1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 22 Kinetics of Rigid Body Force and Acceleration"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 22.1 Relation between the translatory motion and rotary motion of a body in plane motion"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a) The no of revolutions executed by the disc before coming to rest is 1500\n",
"(b) The frictional torque is -5.003811 N-m\n"
]
}
],
"source": [
"import math\n",
"#Initialization of variables\n",
"N=1500 # r.p.m\n",
"r=0.5 # m , radius of the disc\n",
"m=300 # N , weight of the disc\n",
"t=120 #seconds , time in which the disc comes to rest\n",
"omega=0 \n",
"g=9.81 #m/s**2\n",
"#Calculations\n",
"omega_0=(2*math.pi*N)/60 #rad/s\n",
"#angular deceleration is given as,\n",
"alpha=-(omega_0/t) #radian/second**2\n",
"theta=(omega_0**2)/(2*(-alpha)) #radian\n",
"#Let n be the no of revolutions taken by the disc before it comes to rest, then\n",
"n=theta/(2*math.pi)\n",
"#Now,\n",
"I_G=((1/2)*m*r**2)/g\n",
"#The frictional torque is given as,\n",
"M=I_G*alpha #N-m\n",
"#Results\n",
"print('(a) The no of revolutions executed by the disc before coming to rest is %d'%n)\n",
"print('(b) The frictional torque is %f N-m'%M)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 22.2 Relation between the translatory motion and rotary motion of a body in plane motion"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a) The acceleration at the centre is 4.896389 m/s**2\n",
"(b) The maximum angle of the inclined plane is 29.941943 degree\n"
]
}
],
"source": [
"# Initilization of variables\n",
"s=1 # m\n",
"mu=0.192 # coefficient of static friction\n",
"g=9.81 # m/s**2\n",
"# Calculations\n",
"# The maximum angle of the inclined plane is given as,\n",
"theta=math.degrees(math.atan(3*mu)) # degree\n",
"a=(2/3)*g*math.sin(theta*180/math.pi) # m/s**2 # by solving eq'n 4\n",
"v=math.sqrt(2*a*s) # m/s\n",
"# Let the acceleration at the centre be A which is given as,\n",
"A=g*math.sin(theta*math.pi/180) # m/s**2 # from eq'n 1\n",
"# Results\n",
"print('(a) The acceleration at the centre is %f m/s**2'%A)\n",
"print('(b) The maximum angle of the inclined plane is %f degree'%theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 22.5 Relation between the translatory motion and rotary motion of a body in plane motion"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The acceleration of weight A is 1.081102 m/s**2\n"
]
}
],
"source": [
"# Initilization of variables\n",
"W_a=25 # N \n",
"W_b=25 # N \n",
"W=200 # N # weight of the pulley\n",
"i_g=0.2 # m # radius of gyration\n",
"g=9.81 # m/s^2\n",
"# Calculations\n",
"# Solving eqn's 1 & 2 for acceleration of weight A (assume a)\n",
"a=(0.15*W_a*g)/(((W*i_g**2)/(0.45))+(0.45*W_a)+((0.6*W_b)/(3))) # m/s^2\n",
"# Results\n",
"print('The acceleration of weight A is %f m/s**2'%a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 22.8 Relation between the translatory motion and rotary motion of a body in plane motion"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The acceleration of the pool is 1.615819 m/s**2\n"
]
}
],
"source": [
"# Initilization of variables\n",
"r_1=0.075 # m\n",
"r_2=0.15 # m\n",
"P=50 # N\n",
"W=100 # N\n",
"i_g=0.05 # m\n",
"theta=30 # degree\n",
"g=9.81 # m/s^2\n",
"# Calculations\n",
"# The eq'n for acceleration of the pool is given by solving eqn's 1,2 &3 as,\n",
"a=(50*g*(r_2*math.cos(theta*math.pi/180)-r_1))/(100*((i_g**2/r_2)+r_2)) # m/s**2\n",
"# Results\n",
"print('The acceleration of the pool is %f m/s**2'%a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 22.10 Relation between the translatory motion and rotary motion of a body in plane motion"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a) The angular velocity of the rod is 4.101219 rad/sec\n",
"(b) The reaction at the hinge is 103.227964 N\n"
]
}
],
"source": [
"# Initilization of variables\n",
"L=1 # m # length of rod AB\n",
"m=10 # kg # mass of the rod\n",
"g=9.81 \n",
"theta=30 # degree\n",
"# Calculations\n",
"# solving eq'n 4 for omega we get,\n",
"omega=math.sqrt(2*16.82*math.sin(theta*math.pi/180)) # rad/s\n",
"# Now solving eq'ns 1 &3 for alpha we get,\n",
"alpha=(12/7)*g*math.cos(theta*math.pi/180) # rad/s\n",
"# Components of reaction are given as,\n",
"R_t=((m*g*math.cos(theta*math.pi/180))-((m*alpha*L)/4)) # N\n",
"R_n=((m*omega**2*L)/(4))+(m*g*math.sin(theta*math.pi/180)) # N\n",
"R=math.sqrt(R_t**2+R_n**2) # N \n",
"# Results\n",
"print('(a) The angular velocity of the rod is %f rad/sec'%omega)\n",
"print('(b) The reaction at the hinge is %f N'%R)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
},
"widgets": {
"state": {},
"version": "1.1.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|