summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Tayal_A.K./chapter10_14.ipynb
blob: 3563e56266784c3abbea4ecceca54eff749cdbe1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
{
 "metadata": {
  "name": "chapter10.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10: Uniform Flexible Suspension Cables"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.10-1,Page No:238"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "W1=400 # N # vertical load at pt C\n",
      "W2=600 # N # vertical load at pt D\n",
      "W3=400 # N # vertical load at pt E\n",
      "l=2 # m # l= Lac=Lcd=Lde=Leb\n",
      "h=2.25 # m # distance of the cable from top\n",
      "L=2 # m # dist of A from top\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Solving eqn's 1&2 using MATRIX for Xb & Yb\n",
      "A=np.array([[-L ,4*l],[-h, 2*l]])\n",
      "B=np.array([((W1*l)+(W2*2*l)+(W1*3*l)),(W1*l)])\n",
      "C=np.linalg.solve(A,B)\n",
      "\n",
      "# Now consider the F.B.D of BE, Take moment at E\n",
      "y_e=(C[1]*l)/C[0] # m / here y_e is the distance between E and the top\n",
      "theta_1=arctan(y_e/l)*(180/pi) # degree # where theta_1 is the angle between BE and the horizontal\n",
      "T_BE=C[0]/cos(theta_1*(pi/180)) # N (T_BE=T_max)\n",
      "\n",
      "# Now consider the F.B.D of portion BEDC\n",
      "# Take moment at C\n",
      "y_c=((C[1]*6)-(W3*4)-(W2*2))/(C[0]) # m\n",
      "theta_4=arctan(((y_c)-(l))/(l))*(180/pi) # degree\n",
      "T_CA=C[0]/cos(theta_4*(pi/180)) # N # Tension in CA\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(i) The horizontal reaction at B (Xb) is \",round(C[0]),\"N\"\n",
      "print\"(i) The vertical reaction at B (Yb) is \",round(C[1]),\"N\"\n",
      "print\"(ii) The sag at point E (y_e) is \",round(y_e,3),\"m\"\n",
      "print\"(iii) The tension in portion CA (T_CA) is \",round(T_CA,1),\"N\"\n",
      "print\"(iv) The max tension in the cable (T_max) is \",round(T_BE,1),\"N\" #answer varies due to decimal variance\n",
      "print\"(iv) The max slope (theta_1) in the cable is \",round(theta_1,1),\"degree\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The horizontal reaction at B (Xb) is  1600.0 N\n",
        "(i) The vertical reaction at B (Yb) is  1100.0 N\n",
        "(ii) The sag at point E (y_e) is  1.375 m\n",
        "(iii) The tension in portion CA (T_CA) is  1627.9 N\n",
        "(iv) The max tension in the cable (T_max) is  1941.6 N\n",
        "(iv) The max slope (theta_1) in the cable is  34.5 degree\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.10-2,Page No:241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initiization of variables\n",
      "\n",
      "W1=100 # N # Pt load at C\n",
      "W2=150 # N # Pt load at D\n",
      "W3=200 # N # Pt load at E\n",
      "l=1 # m # l=Lac=Lcd=Lde=Leb\n",
      "h=2 # m # dist between Rb & top\n",
      "Xa=200 # N\n",
      "Xb=200 # N\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# consider the F.B.D of entire cable\n",
      "# Take moment at A\n",
      "Yb=((W1*l)+(W2*2*l)+(W3*3*l)-(Xb*h))/(4*l) # N\n",
      "Ya=W1+W2+W3-Yb # N # sum Fy=0\n",
      "# Now consider the F.B.D of AC\n",
      "\n",
      "# Take moment at C,\n",
      "y_c=(Ya*l)/Xa # m\n",
      "theta_1=arctan(y_c/l)*(180/pi) # degree\n",
      "T_AC=Xa/cos(theta_1*(pi/180)) # N # T_AC*cosd(theta_1)=horizontal component of tension in the cable\n",
      "# here, T_AC=T_max\n",
      "T_max=(Xa**2+Ya**2)**0.5 # N\n",
      "T_AC=T_max\n",
      "\n",
      "# Now consider the F.B.D of portion ACD\n",
      "y_d=((Ya*2*l)-(W1*l))/(Xa) # m # taking moment at D\n",
      "theta_2=arctan(((y_d)-(y_c))/(l))*(180/pi) # degree\n",
      "T_CD=Xa/(cos(theta_2*(pi/180))) # N \n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(i) The component of support reaction at A (Ya) is \",round(Ya),\"N\"\n",
      "print\"(i) The component of support reaction at B (Yb) is \",round(Yb),\"N\"\n",
      "print\"(ii) The tension in portion AC (T_AC) of the cable is \",round(T_AC,1),\"N\"\n",
      "print\"(ii) The tension in portion CD (T_CD) of the cable is \",round(T_CD,1),\"N\"\n",
      "print\"(iii) The max tension in the cable is \",round(T_max,1),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The component of support reaction at A (Ya) is  300.0 N\n",
        "(i) The component of support reaction at B (Yb) is  150.0 N\n",
        "(ii) The tension in portion AC (T_AC) of the cable is  360.6 N\n",
        "(ii) The tension in portion CD (T_CD) of the cable is  282.8 N\n",
        "(iii) The max tension in the cable is  360.6 N\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.10-3,Page No:246"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "w=75 # kg/m # mass per unit length of thw pipe\n",
      "l=20 # m # dist between A &  B\n",
      "g=9.81 #m/s^2 # acc due to gravity\n",
      "y=2 # m # position of C below B\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Let x_b be the distance of point C from B \n",
      "# In eq'n x_b^2+32*x_b-320=0\n",
      "a=1\n",
      "b=32\n",
      "c=-320\n",
      "x_b=(-b+(b**2-(4*a*c))**0.5)/(2*a) # m # we get x_b by equating eqn's 1&2\n",
      "\n",
      "# Now tension T_0\n",
      "T_0=((w*g*x_b**2)/(2*y))*(10**-3) #kN # from eq'n 1\n",
      "\n",
      "# Now the max tension occurs at point A,hence x is given as,\n",
      "x=20-x_b # m\n",
      "w_x=w*g*x*10**(-3) # kN \n",
      "T_max=((T_0)**2+(w_x)**2)**0.5 # kN # Maximum Tension\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The lowest point C which is situated at a distance (x_b) from support B is \",round(x_b),\"m\"\n",
      "print\"The maximum tension (T_max) in the cable is \",round(T_max,2),\"kN\"\n",
      "print\"The minimum tension (T_0) in the cable is \",round(T_0,2),\"kN\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The lowest point C which is situated at a distance (x_b) from support B is  8.0 m\n",
        "The maximum tension (T_max) in the cable is  14.71 kN\n",
        "The minimum tension (T_0) in the cable is  11.77 kN\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.10-4,Page No:247"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "m=0.5 # kg/m # mass of the cable per unit length\n",
      "g=9.81 # m/s^2\n",
      "x=30#/ m # length AB\n",
      "y=0.5 # m # dist between C & the horizontal\n",
      "x_b=15 # m # dist of horizontal from C to B\n",
      "\n",
      "# Calculations\n",
      "\n",
      "w=m*g # N/m # weight of the cable per unit length\n",
      "T_0=(w*x_b**2)/(2*y) # N # From eq'n 1\n",
      "T_B=((T_0)**2+(w*x*0.5)**2)**0.5 # N # Tension in the cable at point B\n",
      "W=T_B # N # As pulley is frictionless the tension in the pulley on each side is same,so W=T_B\n",
      "\n",
      "\n",
      "# Slope of the cable at B,\n",
      "theta=arccos(T_0/T_B)*(180/pi) # degree\n",
      "\n",
      "# Now length of the cable between C & B is,\n",
      "S_cb =x_b*(1+((2/3)*(y/x_b)*0.5)) # m\n",
      "\n",
      "\n",
      "# Now total length of the cable AB is,\n",
      "S_ab=2*S_cb # m \n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(i) The magnitude of load W is \",round(W),\"N\"\n",
      "print\"(ii) The angle of the cable with the horizontal at B is \",round(theta,1),\"degree\"\n",
      "print\"(iii) The total length of the cable AB is \",round(S_ab),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) The magnitude of load W is  1106.0 N\n",
        "(ii) The angle of the cable with the horizontal at B is  3.8 degree\n",
        "(iii) The total length of the cable AB is  30.0 m\n"
       ]
      }
     ],
     "prompt_number": 116
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.10-5,Page No:249"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "x=30 # m # distance between two electric poles\n",
      "Tmax=400 # N # Max Pull or tension\n",
      "w=3 # N/m # weight per unit length of the cable\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# The cable is assumed to be parabolic in shape, its eq'n is y=w*x^2/2*T_0.....(eq'n 1). Substuting the co-ordinates of point B (l/2,h), where h is the sag in the cable.This gives, T_0=(w*(l/2)^2)/(2*h)=wl^2/8*h\n",
      "# Now the maximum pull or tension occurs at B,\n",
      "T_B=Tmax # N \n",
      "# Hence T_B=Tmax=sqrt(T_0^2+(w*l/2)^2). On simplyfyingthis eq'n we get, \n",
      "h=(x**2)**0.5/((16*(((Tmax*2)**2/(w*x)**2)))+(1))**0.5 # m \n",
      "\n",
      "# Results \n",
      "\n",
      "print\"The smallest value of the sag in the cable is \",round(h,3),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The smallest value of the sag in the cable is  0.843 m\n"
       ]
      }
     ],
     "prompt_number": 72
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.10-6,Page No:252"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "l=200 # m # length of the cable\n",
      "m=1000 # kg # mass of the cable\n",
      "S=50 # m # sag in the cable\n",
      "s=l/2 # m\n",
      "g=9.81 # m/s^2\n",
      "\n",
      "# Calculations\n",
      "\n",
      "w=(m*g)/l # N/m # mass per unit length of the cable\n",
      "# Substuting the values s=l/2 & y=c+S in eq'n 1 to get the value of c,\n",
      "c=7500/100 # m \n",
      "Tmax=((w*c)**2+(w*s)**2)**0.5 # N # Maximum Tension\n",
      "# To determine the span (2*x) let us use the eq'n of catenary, y=c*cosh(x/c), where y=c+50. On simplyfying we get y/c=cosh(x/c), here let y/c=A\n",
      "y=c+50\n",
      "\n",
      "A=1.666 \n",
      "x=c*(arccosh(A))*(pi/180)# m \n",
      "L=2*x*(180/pi) # m # where L= span\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The horizontal distance between the supports and the max Tension (L) is \",round(L),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The horizontal distance between the supports and the max Tension (L) is  165.0 m\n"
       ]
      }
     ],
     "prompt_number": 114
    }
   ],
   "metadata": {}
  }
 ]
}