summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Khurmi_R.S./chapter10.ipynb
blob: 37b360d02fb143898592e06dc4533a47ec533b8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
{
 "metadata": {
  "name": "",
  "signature": "sha256:7b15e8f180333ee46bf2dbf70747d7d301a3bed09a0eb6d2a0ced67423d0f6af"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10:Principles of Lifting Machines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.1, Page no.173"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "W=1000     #Weight in N\n",
      "P=25       #Effort in N\n",
      "x=0.1      #Distance through which the weight is moved in m\n",
      "y=8        #Distance through which effort is moved in m\n",
      "\n",
      "#calculation\n",
      "MA=W/P\n",
      "VR=y/x\n",
      "Eta=MA/VR\n",
      "\n",
      "#Result\n",
      "print\"Mechanical advantage of the machine, M.A.=\",int(MA)\n",
      "print\"Velocity ratio of the machine, V.R.=\",int(VR)\n",
      "print\"Efficiency of the machine, Eta=\",int(round(Eta*100,1)),\"%\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mechanical advantage of the machine, M.A.= 40\n",
        "Velocity ratio of the machine, V.R.= 80\n",
        "Efficiency of the machine, Eta= 50 %\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2, Page no.174 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "VR=30     #Velocity ratio\n",
      "W=1500.0  #Load in N\n",
      "P=125     #Effort in N\n",
      "\n",
      "#calculation\n",
      "MA=W/P\n",
      "Eta=MA/VR\n",
      "\n",
      "#Result\n",
      "print\"Efficiency, Eta=\",int(round(Eta*100,1)),\"%\"\n",
      "print\"Since efficiency of the machine is less than 50%, therefore the machine is non-reversible\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Efficiency, Eta= 40 %\n",
        "Since efficiency of the machine is less than 50%, therefore the machine is non-reversible\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.4, Page no.176"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "P=100.0   #Effort in N\n",
      "W=840.0   #Load in N\n",
      "VR=10     #vecocity ratio\n",
      "\n",
      "#calculation\n",
      "#To calculate efficiency of the machine\n",
      "MA=W/P\n",
      "Eta=(MA/VR)*100\n",
      "#To calculate friction of the machine\n",
      "F_effort=P-(W/VR) #In terms of effort\n",
      "F_load=(P*VR)-W   #In terms of load\n",
      "\n",
      "#Result\n",
      "print\"Efficiency of the machine, Eta=\",int(Eta),\"%\"\n",
      "print\"Friction of the machine in terms of effort, F_effort=\",int(F_effort),\"N\"\n",
      "print\"Friction of the machine in terms of load, F_load=\",int(F_load),\"N\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Efficiency of the machine, Eta= 84 %\n",
        "Friction of the machine in terms of effort, F_effort= 16 N\n",
        "Friction of the machine in terms of load, F_load= 160 N\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.9, Page no.181"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "m=0.02   #On dividing W/50 we get 0.02W where m=0.02\n",
      "W=600    #Load in N\n",
      "VR=100   #velocity ratio\n",
      "\n",
      "#calculation\n",
      "Max_MA=1/m\n",
      "Max_Pos_Efficiency=1/(m*VR)\n",
      "P=m*W+8  #Given\n",
      "F_effort=P-(W/VR)\n",
      "MA=W/P\n",
      "Eta=MA/VR\n",
      "\n",
      "#Result\n",
      "print\"Maximum possible mechanical advantage, Max M.A.=\",int(Max_MA)\n",
      "print\"Maximum possible efficiency=\",int(round(Max_Pos_Efficiency*100,1)),\"%\"\n",
      "print\"Effort required to overcome the machine friction, F_effort=\",int(F_effort),\"N\"\n",
      "print\"Efficiency of the machine, Eta=\",int(round(Eta*100,1)),\"%\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum possible mechanical advantage, Max M.A.= 50\n",
        "Maximum possible efficiency= 50 %\n",
        "Effort required to overcome the machine friction, F_effort= 14 N\n",
        "Efficiency of the machine, Eta= 30 %\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}