summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Tayal_A.K./chapter08.ipynb
blob: 666bcf4368abda0723755b1f2167531121902921 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
{
 "metadata": {
  "name": "chapter8.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8: Simple Lifting Machines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.8-1,Page No:179"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "VR=6 # Velocity ratio\n",
      "P=20 #N # Effort\n",
      "W=100 #N # Load lifted\n",
      "\n",
      "# Calculations\n",
      "\n",
      "#(a)\n",
      "\n",
      "P_actual=P #N\n",
      "W_actual=W #N\n",
      "MA=W/P # where, MA= Mechanical advantage\n",
      "E=(0.833)*100 #% # Where MA/VR=0.833 and E= efficiency\n",
      "\n",
      "#(b)\n",
      "# Now ideal effort required is,\n",
      "P_ideal=W*VR**-1 #N\n",
      "# Effort loss in friction is, (Le)\n",
      "Le=P_actual-P_ideal #N # Effort loss in friction\n",
      "\n",
      "#(c)\n",
      "# Ideal load lifted is,(W_ideal)\n",
      "W_ideal=P*VR #N \n",
      "# Frictional load/resistance,\n",
      "F=W_ideal-W_actual # N\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The efficiency of the machine is \",round(E,3),\"percent\"\n",
      "print\"(b) The effort loss in friction of the machine is \",round(Le,2),\"N\"\n",
      "print\"(c) The Frictional load of the machine is \",round(F),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The efficiency of the machine is  83.3 percent\n",
        "(b) The effort loss in friction of the machine is  3.33 N\n",
        "(c) The Frictional load of the machine is  20.0 N\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.8-2, Page No:180"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "%matplotlib inline\n",
      "\n",
      "# Initilization of variables\n",
      "V_r=20 # Velocity ratio\n",
      "# Values from the table # Variables have been assumed\n",
      "# Values of W in N\n",
      "W=[30 ,40 ,50 ,60 ,70 ,80 ,90 ,100]\n",
      "# P in N\n",
      "P=[7 ,8.5 ,10 ,11.5 ,13.5 ,14.5 ,16 ,17.5]\n",
      "M_A=[W[0]*P[0]**-1 ,W[1]*P[1]**-1 ,W[2]*P[2]**-1 ,W[3]*P[3]**-1 ,W[4]*P[4]**-1 ,W[5]*P[5]**-1 ,W[6]*P[6]**-1 ,W[7]*P[7]**-1]\n",
      "# Efficiency (n)\n",
      "n=[(V_r**-1)*M_A[0] ,(V_r**-1)*M_A[1] ,(V_r**-1)*M_A[2] ,(V_r**-1)*M_A[3], (V_r**-1)*M_A[4] ,(V_r**-1)*M_A[5] ,(V_r**-1)*M_A[6] ,(V_r**-1)*M_A[7]]*100 # %\n",
      "# Calculations\n",
      "# Part (a)- Realtionship between W & P\n",
      "# Here part a cannot be solved as it has variables which cannot be defined in Scilab. Ref.textbook for the solution\n",
      "# Part (b)- Graph between W & efficiency n(eta)\n",
      "x=[0 ,W[0] ,W[1] ,W[2] ,W[3] ,W[4] ,W[5] ,W[6] ,W[7]] # values for W # N\n",
      "y=[0 ,n[0] ,n[1] ,n[2] ,n[3] ,n[4] ,n[5] ,n[6] ,n[7]] # values for efficiency n (eta) # %\n",
      "d=transpose(x)\n",
      "plt.plot(d,y)\n",
      "plt.show()\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The graph is the solution\"\n",
      "# The value of m is found by drawing straight line on the graph and by taking its slope. Ref textbook for the solution\n",
      "# The curve of the graph may differ from textbook because of the graphical calculation.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UVHXeB/D3KFO6ZKmEv2ZwUUAYVJACUcuWUiR9ksJ8\neiiP/SKWtDJbd63O2WfT1lL6samRLfmkx/IXZ8vEUidjdVZTdEopTfQoLeQ4ilnKqmACw/f545sQ\nicMAM/Odmft+ncNxftx75zP36Jvr937u9+qEEAJERKQZnVQXQERE3sXgJyLSGAY/EZHGMPiJiDSG\nwU9EpDEMfiIijWk1+M1mM2JiYhAVFYXc3Nwr3i8sLER8fDwSEhJw8803Y+vWrS6vS0RE3qdz1sfv\ncDgQHR2NoqIiGAwGJCUlYc2aNTCZTI3LVFdXIzg4GABw4MABZGRkoKyszKV1iYjI+5we8VutVkRG\nRiI8PBx6vR6ZmZkoLCxstszl0AeACxcu4MYbb3R5XSIi8j6nwW+32xEWFtb43Gg0wm63X7Hc+vXr\nYTKZMH78eCxevLhN6xIRkXc5DX6dTufSRu655x4cOnQIH3/8MaZOnQrOAkFE5LuCnL1pMBhgs9ka\nn9tsNhiNxqsuP3r0aNTX1+PMmTMwGo0urRsZGYlvv/22PbUTEWlWREQEysrK2reycKKurk4MHDhQ\nlJeXi0uXLon4+HhRWlrabJmysjLR0NAghBBi7969YuDAgS6v+/OJZWclaMoLL7ygugSfwX3RhPui\nCfdFk45kp9Mj/qCgIOTl5SEtLQ0OhwNZWVkwmUzIz88HAOTk5ODDDz/Ee++9B71ej+uuuw5r1651\nui4REanlNPgBYPz48Rg/fnyz13Jychofz549G7Nnz3Z5XSIiUotX7vqQlJQU1SX4DO6LJtwXTbgv\n3MPpBVxeKUCnYxcQEVEbdSQ7ecRPRKQxDH4iIo1h8BMRaUyrXT1EROQbfvoJOHlS/nQEg5+ISLGa\nmqZAP3kSOHGi5T+rq4E+fYC+fTv2eezqISLykOrqptBuKcgvP/7pJxnm/frJP3/5+JevhYQAl6dQ\n60h2MviJiNro/HnXAr2+3rVA79GjKdBdxeAnInKT+noZ3N99J3+OHWv++NgxoKFBBndrgX7DDW0P\ndFcx+ImIXFRTc2WY//LxyZPAjTcCv/2t/Onfv/nj/v2B66/3XKC7isFPRARACOCHH5rCvKWAv3AB\nCAu7erAbjcA116j+Jq1j8BORJtTXA3a782GYa6+9eqj/9rdAr17qj9bdgcFPRAHrzBmgoAB47z1g\n716gd2/nwzDduqmu2DsY/EQUUOrqALMZWLECKCoC7rwTePBBYOxY/xiG8QYGPxH5PSGAkhIZ9mvW\nANHRMuz/+7+B7t1VV+d7OpKdvHKXiJQ6cQJYtUoGfk2NDPviYiAiQnVlgYtH/ETkdTU1wPr1ctze\nagUmTQIeegi45RagE6eOdAmP+InI5zU0ADt2yLBftw4YMUKG/bp1wG9+o7o6bWHwE5FHlZXJsH//\nfeC662TYl5Z2fKIxaj8GPxG5XVVVUwtmWRnwwAPyyH7YsMDoofd3HOMnIreoqwO2bJEnaT/9FBg3\nTh7dp6UBer3q6gIP2zmJSJmvvpJH9qtXAwMHyq6c//kfOeMkeQ5P7hKRV508KYP+vffksM6DDwLb\ntwODBqmujFzBI34iH9PQAHzzjQzS7duB48eBrl2v/PnNb1p+3dX39Pq2jbdfvAgUFsqwLy4GMjJk\n4N92G1swVeBQD5Efq6sD9u1rCvrPP5cTid12m/wZOFDeoammRobvr3/a+3pDg+u/NOrq5Lh9YqIc\nt7/nHiA4WPWe0zYGP5EfuXgR2LNH9rRv3y4fDxwIjB4tg370aHlfVU+rr3f9l4XDIU/SGgyer4tc\nw+An8mHnzgG7djUd0ZeUAEOHNh3R33ILT4RS23k0+M1mM2bOnAmHw4HHHnsMzz77bLP3V61ahVde\neQVCCHTr1g1vv/024uLiAADh4eG4/vrr0blzZ+j1elitVrcWT+SLfvih6Wh+xw7g8GEgKakp6EeM\n4DAJdZzHgt/hcCA6OhpFRUUwGAxISkrCmjVrYDKZGpcpLi5GbGwsbrjhBpjNZsyZMwe7d+8GAAwY\nMAB79+5Fz549PVI8kS84frwp6C+fjB01qinoExPlzUGI3Mlj7ZxWqxWRkZEIDw8HAGRmZqKwsLBZ\n8I8cObLxcXJyMo4fP95sGwx1CiRCAN9+2xTy27cD5883jc9nZwNxcUAQG6XJhzn962m32xEWFtb4\n3Gg0Ys+ePVdd/t1338WECRMan+t0OowdOxadO3dGTk4OsrOz3VAykfc0NAAHDzY/ou/UCfjd72TQ\nz54NmEychoD8i9Pg17Xhb/O2bduwbNky7Ny5s/G1nTt3om/fvjh9+jRSU1MRExOD0aNHt79aIi84\nexb4+GPgo49k0PfsKUN+/Hhg/nwgPJxBT/7NafAbDAbYbLbG5zabDUaj8Yrl9u/fj+zsbJjNZvT4\nRXtC35+n3wsNDUVGRgasVmuLwT9nzpzGxykpKUhJSWnr9yDqkB9+kBcnffCB7MC54w45R/ySJZxF\nknyDxWKBxWJxy7acntytr69HdHQ0/vnPf6Jfv34YPnz4FSd3jx07hjvuuAMrV67EiBEjGl+vqamB\nw+FAt27dUF1djXHjxuGFF17AuHHjmhfAk7ukyKlT8qj+gw+AL76QfeqTJwMTJsjpg4l8mcdO7gYF\nBSEvLw9paWlwOBzIysqCyWRCfn4+ACAnJwcvvvgizp49i2nTpgFAY9tmZWUlJk2aBED+ApkyZcoV\noU/kbXa7nB74gw+A/ftlyD/xhAx93gyEtIIXcFHA++474MMPZdgfPgykp8sj+7FjgS5dVFdH1D68\ncpfoV8rKZNB/+CFQUSHnlpk8Gbj9duCaa1RXR9RxDH4iAIcONYV9ZaU8OTt5suzIYV89BRoGP2mS\nEMCBA01h/5//APfeK8N+1Cigc2fVFRJ5DoOfNEMIOYXx5bCvrZVBP3kyMHw454Un7eAduCigNTQA\nVmtT2AcFyaBfswa46SZeTEXUVgx+8kkOh7yQ6nLY33CDHMYpLJRTGjPsidqPwU8+5dQpYNEiYPly\neReqyZOBLVuA2FjVlREFDgY/+YRvvwVeew0oKADuvx+wWIDoaNVVEQUmngojpUpKgMxMIDkZCAmR\nF1i99RZDn8iTGPzkdUIAW7fKaRImTpR3pyovB+bNk8M7RORZHOohr3E45MnZBQvkfWhnzwamTOHd\nqYi8jcFPHnfpErByJfDKK0D37sDzzwN3382eeyJVGPzkMefOAe+8A7zxhrwdYX6+vHMVWzGJ1GLw\nk9udOgUsXiyDftw4YONGYNgw1VUR0WX8zza5zb//DUyfLu9BW1Ulr7ZdvZqhT+RrGPzUYV99JXvv\nhw+X96e93JI5cKDqyoioJQx+ahchgG3bgDvvBO66C0hMZEsmkb/gGD+1SUMDsH49kJsrp0GePVu2\naLIlk8h/MPjJJZdbMl99VU6Y9txzbMkk8lcMfnLqckvmwoXAkCHA3//Olkwif8fgpxb9siUzNRX4\n+GMgIUF1VUTkDvyPOjVTXt7Uknn2LLBnj7zhCUOfKHDwiJ8anTwpZ8nMzpY3Lu/dW3VFROQJvOcu\nNbrvPiAqCnjpJdWVEFFreM9d6rCNG+Xc+CtWqK6EiDyNwU+4cAF44gng3XeBrl1VV0NEnsahHsIf\n/gD8+COP9on8CYd6qN327gVWrQIOHlRdCRF5C9s5Nay+Hvj97+XVuDfeqLoaIvKWVoPfbDYjJiYG\nUVFRyM3NveL9VatWIT4+HnFxcbjllluwf/9+l9cltd58E+jRA5g6VXUlRORVwon6+noREREhysvL\nRW1trYiPjxelpaXNltm1a5eoqqoSQgixefNmkZyc7PK6P59fcFYCeUhFhRAhIUIcOaK6EiJqj45k\np9MjfqvVisjISISHh0Ov1yMzMxOFhYXNlhk5ciRuuOEGAEBycjKOHz/u8rqkhhCyi+eZZ2TfPhFp\ni9Pgt9vtCAsLa3xuNBpht9uvuvy7776LCRMmtGtd8p4PPgAqKoA//Ul1JUSkgtOuHl0bpmDctm0b\nli1bhp07d7Z53Tlz5jQ+TklJQUpKisvrUttUVQEzZwL/+AdwzTWqqyEiV1ksFlgsFrdsy2nwGwwG\n2Gy2xuc2mw1Go/GK5fbv34/s7GyYzWb06NGjTesCzYOfPOu554D0dGDUKNWVEFFb/PqgeO7cue3e\nltOhnsTERBw9ehQVFRWora1FQUEB0tPTmy1z7NgxTJo0CStXrkRkZGSb1iXv2rkT+OQTYP581ZUQ\nkUpOj/iDgoKQl5eHtLQ0OBwOZGVlwWQyIT8/HwCQk5ODF198EWfPnsW0adMAAHq9Hlar9arrkhq1\ntbJnf+FCoHt31dUQkUqcskEj5s2Tc+tv2MC7ZxEFgo5kJ4NfA44ckWP6+/YB/furroaI3KEj2ckp\nGwKcEMDjjwN//jNDn4gkBn+AW7FC3jD9qadUV0JEvoJDPQHs9GlgyBBg82bgpptUV0NE7sQxfmrR\ngw8CvXoBr72muhIicjfOx09XKCoCduwAvvlGdSVE5Gs4xh+ALl6UJ3TfegsIDlZdDRH5GgZ/APrr\nX4GbbwZ+ni+PiKgZjvEHmAMHgDFjgP37gT59VFdDRJ7CPn4CADQ0yGkZ5s1j6BPR1TH4A8jf/w50\n7gw89pjqSojIl3GoJ0CcOAHExwP/+hcQG6u6GiLyNA71EGbMAKZNY+gTUevYxx8ANmyQJ3VXrlRd\nCRH5Aw71+Lnz54HBg+WcPLffrroaIvIWTtmgYTNnyknYli1TXQkReROnbNCoL74A1q4FDh5UXQkR\n+ROe3PVT9fWyZ/+114CQENXVEJE/YfD7qYULgdBQYMoU1ZUQkb/hGL8fKi8HkpLkPXQjIlRXQ0Qq\nsI9fQ4QApk8H/vhHhj4RtQ+D388UFAB2OzBrlupKiMhfcajHj5w9K3v2160DRoxQXQ0RqcQ+fo3I\nzgauvRbIy1NdCRGpxj5+DdixQ940vbRUdSVE5O84xu8HLl2SPfuLFwPXX6+6GiLydwx+P5CbC0RH\nAxkZqishokDAMX4fd/gwcOutQEkJEBamuhoi8hUe7eM3m82IiYlBVFQUcnNzr3j/8OHDGDlyJLp0\n6YLXX3+92Xvh4eGIi4tDQkIChg8f3q4CtUwI4PHHgb/8haFPRO7j9OSuw+HAk08+iaKiIhgMBiQl\nJSE9PR0mk6lxmZCQELz55ptYv379FevrdDpYLBb07NnT/ZVrwPLlQE0N8MQTqishokDi9IjfarUi\nMjIS4eHh0Ov1yMzMRGFhYbNlQkNDkZiYCL1e3+I2OIzTPt9/Dzz3HLB0qbyPLhGRuzgNfrvdjrBf\njDEYjUbY7XaXN67T6TB27FgkJiZi6dKl7a9Sg555Bnj4YXkfXSIid3I61KPT6Tq08Z07d6Jv3744\nffo0UlNTERMTg9GjR1+x3Jw5cxofp6SkICUlpUOf6+8+/RQoLpa3UyQiAgCLxQKLxeKWbTkNfoPB\nAJvN1vjcZrPBaDS6vPG+ffsCkMNBGRkZsFqtrQa/1tXUyJumL1kCBAerroaIfMWvD4rnzp3b7m05\nHepJTEzE0aNHUVFRgdraWhQUFCA9Pb3FZX89ll9TU4Pz588DAKqrq7FlyxYMHTq03YVqxdy5ch6e\nO+9UXQkRBSqnR/xBQUHIy8tDWloaHA4HsrKyYDKZkJ+fDwDIyclBZWUlkpKScO7cOXTq1AmLFi1C\naWkpvv/+e0yaNAkAUF9fjylTpmDcuHGe/0Z+7OuvZScPh3iIyJN4AZePcDiAUaPk1AxZWaqrISJf\nxxuxBIC33wa6dAEefVR1JUQU6HjE7wOOHwcSEuQMnDExqqshIn/AI34/99RT8upchj4ReQPn41fs\no4+AQ4eAtWtVV0JEWsGhHoXOnZO3Uly1CrjtNtXVEJE/4a0X/dRTTwEXLwL/93+qKyEif8NbL/qh\nPXuADz4ADh5UXQkRaQ1P7ipQVyf79f/2N4AzVhORtzH4Ffjb34C+fYHMTNWVEJEWcYzfy/79b2D4\ncOCLL4ABA1RXQ0T+in38fkIIOfPms88y9IlIHQa/F61eDZw6BcycqboSItIyDvV4yZkzsme/sFAO\n9RARdQT7+P1AVpa8scrixaorIaJAwD5+H2exAJ99xp59IvINHOP3sJ9+AnJygDffBLp1U10NERGD\n3+Pmz5dj+3ffrboSIiKJY/wedOiQnHztq68Ag0F1NUQUSNjH74MaGuS0DHPmMPSJyLcw+D3k3Xfl\nnDyPP666EiKi5jjU4wGVlUBcHFBUJP8kInI39vH7mPvvB8LD5YldIiJPYB+/D9m8GbBagWXLVFdC\nRNQyBr8bVVcD06cD77wDdO2quhoiopZxqMeN/vQnOb7//vuqKyGiQMehHh9QUgK89x7wzTeqKyEi\nco7tnG7gcMie/QULgNBQ1dUQETnH4HeDvDzguuuAhx9WXQkRUetaDX6z2YyYmBhERUUhNzf3ivcP\nHz6MkSNHokuXLnj99dfbtG4gOHYMmDcPyM8HdDrV1RARtc7pyV2Hw4Ho6GgUFRXBYDAgKSkJa9as\ngclkalzm9OnT+O6777B+/Xr06NEDs2bNcnldwL9P7gohJ19LSgL+939VV0NEWuKxuXqsVisiIyMR\nHh4OvV6PzMxMFBYWNlsmNDQUiYmJ0Ov1bV7X361bB5SVyXvoEhH5C6fBb7fbERYW1vjcaDTCbre7\ntOGOrOsP/vMf4OmnZc/+NdeoroaIyHVO2zl1HRi0bsu6c+bMaXyckpKClJSUdn+utzz/PPBf/wXc\neqvqSohICywWCywWi1u25TT4DQYDbDZb43ObzQaj0ejShtuy7i+D3x8UFwPr1/NWikTkPb8+KJ47\nd267t+V0qCcxMRFHjx5FRUUFamtrUVBQgPT09BaX/fVJhras60/q6mTP/htvAD16qK6GiKjtnB7x\nBwUFIS8vD2lpaXA4HMjKyoLJZEJ+fj4AICcnB5WVlUhKSsK5c+fQqVMnLFq0CKWlpbjuuutaXNff\nvfYa0L8/cN99qishImofztXTBmVlwIgRwJdfymmXiYhU4a0XvUAIeTet559n6BORf2Pwu2jlSuDM\nGdnCSUTkzzjU44IffgCGDAE++QRITFRdDRERb73ocQ8/LDt43nhDdSVERBLn4/egrVuBbdvYs09E\ngYNj/E5cvChP6F6edpmIKBAw+J146SUgPh6YOFF1JURE7sMx/qs4eBBISQG+/hro1091NUREzbGP\n380aGuS0DC++yNAnosDD4G/BO+/IP3Ny1NZBROQJHOr5lZMngbg42ckzZIjqaoiIWsY+fje67z4g\nKkqe2CUi8lXs43eTTz4BSkqAFStUV0JE5DkM/p9duAA88QSwbBnQtavqaoiIPIdDPT/7wx+AH3/k\n0T4R+QcO9XTQ3r3AqlWcloGItEHz7Zz19UB2NvDqq8CNN6quhojI8zQf/IsXAz17AlOnqq6EiMg7\nND3G/913wM03A8XFsoWTiMhfcMqGdhBCdvE88wxDn4i0RbMnd//xD6CiAli3TnUlRETepcmhnqoq\nYPBgGf6jRnn1o4mI3IJTNrTR448DOh3w9tte/VgiIrdhH38bfP458PHH7NknIu3S1Mnd2lo51fKi\nRUD37qqrISJSQ1PB/8orwMCBwL33qq6EiEgdzYzxHzkiT+Tu2wf07+/xjyMi8ij28bdCCHlC989/\nZugTEbUa/GazGTExMYiKikJubm6Ly8yYMQNRUVGIj49HSUlJ4+vh4eGIi4tDQkIChg8f7r6q22jF\nCuDcOeCpp5SVQETkM5x29TgcDjz55JMoKiqCwWBAUlIS0tPTYTKZGpfZtGkTysrKcPToUezZswfT\npk3D7t27Acj/ilgsFvTs2dOz38KJ06eBZ58FNm8GOndWVgYRkc9wesRvtVoRGRmJ8PBw6PV6ZGZm\norCwsNkyGzZswEMPPQQASE5ORlVVFU6dOtX4vuq59mfNkhOw3XST0jKIiHyG0+C32+0ICwtrfG40\nGmG3211eRqfTYezYsUhMTMTSpUvdWbdLPvsM2L4dmDvX6x9NROSznA716HQ6lzZytaP6zz//HP36\n9cPp06eRmpqKmJgYjB49uu1VtsPFi8C0acCSJUBwsFc+kojILzgNfoPBAJvN1vjcZrPBaDQ6Xeb4\n8eMwGAwAgH79+gEAQkNDkZGRAavV2mLwz5kzp/FxSkoKUlJS2vxFfu2vf5VTLk+Y0OFNEREpZ7FY\nYLFY3LMx4URdXZ0YOHCgKC8vF5cuXRLx8fGitLS02TIbN24U48ePF0IIUVxcLJKTk4UQQlRXV4tz\n584JIYS4cOGCGDVqlPj000+v+IxWSmiX/fuFCA0V4uRJt2+aiMgndCQ7nR7xBwUFIS8vD2lpaXA4\nHMjKyoLJZEJ+fj4AICcnBxMmTMCmTZsQGRmJ4OBgLF++HABQWVmJSZMmAQDq6+sxZcoUjBs3zj2/\nrZxoaAB+/3tg3jygTx+PfxwRkd8JuCt3lywBVq+WJ3U7aeLyNCLSIk7L/DO7HRg2DPjXv4DYWLds\nkojIJ3HKhp/NmCE7eRj6RERXFzDz8W/YAHzzDbBqlepKiIh8W0AM9Zw/L2+luGIFcPvtbiqMiMiH\naX6M/+mnZfgvW+amooiIfJymb734xRdAQQFvpUhE5Cq/PrlbXy979l97DQgJUV0NEZF/8OvgX7gQ\nCA0FpkxRXQkRkf/w2zH+8nIgKQnYsweIiPBAYUREPkxzffxCANOnA3/8I0OfiKit/DL4CwrkVbqz\nZqmuhIjI//jdUM+ZM7Jn/6OPgBEjPFgYEZEP01Qff3Y2cO21QF6eB4siIvJxmunj37FD3jS9tFR1\nJURE/stvxvgvXZI9+4sXA9dfr7oaIiL/5TfBv2ABEB0NZGSoroSIyL/5xRj/4cPArbcCJSVAWJiX\nCiMi8mEB3cff0ADk5AB/+QtDn4jIHXw++JcvBy5eBJ54QnUlRESBwaeHer7/HhgyBPjsMyA+3suF\nERH5sIDt458yBTAYgFde8XJRREQ+LiD7+D/9FCguBg4cUF0JEVFg8ckx/poaedP0JUuA4GDV1RAR\nBRafHOp59lnAZgNWr1ZUFBGRjwuooZ6vv5adPBziISLyDJ8a6nE45CRs8+cDvXurroaIKDD5VPAv\nWQJ07Qo8+qjqSoiIApfPjPEfPw4kJMgZOGNiVFZEROT7PDplg9lsRkxMDKKiopCbm9viMjNmzEBU\nVBTi4+NRUlLSpnUve+opeXUuQ5+IyMOEE/X19SIiIkKUl5eL2tpaER8fL0pLS5sts3HjRjF+/Hgh\nhBC7d+8WycnJLq/78/82xLp1QkRHC/HTT86qCXzbtm1TXYLP4L5own3RhPuiSSvx7ZTTI36r1YrI\nyEiEh4dDr9cjMzMThYWFzZbZsGEDHnroIQBAcnIyqqqqUFlZ6dK6l82YAbzzjryzlpZZLBbVJfgM\n7osm3BdNuC/cw2nw2+12hP1iSkyj0Qi73e7SMidOnGh13cvS0oDbbmtX/URE1EZOg1+n07m0EdHB\n88Oci4eIyHucXsBlMBhgs9kan9tsNhiNRqfLHD9+HEajEXV1da2uCwAREREICXHtF4wWzJ07V3UJ\nPoP7ogn3RRPuCykiIqLd6zoN/sTERBw9ehQVFRXo168fCgoKsGbNmmbLpKenIy8vD5mZmdi9eze6\nd++O3r17IyQkpNV1AaCsrKzdxRMRUds5Df6goCDk5eUhLS0NDocDWVlZMJlMyM/PBwDk5ORgwoQJ\n2LRpEyIjIxEcHIzly5c7XZeIiNRSfgEXERF5l9IpG9pygVegsdlsuP322zF48GAMGTIEixcvBgCc\nOXMGqampGDRoEMaNG4eqqirFlXqHw+FAQkICJk6cCEC7+6GqqgqTJ0+GyWRCbGws9uzZo9l9MX/+\nfAwePBhDhw7FAw88gEuXLmlmXzz66KPo3bs3hg4d2vias+8+f/58REVFISYmBlu2bGl1+8qC3+Fw\n4Mknn4TZbEZpaSnWrFmDQ4cOqSrH6/R6Pd544w0cPHgQu3fvxltvvYVDhw5hwYIFSE1NxZEjRzBm\nzBgsWLBAdalesWjRIsTGxjZ2kml1Pzz99NOYMGECDh06hP379yMmJkaT+6KiogJLly7Fvn37cODA\nATgcDqxdu1Yz++KRRx6B2Wxu9trVvntpaSkKCgpQWloKs9mM6dOno6GhwfkHuOsqsrbatWuXSEtL\na3w+f/58MX/+fFXlKHf33XeLzz77TERHR4vKykohhBAnT54U0dHRiivzPJvNJsaMGSO2bt0q7rrr\nLiGE0OR+qKqqEgMGDLjidS3uix9//FEMGjRInDlzRtTV1Ym77rpLbNmyRVP7ory8XAwZMqTx+dW+\n+8svvywWLFjQuFxaWpooLi52um1lR/yuXBymFRUVFSgpKUFycjJOnTqF3j/PSd27d2+cOnVKcXWe\n98wzz+DVV19Fp05Nfx21uB/Ky8sRGhqKRx55BDfddBOys7NRXV2tyX3Rs2dPzJo1C/3790e/fv3Q\nvXt3pKamanJfXHa1737ixIlmrfKuZKmy4Hf14rBAd+HCBdx7771YtGgRunXr1uw9nU4X8Pvpk08+\nQa9evZCQkHDVCwG1sB8AoL6+Hvv27cP06dOxb98+BAcHXzGUoZV98e2332LhwoWoqKjAiRMncOHC\nBaxcubLZMlrZFy1p7bu3tl+UBb8rF4cFurq6Otx7772YOnUq7rnnHgDyN3llZSUA4OTJk+jVq5fK\nEj1u165d2LBhAwYMGID7778fW7duxdSpUzW3HwB5pGY0GpGUlAQAmDx5Mvbt24c+ffpobl98+eWX\nGDVqFEJCQhAUFIRJkyahuLhYk/visqv9m2jpIlqDweB0W8qC/5cXh9XW1qKgoADp6emqyvE6IQSy\nsrIQGxuLmTNnNr6enp6OFStWAABWrFjR+AshUL388suw2WwoLy/H2rVrcccdd+D999/X3H4AgD59\n+iAsLAxVk1+nAAABIUlEQVRHjhwBABQVFWHw4MGYOHGi5vZFTEwMdu/ejYsXL0IIgaKiIsTGxmpy\nX1x2tX8T6enpWLt2LWpra1FeXo6jR49i+PDhzjfm7hMSbbFp0yYxaNAgERERIV5++WWVpXjdjh07\nhE6nE/Hx8WLYsGFi2LBhYvPmzeLHH38UY8aMEVFRUSI1NVWcPXtWdaleY7FYxMSJE4UQQrP74auv\nvhKJiYkiLi5OZGRkiKqqKs3ui9zcXBEbGyuGDBkiHnzwQVFbW6uZfZGZmSn69u0r9Hq9MBqNYtmy\nZU6/+0svvSQiIiJEdHS0MJvNrW6fF3AREWmMT91zl4iIPI/BT0SkMQx+IiKNYfATEWkMg5+ISGMY\n/EREGsPgJyLSGAY/EZHG/D+gQLmVwq5uYAAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x4fe1370>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The graph is the solution\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.8-3,Page No:184"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initialization of variables\n",
      "\n",
      "W_actual=1360 #N #Load lifted\n",
      "P_actual=100 #N # Effort\n",
      "n=4 # no of pulleys\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# for 1st system of pulleys having 4 movable pulleys, Velocity ratio is\n",
      "VR=2**(n) # Velocity Ratio\n",
      "\n",
      "# If the machine were to be ideal(frictionless)\n",
      "MA=VR # Here, M.A= mechanical advantage \n",
      "\n",
      "# For a load of 1360 N, ideal effort required is\n",
      "P_ideal=W_actual/VR #N\n",
      "\n",
      "# Effort loss in friction is,\n",
      "P_friction=P_actual-P_ideal #N\n",
      "\n",
      "# For a effort of 100 N, ideal load lifted is,\n",
      "W_ideal=VR*100 #N \n",
      "\n",
      "# Load lost in friction is,\n",
      "W_friction=W_ideal-W_actual # N \n",
      "\n",
      "# Results\n",
      "\n",
      "print\"(a) The effort wasted in friction is \",round(P_friction,2),\"N\"\n",
      "print\"(b) The load wasted in friction is \",round(W_friction,2),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The effort wasted in friction is  15.0 N\n",
        "(b) The load wasted in friction is  240.0 N\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.8-4,Page No:185"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "W=1000 #N # Load to be lifted\n",
      "n=5 # no. of pulleys\n",
      "E=75 #% # Efficiency\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Velocity Ratio is given as,\n",
      "VR=n \n",
      "\n",
      "# Mechanical Advantage (MA) is,\n",
      "MA=(E*0.01)*VR # from formulae, Efficiency=E=MA/VR\n",
      "P=W/MA #N # Effort required\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The effort required to lift the load of 1000 N is \",round(P,2),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The effort required to lift the load of 1000 N is  266.67 N\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.8-5,Page No:191 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "W=2000 #N # Load to be raised\n",
      "l=0.70 #m # length of the handle\n",
      "d=0.05 #m # diameter of the screw\n",
      "p=0.01 #m # pitch of the screw\n",
      "mu=0.15 # coefficient of friction at the screw thread\n",
      "pie=3.14 #constant\n",
      "E=1 # efficiency\n",
      "\n",
      "# Calculations\n",
      "\n",
      "phi=arctan(mu)*(180/pi) #degree\n",
      "theta=arctan(p/(pie*d))*(180/pi) #degree # where theta is the Helix angle\n",
      "\n",
      "# Force required at the circumference of the screw is,\n",
      "P=W*tan(theta*(pi/180)+phi*(pi/180)) # N //\n",
      "\n",
      "# Force required at the end of the handle is,\n",
      "F=(P*(d*0.5))/l #N # as d/2=d*0.5\n",
      "\n",
      "# Force required (Ideal case)\n",
      "VR=2*pie*l/p\n",
      "MA=E*VR # from formulae E=M.A/V,R\n",
      "P_ideal=W/MA #N # From formulae, M.A=W/P\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The force required at the end of the handle is \",round(F,2),\"N\"\n",
      "print\"The force required if the screw jack is considered to be an ideal machine is \",round(P_ideal,2),\"N\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The force required at the end of the handle is  15.41 N\n",
        "The force required if the screw jack is considered to be an ideal machine is  4.55 N\n"
       ]
      }
     ],
     "prompt_number": 10
    }
   ],
   "metadata": {}
  }
 ]
}