1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3 Parallel forces in a plane"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.1 Resultant of Forces in a Plane"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The load taken by man P is 400 N\n",
"The load taken by man Q is 600 N\n"
]
}
],
"source": [
"import math\n",
"#Initilization of variables\n",
"W=1000 #N\n",
"Lab=1 #m\n",
"Lac=0.6 #m\n",
"theta=60 #degree #angle made by the beam with the horizontal\n",
"#Calculations\n",
"Q=(W*Lac*math.cos(theta*180/math.pi))/(Lab*math.cos(theta*180/math.pi)) #N # from eq'n 2\n",
"P=W-Q #N # from eq'n 1\n",
"#Results\n",
"print('The load taken by man P is %d N'%P)\n",
"print('The load taken by man Q is %d N'%Q)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.2 Resultant of forces in a Plane"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The reaction (downwards)at support A is 250 N\n",
"The reaction (upwards)at support B is 1250 N\n"
]
}
],
"source": [
"#Initilization of variables\n",
"F=1000 #N\n",
"Lab=1 #m\n",
"Lbc=0.25 #m\n",
"Lac=1.25 #m\n",
"#Calculations\n",
"Rb=(F*Lac)/Lab #N # from eq'n 2\n",
"Ra=Rb-F #N # fom eq'n 1\n",
"#Results\n",
"print('The reaction (downwards)at support A is %d N'%Ra)\n",
"print('The reaction (upwards)at support B is %d N'%Rb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.3 Resultant of Forces in a Plane"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The vertical reaction (upwards) at A is 0.833333 kN\n",
"The horizontal reaction (towards A) is -20.000000 kN\n",
"The reaction (downwards) at B is -0.833333 kN\n"
]
}
],
"source": [
"#Inilitization of variables\n",
"Lab=12 #m\n",
"Mc=40 #kN-m \n",
"Md=10 #kN-m\n",
"Me=20 #kN-m\n",
"Fe=20 #kN #force acting at point E\n",
"#Calculations\n",
"Xa=-(Fe) #kN #take sum Fx=0\n",
"Rb=(Md+Me-Mc)/Lab #N #take moment at A\n",
"Ya=-Rb #N #take sum Fy=0\n",
"#Results\n",
"print('The vertical reaction (upwards) at A is %f kN'%Ya)\n",
"print('The horizontal reaction (towards A) is %d kN'%Xa)\n",
"print('The reaction (downwards) at B is %f kN'%Rb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.5 Resultant of Forces in a Plane"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The reaction at F i.e Rf is 3500.000000 N\n",
"The reaction at D i.e Rd is 1000.000000 N\n",
"The reaction at pt E i.e Re is 833.333333 N\n",
"The reaction at pt A i.e Ra is -333.333333 N\n"
]
}
],
"source": [
"import numpy\n",
"#Initilization of variables\n",
"W=1000 #N\n",
"Lad=7.5 #m\n",
"Lae=1.5 #m\n",
"La1=3.75 #m #distance of 1st 1000N load from pt A\n",
"La2=5 #m #distance of 2nd 1000N load from pt A\n",
"La3=6 #m # distance of 3rd 1000N load from pt A\n",
"# Calculations (part1)\n",
"#using matrix to solve the given eqn's 1 & 2\n",
"A=numpy.matrix('1 -2.5;3.5 -5')\n",
"B=numpy.matrix('1000;7250')\n",
"C=numpy.linalg.inv(A)*B\n",
"#Calculations (part 2)\n",
"#Consider combined F.B.D of beams AB,BC &CD. Take moment at A\n",
"Re=((W*La1)+(W*La2)+(W*La3)+(C[1]*Lad)-(C[0]*La3))/Lae #N\n",
"Ra=C[1]-Re-C[0]+(3*W) #N #Taking sum of forces in Y direction\n",
"#Results\n",
"print('The reaction at F i.e Rf is %f N'%C[0])\n",
"print('The reaction at D i.e Rd is %f N'%C[1])\n",
"print('The reaction at pt E i.e Re is %f N'%Re)\n",
"print('The reaction at pt A i.e Ra is %f N'%Ra) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.6 Resultant of forces in a plane"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The angle theta is 15.945396 degrees\n"
]
}
],
"source": [
"# Initilization of variables\n",
"W=100 # N #force acting at D\n",
"AB=50 # N # weight of bar ab\n",
"CD=50 # N # weight of bar cd\n",
"# Calculations\n",
"# From the derived expression the value of the angle is given as,\n",
"theta=math.degrees(math.atan(5/17.5)) #degrees\n",
"# Results\n",
"print('The angle theta is %f degrees'%theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.7 Resultant of forces in a plane"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The reaction at wheel A is 0.950000 kN\n",
"The reaction at wheel B is 0.950000 kN\n",
"The reaction at wheel C is 0.600000 kN\n"
]
}
],
"source": [
"#Initilization of variables\n",
"Ws=2 #kN #weight of scooter\n",
"Wd=0.5 #kN #weight of driver\n",
"Lab=1 #m\n",
"Led=0.8 #m\n",
"Leg=0.1 #m\n",
"#Calculations\n",
"Rc=((2*Leg)+(Wd*Led))/Lab #kN #take moment at E\n",
"Ra=(2+Wd-Rc)/2 # kN # as Ra=Rb,(Ra+Rb=2*Ra)\n",
"Rb=Ra # kN\n",
"#Results\n",
"print('The reaction at wheel A is %f kN'%Ra)\n",
"print('The reaction at wheel B is %f kN'%Rb)\n",
"print('The reaction at wheel C is %f kN'%Rc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.8 Resultant of Forces in a Plane"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The reaction for single force is -60 N\n",
"The distance of Ry from A is 0.783333 m\n",
"The moment at A is -47 N-m\n",
"The moment at B is 25.020000 N-m\n"
]
}
],
"source": [
"#Initilization of variables\n",
"W1=15 #N #up\n",
"W2=60 #N #down\n",
"W3=10 #N #up\n",
"W4=25 #N #down\n",
"Lab=1.2 #m\n",
"Lac=0.4 #m\n",
"Lcd=0.3 #m\n",
"Ldb=0.5 #m\n",
"Lad=0.7 #m\n",
"Leb=0.417 #m #Leb=Lab-x\n",
"#Calculations\n",
"#(a) A single force\n",
"Ry=W1-W2+W3-W4 #N #take sum Fy=0\n",
"x=((-W2*Lac)+(W3*Lad)-(W4*Lab))/(Ry) #m\n",
"# (b) Single force moment at A\n",
"Ma=(Ry*x) #N-m\n",
"# Single force moment at B\n",
"Mb=W2*Leb #N-m\n",
"#Results\n",
"print('The reaction for single force is %d N'%Ry)\n",
"print('The distance of Ry from A is %f m'%x)\n",
"print('The moment at A is %d N-m'%Ma)\n",
"print('The moment at B is %f N-m'%Mb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.9 Resultant of Forces in a Plane"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tension in wire 1 i.e T1 is 8101.126884 N \n",
"\n",
"Tension in wire 2 i.e T2 is 6786.756093 N \n",
"\n",
"Tension in wire 3 i.e T3 is 4444.444444 N \n",
"\n"
]
}
],
"source": [
"#Initilization of variables\n",
"Ra=5000 #N\n",
"Ma=10000 #Nm\n",
"alpha=60 #degree #angle made by T1 with the pole\n",
"beta=45 #degree #angle made by T2 with the pole\n",
"theta=30 #degree #angle made by T3 with the pole\n",
"Lab=6 #m\n",
"Lac=1.5 #m\n",
"Lcb=4.5 #m\n",
"#Calculations\n",
"T3=Ma/(4.5*math.sin(theta*math.pi/180)) #N #take moment at B\n",
"# Now we use matrix to solve eqn's 1 & 2 simultaneously,\n",
"A=numpy.matrix('-0.707 0.8666;0.707 0.5')\n",
"B=numpy.matrix('2222.2;8848.8')\n",
"C=numpy.linalg.inv(A)*B\n",
"#Results\n",
"print('Tension in wire 1 i.e T1 is %f N \\n'%C[1])\n",
"print('Tension in wire 2 i.e T2 is %f N \\n'%C[0])\n",
"print('Tension in wire 3 i.e T3 is %f N \\n'%T3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.10 Distributed Force in a Plane"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The resultant of the distibuted load lies at 2 m\n",
"The reaction at support A is 1000 N\n",
"The reaction at support B is 2000 N\n"
]
}
],
"source": [
"#Initilization of variables\n",
"w=2000 #N/m\n",
"Lab=3 #m\n",
"#Calculations\n",
"W=w*Lab/2 #N# Area under the curve\n",
"Lac=(2/3)*Lab #m#centroid of the triangular load system\n",
"Rb=(W*Lac)/Lab #N #sum of moment at A\n",
"Ra=W-Rb #N\n",
"#Results\n",
"print('The resultant of the distibuted load lies at %d m'%Lac)\n",
"print('The reaction at support A is %d N'%Ra)\n",
"print('The reaction at support B is %d N'%Rb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.11 Distributed force in a plane"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The resultant is 2000 N and the line of action of the force is 3 m\n"
]
}
],
"source": [
"#Initiization of variables\n",
"w=1500 #N/m\n",
"x=4 #m\n",
"L=4 #m\n",
"#Calculations\n",
"k=x**2/w #m**3/N\n",
"#Solving the intergral we get\n",
"W=L**3/(3*k) #N\n",
"x_bar=L**4/(4*k*W) #m\n",
"#Result\n",
"print(\"The resultant is %d N and the line of action of the force is %d m\"%(W,x_bar))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.12 Distributed force in a plane"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The resultant of the distributed load system is 18 kN\n",
"The line of action of the resulting load is 3.500000 m\n"
]
}
],
"source": [
"# Initilization of variables\n",
"w1=1.5 #kN/m # intensity of varying load at the starting point of the beam\n",
"w2=4.5 #kN/m # intensity of varying load at the end of the beam\n",
"l=6 #m # ength of the beam\n",
"# Calculations\n",
"# The varying load distribution is divided into a rectangle and a right angled triangle\n",
"W1=w1*l #kN # where W1 is the area of the load diagram(rectangle ABED)\n",
"x1=l/2 #m # centroid of the rectangular load system\n",
"W2=(w2-w1)*l/2 #kN # where W1 is the area of the load diagram(triangle DCE)\n",
"x2=2*l/3 #m # centroid of the triangular load system\n",
"W=W1+W2 #kN # W is the resultant\n",
"x=((W1*x1)+(W2*x2))/W #m # where x is the distance where the resultant lies\n",
"#Results\n",
"print('The resultant of the distributed load system is %d kN'%W)\n",
"print('The line of action of the resulting load is %f m'%x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.13 Distributed forces in a plane"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The horizontal reaction at A i.e Xa is 17.320508 kN\n",
"The vertical reaction at A i.e Ya is 10 kN\n",
"The reaction at A i.e Ra is 20 kN\n",
"The reaction at B i.e Rb is 45 kN\n"
]
}
],
"source": [
"# Initiization of variables\n",
"W1=10 #kN #point load acting at D\n",
"W2=20 #kN # point load acting at C at an angle of 30 degree\n",
"W3=5 #kN/m # intensity of udl acting on span EB of 4m\n",
"W4=10 #kN/m # intensity of varying load acting on span BC of 3m\n",
"M=25 #kN-m # moment acting at E\n",
"theta=30 #degree # angle made by 20 kN load with the beam\n",
"Lad=2 #m\n",
"Leb=4 #m\n",
"Laf=6 #m #distance between the resultant of W3 & point A\n",
"Lac=11 #m\n",
"Lag=9 #m #distance between the resultant of W4 and point A\n",
"Lbc=3 #m\n",
"Lab=8 #m\n",
"# Calculations\n",
"Xa=20*math.cos(theta*math.pi/180) #kN # sum Fx=0\n",
"Rb=((W1*Lad)+(-M)+(W3*Leb*Laf)+(W2*math.sin(theta*math.pi/180)*Lac)+((W4*Lbc*Lag)/2))/Lab #kN # taking moment at A\n",
"Ya=W1+(W2*math.sin(theta*math.pi/180))+(W3*Leb)+(W4*Lbc/2)-Rb #kN # sum Fy=0\n",
"Ra=math.sqrt(Xa**2+Ya**2) #kN # resultant at A\n",
"#Results\n",
"print('The horizontal reaction at A i.e Xa is %f kN'%Xa)\n",
"print('The vertical reaction at A i.e Ya is %d kN'%Ya)\n",
"print('The reaction at A i.e Ra is %d kN'%Ra)\n",
"print('The reaction at B i.e Rb is %d kN'%Rb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.14 Distributed forces in a plane"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The minimum width which is to be provided to the dam to prevent overturning about point B is 1.490712 m\n"
]
}
],
"source": [
"# Initilization of variables\n",
"h=4 #m #height of the dam wall\n",
"rho_w=1000 # kg/m**3 # density of water\n",
"rho_c=2400 # kg/m**3 # density of concrete\n",
"g=9.81 # m/s**2\n",
"# Calculations\n",
"P=(rho_w*g*h**2)/2 # The resultant force due to water pressure per unit length of the dam\n",
"x=(2/3)*h #m # distance at which the resutant of the triangular load acts \n",
"b=math.sqrt((2*P*h)/(3*h*rho_c*g)) # m # eq'n required to find the minimum width of the dam\n",
"# Results\n",
"print('The minimum width which is to be provided to the dam to prevent overturning about point B is %f m'%b)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
},
"widgets": {
"state": {},
"version": "1.1.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|