summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Tayal_A.K./chapter06_3.ipynb
blob: a0feab39b2d3b745426df29091f4e33752f682d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
{
 "metadata": {
  "name": "chapter6.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6: Friction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6-1,Page No:126"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "m=5 #kg # mass of the bock\n",
      "g=9.81 # m/s^2 # acceleration due to gravity\n",
      "theta=15 # degree # angle made by the forces (P1 & P2) with the horizontal of the block\n",
      "mu=0.4 #coefficient of static friction\n",
      "\n",
      "#Calculations\n",
      "\n",
      "# Case 1. Where P1 is the force required to just pull the bock\n",
      "\n",
      "# Solving eqn's 1 & 2 using matrix\n",
      "A=np.array([[cos(theta*(pi/180)), -mu],[sin(theta*(pi/180)), 1]])\n",
      "B=np.array([0,(m*g)])\n",
      "C=np.linalg.solve(A,B)\n",
      "\n",
      "# Calculations \n",
      "\n",
      "# Case 2. Where P2 is the force required to push the block\n",
      "\n",
      "# Solving eqn's 1 & 2 using matrix\n",
      "P=np.array([[-cos(theta*(pi/180)), mu],[-sin(theta*(pi/180)) ,1]])\n",
      "Q=np.array([0,(m*g)])\n",
      "R=np.linalg.solve(P,Q)\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The required pull force P1 is \",round(C[0],2),\"N\" #answer in textbook is wrong\n",
      "print\"The required push force P2 is \",round(R[0]),\"N\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required pull force P1 is  18.35 N\n",
        "The required push force P2 is  23.0 N\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6-4,Page No:129"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "W1=50 # N # weight of the first block\n",
      "W2=50 # N # weight of the second block\n",
      "mu_1=0.3 # coefficient of friction between the inclined plane and W1\n",
      "mu_2=0.2 # coefficient of friction between the inclined plane and W2\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# On adding eq'ns 1&3 and substuting the values of N1 & N2 from eqn's 2&4 in this and on solving for alpha we get,\n",
      "\n",
      "alpha=(arctan(((mu_1*W1)+(mu_2*W2))/(W1+W2)))*(180/pi) # degrees\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The inclination of the plane is \",round(alpha),\"degree\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The inclination of the plane is  14.0 degree\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6-7,Page No:133"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "M=2000 # kg # mass of the car\n",
      "mu=0.3 # coefficient of static friction between the tyre and the road\n",
      "g=9.81 # m/s^2 # acc. due to gravity\n",
      "\n",
      "# Calculations\n",
      "\n",
      "# Divide eqn 1 by eqn 2, We get\n",
      "theta=arctan(mu)*(180/pi) #degree\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The angle of inclination is \",round(theta,1),\"degree\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The angle of inclination is  16.7 degree\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6-9,Page No:135"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "# Initilization of variabes\n",
      "\n",
      "Wa=1000 #N # weight of block A\n",
      "Wb=500 #N # weight of block B\n",
      "theta=15 # degree # angle of the wedge\n",
      "mu=0.2 # coefficient of friction between the surfaces in contact\n",
      "phi=7.5 # degrees # used in case 2\n",
      "\n",
      "# Caculations \n",
      "\n",
      "# CASE (a)\n",
      "\n",
      "# consider the equilibrium of upper block A\n",
      "# rearranging eq'ns 1 &2 and solving them using matrix for N1 & N2\n",
      "A=np.array([[1 ,-0.4522],[-0.2 ,0.914]])\n",
      "B=np.array([0,1000])\n",
      "C=np.linalg.solve(A,B)\n",
      "\n",
      "# Now consider the equilibrium of lower block B\n",
      "# From eq'n 4\n",
      "N3=Wb+(C[1]*cos(theta*(pi/180)))-(mu*C[1]*sin(theta*(pi/180))) #N\n",
      "# Now from eq'n 3\n",
      "P=(mu*N3)+(mu*C[1]*cos(theta*(pi/180)))+(C[1]*sin(theta*(pi/180))) # N\n",
      "\n",
      "# CASE (b)\n",
      "\n",
      "# The eq'n for required coefficient for the wedge to be self locking is,\n",
      "mu_req=(theta*pi)/360 # multiplying with (pi/180) to convert it into radians\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The minimum horizontal force (P) which should be applied to raise the block is \",round(P),\"N\"\n",
      "print\"The required coefficient for the wedge to be self locking is \",round(mu_req,4) #answer in textbook is wrong\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The minimum horizontal force (P) which should be applied to raise the block is  871.0 N\n",
        "The required coefficient for the wedge to be self locking is  0.1309\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6-13.Page No:141"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "# Initilization of variables\n",
      "\n",
      "P=100 #N # force acting at 0.2 m from A\n",
      "Q=200 #N # force acting at any distance x from B\n",
      "l=1 #m # length of the bar\n",
      "theta=45 #degree #angle made by the normal reaction at A&B with horizontal\n",
      "\n",
      "# Calculations\n",
      "\n",
      "#solving eqn's 1 & 2 using matrix for Ra & Rb,\n",
      "A=np.array([[1, -1],[sin(theta*(pi/180)) ,sin(theta*(pi/180))]])\n",
      "B=np.array([0,(P+Q)])\n",
      "C=np.linalg.solve(A,B)\n",
      "\n",
      "# Now take moment about B\n",
      "x=((C[0]*l*sin(theta*(pi/180)))-(P*(l-0.2)))/200 #m # here 0.2 is the distance where 100 N load lies from A\n",
      "\n",
      "# Results\n",
      "\n",
      "print\"The minimum value of x at which the load Q=200 N may be applied before slipping impends is \",round(x,2),\"m\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The minimum value of x at which the load Q=200 N may be applied before slipping impends is  0.35 m\n"
       ]
      }
     ],
     "prompt_number": 20
    }
   ],
   "metadata": {}
  }
 ]
}