1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
{
"metadata": {
"name": "",
"signature": "sha256:009e429ea1d1a6f618797566ada042bfaebc4f67f1205df26f3e658838bf8819"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 28:Motion Along a Circular Path"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 28.1, Page no.574"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable declaration\n",
"m=5 #mass of body in kg\n",
"r=1.5 #Radius of circle in m\n",
"omega=2 #angular velocity of the body in rad/s\n",
"\n",
"#calculation\n",
"F=m*omega**2*r\n",
"\n",
"#Result\n",
"print\"F=\",int(F),\"N\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"F= 30 N\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 28.2, Page no.574"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable declaration\n",
"m=1 #mass of stone in kg\n",
"r=1 #Radius of circle in m\n",
"v=10 #linear velocity of the stone in m/s\n",
"\n",
"#calculation\n",
"F=(m*v**2)/r\n",
"\n",
"#Result\n",
"print\"The value of centrifugal force acting on the stone, F=\",int(F),\"N\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of centrifugal force acting on the stone, F= 100 N\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 28.3, Page no.574"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#variable declaration\n",
"m=0.25 #mass of ball in kg\n",
"r=2 #Radius of circle in m\n",
"F=25 #maximum tension in the sring in N\n",
"\n",
"#calculation\n",
"omega=math.sqrt(F/(m*r))\n",
"\n",
"#Result\n",
"print\"The maximum angular velocity at which the ball can be rotated, omega=\",round(omega,2),\"rad/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum angular velocity at which the ball can be rotated, omega= 7.07 rad/s\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 28.6, Page no.576"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable declaration\n",
"m=60 #mass of railway engine in t\n",
"r=200 #Radius of circular path in m\n",
"v=10 #velocity of engine in m/s\n",
"\n",
"#calculation\n",
"P_c=(m*v**2)/r\n",
"\n",
"#Result\n",
"print\"The force exerted on the rails towards the centre of the circle, P_c=\",int(P_c),\"kN\"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The force exerted on the rails towards the centre of the circle, P_c= 30 kN\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 28.7, Page no.576"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable declaration\n",
"m=1.5 #mass of automobile in t\n",
"v=15 #velocity of automobile in m/s\n",
"r=25 #radius of the sag in m\n",
"g=9.8 #gravity in m/s**2\n",
"\n",
"#calculation\n",
"R=((m*v**2)/r)+(m*g)\n",
"\n",
"#Result\n",
"print\"The reaction between the automobile and road while travelling at the lowest part of the sag is\",round(R,1),\"kN\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reaction between the automobile and road while travelling at the lowest part of the sag is 28.2 kN\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 28.13, Page no.583"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#variable declaration\n",
"r=50 #Radius of level track in m\n",
"Mu=0.45 #Coefficient of friction\n",
"g=9.8 #gravity in m/s**2\n",
"\n",
"#calculation\n",
"v_max=(math.sqrt(Mu*g*r))*3.6 #Multiplying by 3.6 to convert m/s to km.p.h.\n",
"\n",
"#Result\n",
"print\"Maximum speed,v_max=\",round(v_max,1),\"km.p.h.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum speed,v_max= 53.5 km.p.h.\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|