s=u*t+(1/2)*a*t^2\n",
      "a=(((s)-(u*t))*2)*t**-2 # m/s^2 (Deceleration) \n",
      "v=(u+(a*t))*(60*60*0.001) # km/hr # here we multiply with (60*60)/1000 to convert m/s to km/hr\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The required uniform acceleration of the car is \",round(a,2),\"m/s^2\"\n",
      "print\"(b) The speed at which the motorist crosses the traffic light is \",round(v),\"km/hr\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The required uniform acceleration of the car is  -0.5 m/s^2\n",
        "(b) The speed at which the motorist crosses the traffic light is  36.0 km/hr\n"
       ]
      }
     ],
     "prompt_number": 39
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-6,Page No:340"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "S=50 # m # height of the tower\n",
      "v=25 # m/s # velocity at which the stone is thrown up from the foot of the tower\n",
      "g=9.81 # m/s^2 # acc due to graity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# The equation of time for the two stones to cross each other is given as,\n",
      "t=S/v # seconds\n",
      "S_1=(0.5)*g*t**2 # m # from the top\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The time (t) at which the two stones cross each other is \",round(t),\"seconds\"\n",
      "print\"The two stones cross each other (from top) at a distance of \",round(S_1,1),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time (t) at which the two stones cross each other is  2.0 seconds\n",
        "The two stones cross each other (from top) at a distance of  19.6 m\n"
       ]
      }
     ],
     "prompt_number": 41
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-7,Page No:341"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Intilization of variables\n",
      "\n",
      "acc=0.5 # m/s^2 # acceleration of the elevator\n",
      "s=25 # m # distance travelled by the elevator from the top\n",
      "u=0 # m/s\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Using eq'n the eq'n v^2-u^2=2*a*s, solving for v we get,\n",
      "v=sqrt((2*acc*s)+(u^2)) # m/s \n",
      "# Now solving eq'n 1 & 2 for t we get, (4.655*t^2)-(5*t)+(25)=0\n",
      "# Find the roots of the eq'n using the eq'n,t=(-b+sqrt(b^2-(4*a*c)))/(2*a).In this eq'n the values of a,b & c are,\n",
      "a=4.655\n",
      "b=-5\n",
      "c=-25\n",
      "t=(-b+((b**2)-(4*a*c))**0.5)/(2*a) # seconds\n",
      "\n",
      "# Let S_1 be the distance travelled by the elevator after it travels 25 m from top when the stone hits the elevator,This disance S_1 is given as,\n",
      "S_1=(v*t)+((1/2)*acc*t**2) # m\n",
      "\n",
      "# Let S be the total dist from top when the stone hits the elevator,\n",
      "S=S_1+s # m\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The time taken by the stone to hit the elevator is \",round(t,3),\"second\"\n",
      "print\"The distance (S)travelled by the elevator at the time of impact is \",round(S,2),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time taken by the stone to hit the elevator is  2.916 second\n",
        "The distance (S)travelled by the elevator at the time of impact is  40.15 m\n"
       ]
      }
     ],
     "prompt_number": 48
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-9,Page No:343"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "v=60 # km/hr # velocity of the train\n",
      "d1=15 # km # Distance travelled by the local train from the velocity-time graph (here d1= Area OED)\n",
      "d2=12 # km # from the velocity-time graph (here d2= Area OABB')\n",
      "d3=3 # km # from the velocity-time graph (here d3= Area BB'C)\n",
      "\n",
      "# Calculations\n",
      "\n",
      "t_1=d2*v**-1 # hr # time of travel for first 12 kms\n",
      "t_2=(2*d3)*v**-1 # hr # time of for next 3 kms\n",
      "\n",
      "# Total time of travel for passenger train is given by eq'n\n",
      "t=t_1+t_2 # hr\n",
      "\n",
      "# Now time of travel of the local train (let it be T) is given as,\n",
      "T=2*t # hr\n",
      "V_max=2*d1/T # km/hr\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The maximum speed of the local train is \",round(V_max),\"km/hr\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum speed of the local train is  50.0 km/hr\n"
       ]
      }
     ],
     "prompt_number": 65
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-10,Page No:345"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "a=10 # m/s^2 # acceleration of the particle\n",
      "S_5th=50 # m # distance travelled by the particle during the 5th second\n",
      "t=5 # seconds\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# The distance travelled by the particle in time t is given by, S=(u*t)+(1/2)*a*t^2.....(consider this as eq'n 1)\n",
      "# Here, The distance travelled by the particle in the 5th second=The distance travelled in 5 seconds - The distance travelled in 4 seconds..... (consider eq'n 2)\n",
      "# Using eq'n 1: S_(0-5)=(5*u)+(1/2)*10*5^2 = 5*u+125.....(consider eq'n 3)\n",
      "# again, S_(0-4)=(4*u)+(1/2)*10*4^2 = 4*u+80....(consider eq'n 4)\n",
      "\n",
      "# Now,put eq'n 3&4 in eq'n 2 and solve for u. We get, 50=[(5*u+125)-(4*u+80)] i.e 50=u+45\n",
      "u=(S_5th)-45 # m/s\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The initial velocity of the particle is \",round(u),\"m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The initial velocity of the particle is  5.0 m/s\n"
       ]
      }
     ],
     "prompt_number": 66
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-11,Page No:345"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "# Conditions given are\n",
      "t=1 # s\n",
      "x=14.75 # m\n",
      "v=6.33 # m/s\n",
      "# Calculations\n",
      "# We use expression 1,2 & 3 to find distance,velocity & acceleration of the particle after 2 sec\n",
      "T=2 # sec\n",
      "X=(T**4*12**-1)-(T**3*3**-1)+(T**2)+(5*T)+9 # m # eq'n 3\n",
      "V=(T**3*3**-1)-(T**2)+(2*T)+5 # m/s \n",
      "a=(T**2)-(2*T)+2 # m/s^2\n",
      "# Results\n",
      "\n",
      "print\"The distance travelled by the particle is \",round(X,2),\"m\"\n",
      "print\"The velocity of the particle is \",round(V,2),\"m/s\"\n",
      "print\"The acceleration of the particle is \",round(a),\"m/s^2\"\n",
      "# The answer may vary due to decimal point error\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The distance travelled by the particle is  21.67 m\n",
        "The velocity of the particle is  7.67 m/s\n",
        "The acceleration of the particle is  2.0 m/s^2\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-12,Page No:346"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Calculations\n",
      "# From eq'n 2 it is clear that velocity of the particle becomes zero at t=3 sec\n",
      "t=3 # sec .. from eq'n 2\n",
      "# Position of particle at t=3 sec\n",
      "x=(t**3)-(3*t**2)-(9*t)+12 # m # from eq'n 1\n",
      "# Acc of particle at t=3 sec\n",
      "a=6*(t-1) # m/s^2 # from eq'n 3\n",
      "# Results\n",
      "\n",
      "print\"The time at which the velocity of the particle becomes zero is \",round(t),\"sec\"\n",
      "print\"The position of the partice at t=3 sec is \",round(x),\"m\"\n",
      "print\"The acceleration of the particle is \",round(a),\"m/s^2\"\n",
      "# Ref textbook for the  graphs\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time at which the velocity of the particle becomes zero is  3.0 sec\n",
        "The position of the partice at t=3 sec is  -15.0 m\n",
        "The acceleration of the particle is  12.0 m/s^2\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-15,Page No:354"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "F=250 # N # Force acting on a body\n",
      "m=100 # kg # mass of the body\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Using the eq'n of motion\n",
      "a=F*m**-1 # m/s^2 \n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The acceleration of the body is \",round(a,2),\"m/s^2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceleration of the body is  2.5 m/s^2\n"
       ]
      }
     ],
     "prompt_number": 70
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-16,Page No:354"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "a=1 # m/s^2 # downward/upward acceleration of the elevator\n",
      "W=500 # N # Weight of man\n",
      "g=9.81 # m/s^2 # acceleration due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# (a) Downward Motion \n",
      "R_1=W*(1-(a/g)) # N # (Assume pressure as R_1)\n",
      "\n",
      "# (b) Upward Motion\n",
      "R_2=W*(1+(a/g)) # N # (Assume pressure as R_2)\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The pressure transmitted to the floor by the  man for Downward motion of the elevator is \",round(R_1),\"N\"\n",
      "print\"(b) The pressure transmitted to the floor by the  man for Upward motion of the elevator is \",round(R_2,2),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The pressure transmitted to the floor by the  man for Downward motion of the elevator is  449.0 N\n",
        "(b) The pressure transmitted to the floor by the  man for Upward motion of the elevator is  550.97 N\n"
       ]
      }
     ],
     "prompt_number": 72
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-17,Page no:355"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "W=5000 # N # Total weight of the elevator\n",
      "u=0 # m/s\n",
      "v=2 # m/s # velocity of the elevator\n",
      "s=2 # m # distance traveled by the elevator\n",
      "t=2 # seconds # time to stop the lift\n",
      "w=600 # N # weight of the man\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Acceleration acquired by the elevator after travelling 2 m is given by,\n",
      "a=(((v**2-u**2)**0.5/2)) # m/s^2\n",
      "\n",
      "# (a) Let T be the the tension in the cable which is given by eq'n,\n",
      "T=W*(1+(a/g)) # N\n",
      "\n",
      "# (b) Motion of man\n",
      "# Let R be the pressure experinced by the man.Then from the Eq'n of motion of man pressure is given as,\n",
      "R=w*(1-(a/g)) # N \n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The Tensile force in the cable is \",round(T,1),\"N\"\n",
      "print\"(b) The pressure transmitted to the floor by the man is \",round(R,1),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The Tensile force in the cable is  5509.7 N\n",
        "(b) The pressure transmitted to the floor by the man is  538.8 N\n"
       ]
      }
     ],
     "prompt_number": 83
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-18,Page No:355"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "M_1=10 # kg # mass of the 1st block\n",
      "M_2=5 # kg # mass of the 2nd block\n",
      "mu=0.25 # coefficient of friction between the blocks and the surface\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "a=g*(M_2-(mu*M_1))/(M_1+M_2) # m/s^2 # from eq'n 5\n",
      "T=M_1*M_2*g*(1+mu)/(M_1+M_2) # N # from eq'n 6\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The acceleration of the masses is \",round(a,3),\"m/s^2\"\n",
      "print\"The tension in the string is \",round(T,3),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceleration of the masses is  1.635 m/s^2\n",
        "The tension in the string is  40.875 N\n"
       ]
      }
     ],
     "prompt_number": 85
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-19,Page No:357"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "M_1=150 # kg # mass of the 1st block\n",
      "M_2=100 # kg # mass of the 2nd block\n",
      "mu=0.2 # coefficient of friction between the blocks and the inclined plane\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "theta=45 # degree # inclination of the surface\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# substuting the value of eq'n 3 in eq'n 1 & solving for T,we get value of T as,\n",
      "T=((M_1*M_2*g)*(sin(theta*(pi/180))+2-(mu*cos(theta*(pi/180)))))/((4*M_1)+(M_2)) # N\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The tension in the string during the motion of the system is \",round(T,1),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The tension in the string during the motion of the system is  539.3 N\n"
       ]
      }
     ],
     "prompt_number": 87
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-20,Page No:358"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "M_1=5 # kg # mass of the 1st block\n",
      "theta_1=30 # degree # inclination of the 1st plane\n",
      "M_2=10 # kg # mass of the 2nd block\n",
      "theta_2=60 # degree # inclination of the 2nd plane\n",
      "mu=0.33 # coefficient of friction between the blocks and the inclined plane\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# solving eq'n 1 & 2 for a we get,\n",
      "a=((((M_2*(sin(theta_2*(pi/180))-(mu*cos(theta_2*(pi/180)))))-(M_1*(sin(theta_1*(pi/180))+(mu*cos(theta_1*(pi/180)))))))*g)/(M_1+M_2) # m/s^2\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The acceleration of the masses is \",round(a,3),\"m/s^2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceleration of the masses is  2.015 m/s^2\n"
       ]
      }
     ],
     "prompt_number": 89
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-21,Page No:359"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "S=5 # m # distance between block A&B\n",
      "mu_A=0.2 # coefficient of friction between the block A and the inclined plane\n",
      "mu_B=0.1 # coefficient of friction between the block B and the inclined plane\n",
      "theta=20 # degree # inclination of the pane\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculatio#\n",
      "\n",
      "# EQUATION OF MOTION OF BLOCK A:\n",
      "# Let a_A & a_B be the acceleration of block A & B.\n",
      "a_A=(g*sin(theta*(pi/180)))-(mu_A*g*cos(theta*(pi/180))) # m/s^2 # from eq'n 1 & eq'n 2\n",
      "\n",
      "# EQUATION OF MOTION OF BLOCK B:\n",
      "a_B=g*((sin(theta*(pi/180)))-(mu_B*cos(theta*(pi/180)))) # m/s^2 # from eq'n 3 & Rb\n",
      "\n",
      "# Now the eq'n for time of collision of the blocks is given as,\n",
      "t=((S*2)/(a_B-a_A))**0.5 # seconds \n",
      "S_A=(0.5)*a_A*t**2 # m # distance travelled by block A\n",
      "S_B=(0.5)*a_B*t**2 # m # distance travelled by block B\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The time before collision is \",round(t,2),\"seconds\"\n",
      "print\"The distance travelled by block A before collision is \",round(S_A,2),\"m\"\n",
      "print\"The distance travelled by block B before collision is \",round(S_B,2),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time before collision is  3.29 seconds\n",
        "The distance travelled by block A before collision is  8.2 m\n",
        "The distance travelled by block B before collision is  13.2 m\n"
       ]
      }
     ],
     "prompt_number": 96
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-22,Page No:361"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "P=50 # N # Weight of the car\n",
      "Q=100 # N # Weight of the rectangular block\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "b=25 # cm # width of the rectangular block\n",
      "d=50 # cm # depth of the block\n",
      "\n",
      "# Calculations\n",
      "\n",
      "a=(Q*g)/(4*P+2*Q) # m/s^2 # from eq'n 4\n",
      "W=(Q*(P+Q))/(4*P+Q) # N # from eq'n 6\n",
      "\n",
      "# Resuts\n",
      "\n",
      "print\"The maximum value of weight (W) by which the car can be accelerated is \",round(W),\"N\"\n",
      "print\"The acceleration is \",round(a,2),\"m/s^2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum value of weight (W) by which the car can be accelerated is  50.0 N\n",
        "The acceleration is  2.45 m/s^2\n"
       ]
      }
     ],
     "prompt_number": 99
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-23,Page No:363"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "P=40 # N # weight on puley r_1\n",
      "Q=60 # N # weight on pulley r_2\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# The eq'n for acceleration of pulley Pi.e a_p is,\n",
      "a_p=(2*P-Q)*(4*P+Q)**-1*2*g # m/s^2\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The downward acceleration of P is \",round(a_p,3),\"m/s^2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The downward acceleration of P is  1.784 m/s^2\n"
       ]
      }
     ],
     "prompt_number": 112
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-24,Page No:364"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "M=15 # kg # mass of the wedge\n",
      "m=6 # kg # mass of the block\n",
      "theta=30 # degree # angle of the wedge\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "a_A=((m*g*cos(theta*(pi/180))*sin(theta*(pi/180)))/((M)+(m*(sin(theta*(pi/180)))**2)))/(g) # g # By eliminating R_1 from eq'n 1&3.\n",
      "\n",
      "# Here, assume a_r is the acceleration of block B relative to wedge A which is given by substuting a_A in eq'n 2\n",
      "\n",
      "a_r=(((g*sin(theta*(pi/180)))*(m+M))/((M)+(m*(sin(theta*(pi/180)))**2)))/(g) # g\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The acceleration of the wedge is \",round(a_A,3),\"g\"\n",
      "print\"(b) The acceleration of the bock relative to the wedge is \",round(a_r,3),\"g\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The acceleration of the wedge is  0.157 g\n",
        "(b) The acceleration of the bock relative to the wedge is  0.636 g\n"
       ]
      }
     ],
     "prompt_number": 114
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-25,Page No:366"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "P=30 # N # weight on pulley A\n",
      "Q=20 # N # weight on pulley B\n",
      "R=10 # N # weight on puey B\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Solving eqn's 6 & 7 using matrix for a & a_1, we get\n",
      "A=np.array([[70 ,-40],[-10, 30]])\n",
      "B=np.array([10,-10])\n",
      "C=np.linalg.solve(A,B)\n",
      "\n",
      "# Acceleration of P is given as,\n",
      "P=C[0] # m/s^2\n",
      "# Acceleration of Q is given as,\n",
      "Q=C[1]-C[0] # m/s^2\n",
      "# Acceleration of R is given as,\n",
      "R=-(C[1]+C[0]) # m/s^2 # as R is taken to be +ve\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The acceleration of P is  \",round(P,2),\"g\"\n",
      "print\"The acceleration of Q is  \",round(Q,2),\"g\"\n",
      "print\"The acceleration of R is \",round(R,2),\"g\"\n",
      "# Here the -ve sign indicates deceleration or backward/downward acceleation.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceleration of P is   -0.06 g\n",
        "The acceleration of Q is   -0.29 g\n",
        "The acceleration of R is  0.41 g\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-30,Page No:372"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "W=1 # kg/m # weight of the bar\n",
      "L_AB=0.6 # m # length of segment AB\n",
      "L_BC=0.30 # m # length of segment BC\n",
      "g=9.81 # m/s^2 # acc due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Consider the respective F.B.D.\n",
      "theta_1=arctan(5/12)*(180/pi) # slope of bar AB # here theta_1= atan(theta)\n",
      "theta_2=arcsin(5/13)*(180/pi) # theta_2=asin(theta)\n",
      "theta_3=arccos(12/13)*(180/pi) # theta_3=acos(theta)\n",
      "M_AB=L_AB*W # kg acting at D # Mass of segment AB\n",
      "M_BC=L_BC*W # kg acting at E # Mass of segment BC\n",
      "\n",
      "# The various forces acting on the bar are:\n",
      "\n",
      "# Writing the eqn's of dynamic equilibrium\n",
      "Y_A=(L_AB*g)+(L_BC*g) # N # sum F_y=0\n",
      "\n",
      "# Using moment eq'n Sum M_A=0:Here,in this eq'n the values are as follows,\n",
      "AF=L_BC*cos(theta_3) \n",
      "DF=L_BC*sin(theta_2)\n",
      "AH=(L_AB*cos(theta_3))+((L_BC/2)*sin(theta_2))\n",
      "IG=(L_AB*sin(theta_2)-((L_BC/2)*cos(theta_3)))\n",
      "\n",
      "# On simplifying and solving moment eq'n we get a as,\n",
      "a=(g*(L_AB*(DF)+L_BC*(IG)))*(L_AB*(AF)+L_BC*(AH))**-1\n",
      "#a=(2*L_AB*L_BC*g*sin(theta_2))-(L_BC*g*(L_BC/2)*cos(theta_3))/((2*L_AB*L_BC*cos(theta_3*(pi/180)))+(L_BC*(L_BC/2)*sin(theta_2*(pi/180)))) # m/s^2\n",
      "X_A=0.9*a #N # from eq'n of dynamic equilibrium\n",
      "R_A=(X_A**2+Y_A**2)**0.5 # N # Resultant of R_A\n",
      "alpha=arctan(Y_A/X_A)*(180/pi) # degree\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The acceleration is \",round(a,4),\"m/s^2\"\n",
      "print\"The reaction at A (R_A) is \",round(R_A,3),\"N\"\n",
      "print\"The angle made by the resultant is \",round(alpha,2),\"degree\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceleration is  -1.2263 m/s^2\n",
        "The reaction at A (R_A) is  8.898 N\n",
        "The angle made by the resultant is  -82.87 degree\n"
       ]
      }
     ],
     "prompt_number": 44
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}