1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 7 Application of friction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.1 Application of Friction"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The angle of lap for the larger pulley is 203.073918 degree\n",
"The angle of lap for the smaller pulley is 156.926082 degree\n",
"The length of pulley required is 117.748668 cm\n"
]
}
],
"source": [
"import math\n",
"# Initilization of variables\n",
"d1=24 # cm # diameter of larger pulley\n",
"d2=12 # cm # diameter of smaller pulley\n",
"d=30 #cm # seperation betweem 1st & the 2nd pulley\n",
"# Calcuations\n",
"r1=d1/2 #cm # radius of 1st pulley\n",
"r2=d2/2 #cm # radius of 2nd pulley\n",
"theta=math.degrees(math.asin((r1-r2)/d)) #degrees \n",
"# Angle of lap\n",
"beta_1=180+(2*theta) #degree # for larger pulley\n",
"beta_2=180-(2*theta) #degree #for smaller pulley\n",
"L=math.pi*(r1+r2)+(2*d)+((r1-r2)**2/d) #cm # Length of the belt\n",
"# Results\n",
"print('The angle of lap for the larger pulley is %f degree'%beta_1)\n",
"print('The angle of lap for the smaller pulley is %f degree'%beta_2)\n",
"print('The length of pulley required is %f cm'%L)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.2 Application of Friction"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The angle of lap for the pulley is 194.774097 degree\n",
"The length of pulley required is 8.420145 m\n"
]
}
],
"source": [
"# Initilization of variables\n",
"d1=0.6 #m # diameter of larger pulley\n",
"d2=0.3 #m # diameter of smaller pulley\n",
"d=3.5 #m # separation between the pulleys\n",
"# Calculations\n",
"r1=d1/2 #m # radius of larger pulley\n",
"r2=d2/2 #m # radius of smaller pulley\n",
"theta=math.degrees(math.asin((r1+r2)/d)) #degree\n",
"# Angle of lap for both the pulleys is same, i.e\n",
"beta=180+(2*theta) # degree\n",
"L=((math.pi*(r1+r2))+(2*d)+((r1-r2)**2/d)) #cm # Length of the belt\n",
"# Results\n",
"print('The angle of lap for the pulley is %f degree'%beta)\n",
"print('The length of pulley required is %f m'%L)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.4 Belt friction"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The minimum weight W2 to keep W1 in equilibrium is 455.975258 N\n"
]
}
],
"source": [
"# Initilization of variables\n",
"W1=1000 #N\n",
"mu=0.25 #coefficient of friction\n",
"T1=W1 # Tension in the 1st belt carrying W1\n",
"e=2.718 #constant\n",
"# Calculations\n",
"T2=T1/(e**(mu*math.pi)) #N # Tension in the 2nd belt\n",
"W2=T2 #N\n",
"# Results\n",
"print('The minimum weight W2 to keep W1 in equilibrium is %f N'%W2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.5 Belt friction"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The braking moment (M) exerted by the vertical weight W is 42.980225 N-m\n"
]
}
],
"source": [
"# Initilization of variables\n",
"mu=0.5 # coefficient of friction between the belt and the wheel\n",
"W=100 #N\n",
"theta=45 #degree\n",
"e=2.718\n",
"Lac=0.75 #m # ength of the lever\n",
"Lab=0.25 #m\n",
"Lbc=0.50 #m\n",
"r=0.25 #m\n",
"# Calculations\n",
"beta=((180+theta)*math.pi)/180 # radian # angle of lap\n",
"# from eq'n 2\n",
"T1=(W*Lbc)/Lab #N \n",
"T2=T1/(e**(mu*beta)) #N # from eq'n 1\n",
"# consider the F.B.D of the pulley and take moment about its center, we get Braking Moment (M)\n",
"M=r*(T1-T2) #N-m\n",
"# Results\n",
"print('The braking moment (M) exerted by the vertical weight W is %f N-m'%M)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.6 Belt friction"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The force required to suport the weight of 1000 N i.e 1kN is 3.502492 N\n"
]
}
],
"source": [
"# Initiization of variables\n",
"W= 1000 #N # or 1kN\n",
"mu=0.3 # coefficient of friction between the rope and the cylinder\n",
"e=2.718 # constant\n",
"alpha=90 # degree # since 2*alpha=180 egree\n",
"# Calculations\n",
"beta=2*math.pi*3 # radian # for 3 turn of the rope\n",
"# Here T1 is the larger tension in that section of the rope which is about to slip\n",
"T1=W #N\n",
"F=W/e**(mu*(1/(math.sin(alpha*math.pi/180)))*(beta)) #N Here T2=F\n",
"# Results\n",
"print('The force required to suport the weight of 1000 N i.e 1kN is %f N'%F)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.7 Belt friction"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The number of ropes required to transmit 50 kW is 4.789906 or ~ 5\n"
]
}
],
"source": [
"# Initilization of variables\n",
"Pw=50 #kW\n",
"T_max=1500 #N\n",
"v=10 # m/s # velocity of rope\n",
"w=4 # N/m # weight of rope\n",
"mu=0.2 # coefficient of friction \n",
"g=9.81 # m/s**2 # acceleration due to gravity\n",
"e=2.718 # constant\n",
"alpha=30 # degree # since 2*alpha=60 \n",
"# Calcuations\n",
"T_e=(w*v**2)/g # N # where T_e is the centrifugal tension\n",
"T1=(T_max)-(T_e) #N\n",
"T2=T1/(e**(mu*(1/math.sin(alpha*math.pi/180))*(math.pi))) #N # From eq'n T1/T2=e^(mu*cosec(alpha)*beta)\n",
"P=(T1-T2)*v*(10**-3) #kW # power transmitted by a single rope\n",
"N=Pw/P # Number of ropes required\n",
"# Results\n",
"print('The number of ropes required to transmit 50 kW is %f or ~ %.0f'%(N,N))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.8 Belt friction"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The power transmitted by the cross belt drive is 1.180543 kW\n"
]
}
],
"source": [
"# Initilization of variables\n",
"d1=0.45 #m # diameter of larger pulley\n",
"d2=0.20 #m # diameter of smaller pulley\n",
"d=1.95 #m # separation between the pulley's\n",
"T_max=1000 #N # or 1kN which is the maximum permissible tension\n",
"mu=0.20 # coefficient of friction\n",
"N=100 # r.p.m # speed of larger pulley\n",
"e=2.718 # constant\n",
"T_e=0 #N # as the data for calculating T_e is not given we assume T_e=0\n",
"# Calculations\n",
"r1=d1/2 #m # radius of larger pulley\n",
"r2=d2/2 #m # radius of smaller pulley\n",
"theta=math.degrees(math.asin((r1+r2)/d)) # degree\n",
"# for cross drive the angle of lap for both the pulleys is same\n",
"beta=((180+(2*(theta)))*math.pi)/180 #radian\n",
"T1=T_max-T_e #N\n",
"T2=T1/(e**(mu*(beta))) #N # from formulae, T1/T2=e**(mu*beta)\n",
"v=((2*math.pi)*N*r1)/60 # m/s # where v=velocity of belt which is given as, v=wr=2*pie*N*r/60\n",
"P=(T1-T2)*v*(10**-3) #kW # Power\n",
"# Results\n",
"print('The power transmitted by the cross belt drive is %f kW'%P)\n",
"#answer given in the textbook is incorrect"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.9 Belt friction"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The initial power transmitted is 14.808043 kW\n",
"The initial tension in the belt is 682.223893 N\n",
"The maximum power that can be transmitted is 15.020439 kW\n",
"The maximum power is transmitted at a belt speed of 24.343225 m/s\n"
]
}
],
"source": [
"# Initilization of variabes\n",
"b=0.1 #m #width of the belt\n",
"t=0.008 #m #thickness of the belt\n",
"v=26.67 # m/s # belt speed\n",
"beta=165 # radian # angle of lap for the smaller belt\n",
"mu=0.3 # coefficient of friction\n",
"sigma_max=2 # MN/m**2 # maximum permissible stress in the belt\n",
"m=0.9 # kg/m # mass of the belt\n",
"g=9.81 # m/s**2\n",
"e=2.718 # constant\n",
"# Calculations\n",
"A=b*t # m**2 # cross-sectional area of the belt\n",
"T_e=m*v**2 # N # where T_e is the Centrifugal tension\n",
"T_max=(sigma_max)*(A)*(10**6) # N # maximum tension in the belt\n",
"T1=(T_max)-(T_e) # N \n",
"T2=T1/(e**((mu*math.pi*beta)/180)) #N # from formulae T1/T2=e**(mu*beta)\n",
"P=(T1-T2)*v*(10**-3) #kW # Power transmitted\n",
"T_o=(T1+T2)/2 # N # Initial tension\n",
"# Now calculations to transmit maximum power\n",
"Te=T_max/3 # N # max tension\n",
"u=math.sqrt(T_max/(3*m)) # m/s # belt speed for max power\n",
"T_1=T_max-Te # N # T1 for case 2\n",
"T_2=T_1/(e**((mu*math.pi*beta)/180)) # N \n",
"P_max=(T_1-T_2)*u*(10**-3) # kW # Max power transmitted\n",
"# Results\n",
"print('The initial power transmitted is %f kW'%P)\n",
"print('The initial tension in the belt is %f N'%T_o)\n",
"print('The maximum power that can be transmitted is %f kW'%P_max)\n",
"print('The maximum power is transmitted at a belt speed of %f m/s'%u)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.10 Friction in a square threaded screw"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The force required (i.e F1) to raise the weight is 1.208561 kN\n",
"The force required (i.e F2) to lower the weight is -0.794732 kN\n",
"The efficiency of the jack is 16.461202 percent\n"
]
}
],
"source": [
"# Initilization of variables\n",
"p=0.0125 # m # pitch of screw\n",
"d=0.1 #m # diameter of the screw\n",
"r=0.05 #m # radius of the screw\n",
"l=0.5 #m # length of the lever\n",
"W=50 #kN # load on the lever\n",
"mu=0.20 # coefficient of friction \n",
"# Calculations\n",
"theta=math.degrees(math.atan(p/(2*math.pi*r))) #degree # theta is the Helix angle\n",
"phi=math.degrees(math.atan(mu)) # degree # phi is the angle of friction\n",
"# Taking the leverage due to handle into account,force F1 required is,\n",
"a=theta+phi\n",
"b=theta-phi\n",
"F1=(W*(math.tan(a*math.pi/180)))*(r/l) #kN\n",
"# To lower the load\n",
"F2=(W*(math.tan(b*math.pi/180)))*(r/l) #kN # -ve sign of F2 indicates force required is in opposite sense\n",
"E=(math.tan(theta*math.pi/180)/math.tan((theta+phi)*math.pi/180))*100 # % # here E=eata=efficiency in %\n",
"# Results\n",
"print('The force required (i.e F1) to raise the weight is %f kN'%F1)\n",
"print('The force required (i.e F2) to lower the weight is %f kN'%F2)\n",
"print('The efficiency of the jack is %f percent'%E)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 7.11 Application of Friction"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The frictional torque is 240.000000 N-m\n"
]
}
],
"source": [
"# Initilization of variabes\n",
"P=20000 #N #Weight of the shaft\n",
"D=0.30 #m #diameter of the shaft\n",
"R=0.15 #m #radius of the shaft\n",
"mu=0.12 # coefficient of friction\n",
"# Calculations\n",
"# Friction torque T is given by formulae,\n",
"T=(2/3)*P*R*mu #N-m\n",
"M=T #N-m\n",
"# Results\n",
"print('The frictional torque is %f N-m'%M)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
},
"widgets": {
"state": {},
"version": "1.1.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|