summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Tayal_A.K./chapter02_11.ipynb
blob: d55d1267145d04484269b8b9dd87ec33ded1dc69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
{
 "metadata": {
  "name": "chapter02.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 2:Concurrent Forces in A Plane"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-1, Page No:10"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "P=50 #N\n",
      "Q=100 #N\n",
      "beta=150 #degree # angle between P & the horizontal\n",
      "\n",
      "#Calculations\n",
      "\n",
      "R=(P**2+Q**2-(2*P*Q*cos(beta*(pi/180))))**0.5 # using the Trignometric solution\n",
      "Alpha=(arcsin(((sin(beta*(pi/180))*Q)/R)))*(180/pi)+15 #Angle in degrees\n",
      "\n",
      "#Result\n",
      "print \"The magnitude of resultant is\",round(R,2),\"N\"\n",
      "print \"The direction of resultant is\",round(Alpha,2),\"degrees\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnitude of resultant is 145.47 N\n",
        "The direction of resultant is 35.1 degrees\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-2,Page No:16"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "P=50 #N\n",
      "Q=100 #N\n",
      "beta=15 #degree # angle between P& the horizontal\n",
      "theta=45 #degree # angle between the resultant (R) & the horizontal\n",
      "\n",
      "#Calculations\n",
      "\n",
      "Rx=P*cos(beta*(pi/180))+Q*cos(theta*(pi/180)) #N\n",
      "Ry=P*sin(beta*(pi/180))+Q*sin(theta*(pi/180)) #N\n",
      "R=((Rx**2)+(Ry**2))**0.5 #N\n",
      "alpha=arctan(Ry/Rx)*(180/pi) #degree\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The magnitude of the resultant is \",round(R,2),\"N\"\n",
      "print\"The ange of the resultant with x-axis is\",round(alpha,2),\"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnitude of the resultant is  145.47 N\n",
        "The ange of the resultant with x-axis is 35.1 degrees\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-4,Page No:19"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "Tac=3.5 #kN\n",
      "Tbc=3.5 #kN\n",
      "alpha=20 #degree #angle made by Tac with -ve X axis\n",
      "beta=50 #degree #angle made by Tbc with +ve X axis\n",
      "\n",
      "#Calculations\n",
      "\n",
      "theta=(arctan(((Tac*sin(alpha*(pi/180)))+(Tbc*sin(beta*(pi/180))))/((Tac*cos(alpha*(pi/180)))-(Tbc*cos(beta*(pi/180))))))*(180/pi) #degree\n",
      "P=Tac*(cos(alpha*(pi/180))-cos(beta*(pi/180)))/(cos(theta*(pi/180))) #kN # from eq'n 1\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The maximum force that can be applied is \",round(P,1),\"kN\"\n",
      "print\"The direction of applied force is \",round(theta,2),\"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum force that can be applied is  4.0 kN\n",
        "The direction of applied force is  75.0 degrees\n"
       ]
      }
     ],
     "prompt_number": 34
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-8,Page No:25"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "lAB=0.4 #m\n",
      "lBC=0.3 #m\n",
      "\n",
      "#Calculations\n",
      "\n",
      "alpha=arctan(lAB/lBC)*(180/pi) #degree\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The angle which the force should make with the horizontal to keep the edge AB of the body vertical is \",round(alpha,2),\"degrees\" #here alpha=theta"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The angle which the force should make with the horizontal to keep the edge AB of the body vertical is  53.13 degrees\n"
       ]
      }
     ],
     "prompt_number": 37
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-9,Page No:28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "F=1000 #N\n",
      "lAB=0.5 #m\n",
      "lDC=0.25 #m #length of the perpendicular drawn from point C to AB\n",
      "\n",
      "#Calculations\n",
      "\n",
      "lAC=((0.3)**2+(0.25)**2)**0.5 #m\n",
      "lBC=((0.20)**2+(0.25)**2)**0.5 #m\n",
      "Sac=(lAC*F)*(lAB)**-1 #N #by law of concurrent forces\n",
      "Sbc=(lBC*F)/(lAB) #N #by law of concurrent forces\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The axial force in the bar AC(by aw of concurrent forces) is \",round(Sac),\"N\" #the answer in textbook is wrong by 1 N  \n",
      "print\"The axial force in the bar BC(by aw of concurrent forces) is \",round(Sbc),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The axial force in the bar AC(by aw of concurrent forces) is  781.0 N\n",
        "The axial force in the bar BC(by aw of concurrent forces) is  640.0 N\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-10,Page No:30"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Initilization of variables\n",
      "\n",
      "F3=500 #N\n",
      "alpha=60 #degree #angle made by F3 with F2\n",
      "beta=40 #degree #angle made by F1 with F3\n",
      "theta=80 #degree #angle made by F1 with F2\n",
      "\n",
      "#Calculations\n",
      "\n",
      "# Solving by using law of sines\n",
      "\n",
      "F1=(F3*sin(alpha*(pi/180))/sin(theta*(pi/180))) #N #by law of sines\n",
      "F2=(F3*sin(beta*(pi/180))/sin(theta*(pi/180))) #N #by law of sines\n",
      "\n",
      "#Resuts\n",
      "\n",
      "print\"The force F1 is \",round(F1,1),\"N\"\n",
      "print\"The force F2 is \",round(F2,1),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The force F1 is  439.7 N\n",
        "The force F2 is  326.4 N\n"
       ]
      }
     ],
     "prompt_number": 44
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-11,Page No:31"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "P=5000 #N\n",
      "lAB=5 #m\n",
      "lOB=1.443 # m\n",
      "alpha=30 #degree #angle made by force P with the beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "theta=arctan(lOB/lAB)*(180/pi) #degree # eq'n 1\n",
      "Xa=(P*cos(alpha*(pi/180))) #N #using eq'n 4\n",
      "Ya=Xa*tan(theta*(pi/180)) #N #from eq'n 3 & 4\n",
      "Rb=(P*sin(alpha*(pi/180)))-Ya # N # substuting value of Ya in eq'n 5\n",
      "Ra=((Xa**2)+(Ya**2))**0.5 #N\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The reaction at support A is \",round(Ra,1),\"N\"\n",
      "print\"The reaction at support B is \",round(Rb),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The reaction at support A is  4506.8 N\n",
        "The reaction at support B is  1250.0 N\n"
       ]
      }
     ],
     "prompt_number": 46
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-12,Page No:32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "W=1000 #N\n",
      "OD=0.4 #m\n",
      "AD=0.3 #m\n",
      "AO=0.5 #m #AO=sqrt((0.4)^2+(0.3)^2)\n",
      "\n",
      "#Calculations\n",
      "\n",
      "Ra=W*AO/OD #N\n",
      "Rc=W*AD/OD #N\n",
      "alpha=arctan(OD/AD)*(180/pi) #degree\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The reaction at support A is \",round(Ra),\"N\" # answer in textbook is wrong by 50 N\n",
      "print\"The reaction at support B is \",round(Rc),\"N\"\n",
      "print\"The angle that Rc makes with horizontal \",round(alpha,1),\"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The reaction at support A is  1250.0 N\n",
        "The reaction at support B is  750.0 N\n",
        "The angle that Rc makes with horizontal  53.1 degrees\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-13,Page No:33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "W=2500 #N #This load acts at point B and C.\n",
      "alpha=30 #degree # angle made by T1 with +ve y-axis & T2 with +ve x-axis\n",
      "\n",
      "#Calculations\n",
      "\n",
      "T2=W-(((cos(alpha*(pi/180)))**2/(sin(alpha*(pi/180))))-(sin(alpha*(pi/180)))) # N # substuting eq'n 1 in 2\n",
      "T1=(T2*cos(30*(pi/180)))/(sin(30*(pi/180)))#N # using eq'n 1\n",
      "T3=T2 #N # By equilibrium eq'n at point C(sumFx=0)\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"Tension in portion AB is \",round(T1),\"N\" #due to decimal variance the answer varies by 2.0 N\n",
      "print\"Tension in portion BC is \",round(T2),\"N\" #due to decimal variance the answer varies by 1.0 N\n",
      "print\"Tension in portion CD is \",round(T3),\"N\" #due to decimal variance the answer varies by 1.0 N"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Tension in portion AB is  4328.0 N\n",
        "Tension in portion BC is  2499.0 N\n",
        "Tension in portion CD is  2499.0 N\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-15,Page No:35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "d=0.6 #m  #diameter of the wheel\n",
      "r=0.3 #m #radius of the wheel\n",
      "W=1000 #N #weight of the wheel\n",
      "h=0.15 #m #height of rectangular block\n",
      "\n",
      "#Calculations\n",
      "\n",
      "theta=arctan(((h)**0.5)/((d-h)**0.5))\n",
      "P=(W*tan(theta)) #N # dividing eq'n 1 & 2\n",
      "\n",
      "#Resuts\n",
      "\n",
      "print\"The force P so that the wheel is just to roll over the block is \",round(P),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The force P so that the wheel is just to roll over the block is  577.0 N\n"
       ]
      }
     ],
     "prompt_number": 56
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-16,Page No:36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "Soa=1000 #N (tension)\n",
      "alpha=45 #degree #where alpha=(360/8)\n",
      "theta=67.5 #degree #angle made by bar AO with AB &AH\n",
      "\n",
      "#Calcultions\n",
      "\n",
      "Sab=Soa*(sin(theta*(pi/180))/sin(alpha*(pi/180))) # N # Using law of sines\n",
      "Sah=Sab #N\n",
      "Sob=(Sab*sin((180-2*(theta))*(pi/180)))/sin(theta*(pi/180)) #N\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The axial force in the bar AB is \",round(Sab,1),\"N\" #Compression\n",
      "print\"The axial force in the bar OB is \",round(Sob),\"N\" #Tension"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The axial force in the bar AB is  1306.6 N\n",
        "The axial force in the bar OB is  1000.0 N\n"
       ]
      }
     ],
     "prompt_number": 60
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-17,Page No:37"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "W=500 #N #weight of cylinder\n",
      "alpha=25 #degree #angle made by OA with horizontal\n",
      "beta=65 #degree #angle made by OB with horizontal\n",
      "theta=90 #degree # theta=(alpha+beta)\n",
      "\n",
      "#Calculations\n",
      "\n",
      "Ra=(W*sin(beta*(pi/180)))/sin(theta*(pi/180)) #N #from equilibrium eq'n\n",
      "Rb=(W*sin(alpha*(pi/180)))/sin(theta*(pi/180)) #N #from equilibrium eqn's\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The reaction at A is \",round(Ra,1),\"N\"\n",
      "print\"The reaction at B is \",round(Rb,1),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The reaction at A is  453.2 N\n",
        "The reaction at B is  211.3 N\n"
       ]
      }
     ],
     "prompt_number": 62
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-18,Page No:38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "Wa=1000 #N #weight of sphere A\n",
      "Wb=400 #N #weight of sphere B\n",
      "Ra=0.09 #m #radius of sphere A\n",
      "Rb=0.05 #m #radius of sphere B\n",
      "theta=33.86 #degree #angle made by Rq with Wb\n",
      "alpha=60 #degree #angle made by Rl with horizontal\n",
      "\n",
      "#Calculations\n",
      "\n",
      "Rq=Wb/cos(theta*(pi/180)) #N #using sum Fy=0 for sphere B\n",
      "Rp=Rq*sin(theta*(pi/180)) #N #using sum Fx=0 for sphere B\n",
      "Rl=(Rq*sin(theta*(pi/180)))/sin(alpha*(pi/180)) #N #using sum Fx=0 for sphere A\n",
      "Rn=((Wa)+(Rq*cos(theta*(pi/180)))-(Rl*cos(alpha*(pi/180)))) #N\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The reaction at point P is \",round(Rp,1),\"N\"\n",
      "print\"The reaction at point L is \",round(Rl),\"N\"\n",
      "print\"The reaction at point N is \",round(Rn,1),\"N\" # the answer in textbook is wrong by 3.2 N"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The reaction at point P is  268.4 N\n",
        "The reaction at point L is  310.0 N\n",
        "The reaction at point N is  1245.0 N\n"
       ]
      }
     ],
     "prompt_number": 65
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-19,Page No:39"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "P=50 #N\n",
      "Q=100 #N\n",
      "alpha=30 #degree #angle made by Rq with +ve Y-axis\n",
      "\n",
      "#Calculations\n",
      "\n",
      "theta_r=arctan((P*((cos(alpha*(pi/180)))/(sin(alpha*(pi/180))))-Q*tan(alpha*(pi/180)))/(P+Q)) #radians\n",
      "theta=theta_r*(180/pi)\n",
      "T=Q/(cos(theta*(pi/180))*(cos(alpha*(pi/180)))/(sin(alpha*(pi/180)))-sin(theta*(pi/180))) #N\n",
      "\n",
      "#Results\n",
      "print\"The tension in the string is \",round(T,1),\"N\"\n",
      "print\"The angle wich the string makes with the horizontal when the system is in equilibrium is \",round(theta,1),\"degrees\" \n",
      "#Note:The decimal accuracy in python causes discrepancy in answers"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The tension in the string is  66.1 N\n",
        "The angle wich the string makes with the horizontal when the system is in equilibrium is  10.9 degrees\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-20,Page No:41"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "theta1=50.5 #degree #is the angle made between BC & and BE\n",
      "theta2=36.87 #degree #is te angle ade between BA &BE \n",
      "g=9.81 #m/s^2\n",
      "Wa=15*g #N\n",
      "Wb=40*g #N\n",
      "Wc=20*g #N\n",
      "\n",
      "#Calculations\n",
      "\n",
      "R2=Wc/(sin(theta1*(pi/180))) #N #from F.B.D of cylinder C(sum Fy=0)\n",
      "R4=(Wb+R2*sin(theta1*(pi/180)))/sin(theta2*(pi/180)) #N #from F.B.D of cylinder B(sum Fy=0)\n",
      "R6=R4*cos(theta2*(pi/180)) #N #from F.B.D of cylinder A(sum Fx=0)\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The reaction between the cylinder A and the wall of the channel is \",round(R6,2),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The reaction between the cylinder A and the wall of the channel is  784.8 N\n"
       ]
      }
     ],
     "prompt_number": 70
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-21,Page No:50"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilazation of variables\n",
      "\n",
      "F=1000 #N\n",
      "theta=30 #degree #angle made by the force with the beam AB\n",
      "Lab=3 #m\n",
      "Lae=2 #m\n",
      "Lce=1 #m\n",
      "\n",
      "#Calculations\n",
      "\n",
      "Re=(F*Lab*sin(theta*(pi/180)))/Lae #N #Taking moment at A\n",
      "Rd=(Re*Lce)/(Lab*sin(theta*(pi/180))) #N #Taking moment about C\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The reaction at D due to force of 1000 N acting at B is \",round(Rd,2),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The reaction at D due to force of 1000 N acting at B is  500.0 N\n"
       ]
      }
     ],
     "prompt_number": 71
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2-23,Page No:51"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "W=1000 #N\n",
      "r=0.30 #m #radius of the wheel\n",
      "h=0.15 #m #height of the obstacle\n",
      "\n",
      "#Calculations\n",
      "\n",
      "theta=arcsin(1)*(180/pi) #degree #P is mini when sin(theta)=1 from eq'n of P\n",
      "Pmini=(W*((2*r*h)-(h**2))**0.5)/(r*sin(theta*(pi/180))) #N\n",
      "\n",
      "#Results\n",
      "\n",
      "print\"The least force required to just turn the wheel over the block is \",round(Pmini),\"N\"\n",
      "print\"The angle wich should be made by Pmini with AC is \",round(theta,2),\"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The least force required to just turn the wheel over the block is  866.0 N\n",
        "The angle wich should be made by Pmini with AC is  90.0 degrees\n"
       ]
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}